J 2021

Elliptical Accretion Disk as a Model for Tidal Disruption Events

LIU, F. K., C. Y. CAO, Marek ABRAMOWICZ, M. WIELGUS, R. CAO et. al.

Basic information

Original name

Elliptical Accretion Disk as a Model for Tidal Disruption Events

Authors

LIU, F. K., C. Y. CAO, Marek ABRAMOWICZ (616 Poland, belonging to the institution), M. WIELGUS, R. CAO and Z. Q. ZHOU

Edition

Astrophysical Journal, GB - Spojené království Velké Británie a, 2021, 0004-637X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

URL

RIV identification code

RIV/47813059:19630/21:A0000166

Organization unit

Institute of physics in Opava

DOI

http://dx.doi.org/10.3847/1538-4357/abd2b6

UT WoS

000620956000001

Keywords in English

Accretion;black hole physics;Active galaxies;Supermassive black holes;Tidal disruption;Galaxy accretion disks

Tags

2022, , RIV22

Tags

International impact, Reviewed

Links

LTI17018, research and development project.
Změněno: 16/3/2022 10:27, Mgr. Pavlína Jalůvková

Abstract

V originále

Elliptical accretion disk models for tidal disruption events (TDEs) have been recently proposed and independently developed by two groups. Although these two models are characterized by a similar geometry, their physical properties differ considerably. In this paper, we further investigate the properties of the elliptical accretion disk of the nearly uniform distribution of eccentricity within the disk plane. Our results show that the elliptical accretion disks have distinctive hydrodynamic structures and spectral energy distributions, associated with TDEs. The soft X-ray photons generated at pericenter and nearby are trapped in the disk and advected around the ellipse because of large electron scattering opacity. They are absorbed and reprocessed into emission lines and low-frequency continuum via recombination and bremsstrahlung emission. Because of the rapid increase of bound-free and free-free opacities with radius, the low-frequency continuum photons become trapped in the disk at large radius and are advected through apocenter and back to the photon-trapping radius. Elliptical accretion disks predict sub-Eddington luminosities and emit mainly at the photon-trapping radius of thousands of Schwarzschild radii with a blackbody spectrum of nearly single temperature of typically about 3 x 10(4) K. Because of the self-regulation, the photon-trapping radius expands and contracts following the rise and fall of accretion rate. The radiation temperature is nearly independent of BH mass and accretion rate and varies weakly with the stellar mass and the viscosity parameter. Our results are well consistent with the observations of optical/UV TDEs.
Displayed: 24/12/2024 03:37