J 2021

Dynamical motion of matter around a charged black hole

TURIMOV, Bobur, Ozodbek RAHIMOV, Bobomurat AHMEDOV, Zdeněk STUCHLÍK, Kholida BOYMURODOVA et. al.

Basic information

Original name

Dynamical motion of matter around a charged black hole

Authors

TURIMOV, Bobur (860 Uzbekistan, belonging to the institution), Ozodbek RAHIMOV, Bobomurat AHMEDOV (860 Uzbekistan), Zdeněk STUCHLÍK (203 Czech Republic, belonging to the institution) and Kholida BOYMURODOVA

Edition

International Journal of Modern Physics D, SG - Singapurská republika, 2021, 0218-2718

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

Singapore

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/47813059:19630/21:A0000136

Organization unit

Institute of physics in Opava

UT WoS

000643945700004

Keywords in English

Charged black hole;thin accretion;optical appearance;particle trajectory

Tags

International impact, Reviewed
Změněno: 7/2/2022 11:44, Mgr. Pavlína Jalůvková

Abstract

V originále

We investigate the dynamical motion of test particles and accretion processes around spherically symmetric charged black hole. We first show the derivation of the Paczynski-Wiita (PW) potential for any spherically symmetric spacetime and present analytical form of the PW potential in the Reissner-Nordstrom (RN) spacetime and the RN-type spacetime. We study the dependence of the characteristic orbits of test (neutral and charged) particles around a charged black hole from two main parameters, namely, charge of RN black hole and the interaction of charged particle with the external electromagnetic field of the black hole and present graphical trajectories of test particles around the black hole. It is shown that with increasing the absolute value of interaction parameter, |qQ|, the innermost stable circular orbit (ISCO) radius for charged particle always increases. It is also shown that the energy efficiency for a charged particles can reach up to 60% in the presence of an external charged black hole, while for neutral particles it can reach up to 8% for neutral particles. The capture cross-section of the photon is by the charged black and the optical appearance of the thin accretion disk around the charged black. Finally, we have studied the flux energy and the thermal spectrum of the accretion disk consisting of the polytropic gas, around the charged black hole.