2021
The evaluation of COVID-19 prediction precision with a Lyapunov-like exponent
MAZUREK, JiříZákladní údaje
Originální název
The evaluation of COVID-19 prediction precision with a Lyapunov-like exponent
Autoři
MAZUREK, Jiří (203 Česká republika, garant, domácí)
Vydání
PLOS ONE, 2021, 1932-6203
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30303 Infectious Diseases
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19520/21:A0000244
Organizační jednotka
Obchodně podnikatelská fakulta v Karviné
UT WoS
000664636100043
Klíčová slova anglicky
prediction; COVID-19; Lyapunov exponent; chaotic system
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 4. 2022 10:13, Miroslava Snopková
Anotace
V originále
In the field of machine learning, building models and measuring their performance are two equally important tasks. Currently, measures of precision of regression models’ predictions are usually based on the notion of mean error, where by error we mean a deviation of a prediction from an observation. However, these mean based measures of models’ performance have two drawbacks. Firstly, they ignore the length of the prediction, which is crucial when dealing with chaotic systems, where a small deviation at the beginning grows exponentially with time. Secondly, these measures are not suitable in situations where a prediction is made for a specific point in time (e.g. a date), since they average all errors from the start of the prediction to its end. Therefore, the aim of this paper is to propose a new measure of models’ prediction precision, a divergence exponent, based on the notion of the Lyapunov exponent which overcomes the aforementioned drawbacks. The proposed approach enables the measuring and comparison of models’ prediction precision for time series with unequal length and a given target date in the framework of chaotic phenomena. Application of the divergence exponent to the evaluation of models’ accuracy is demonstrated by two examples and then a set of selected predictions of COVID-19 spread from other studies is evaluated to show its potential.