2021
Efficiency Near the Edge: Increasing the Energy Efficiency of FFTs on GPUs for Real-Time Edge Computing
ADÁMEK, Karel, Jan NOVOTNÝ, Jeyarajan THIYAGALINGAM a Wesley ARMOURZákladní údaje
Originální název
Efficiency Near the Edge: Increasing the Energy Efficiency of FFTs on GPUs for Real-Time Edge Computing
Autoři
ADÁMEK, Karel (203 Česká republika), Jan NOVOTNÝ (203 Česká republika, domácí), Jeyarajan THIYAGALINGAM a Wesley ARMOUR
Vydání
IEEE Access, 2021, 2169-3536
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/21:A0000169
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000615033700001
Klíčová slova anglicky
Graphics processing units;Clocks;Hardware;Libraries;Power demand;Data processing;Real-time systems;Energy efficiency;high performance computing;real-time systems;parallel architectures;fast Fourier transforms
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 3. 2022 11:30, Mgr. Pavlína Jalůvková
Anotace
V originále
The Square Kilometer Array (SKA) is an international initiative for developing the world's largest radio telescope with a total collecting area of over a million square meters. The scale of the operation, combined with the remote location of the telescope, requires the use of energy-efficient computational algorithms. This, along with the extreme data rates that will be produced by the SKA and the requirement for a real-time observing capability, necessitates in-situ data processing in an edge style computing solution. More generally, energy efficiency in the modern computing landscape is becoming of paramount concern. Whether it be the power budget that can limit some of the world's largest supercomputers, or the limited power available to the smallest Internet-of-Things devices. In this article, we study the impact of hardware frequency scaling on the energy consumption and execution time of the Fast Fourier Transform (FFT) on NVIDIA GPUs using the cuFFT library. The FFT is used in many areas of science and it is one of the key algorithms used in radio astronomy data processing pipelines. Through the use of frequency scaling, we show that we can lower the power consumption of the NVIDIA A100 GPU when computing the FFT by up to 47% compared to the boost clock frequency, with less than a 10% increase in the execution time. Furthermore, using one common core clock frequency for all tested FFT lengths, we show on average a 43% reduction in power consumption compared to the boost core clock frequency with an increase in the execution time still below 10%. We demonstrate how these results can be used to lower the power consumption of existing data processing pipelines. These savings, when considered over years of operation, can yield significant financial savings, but can also lead to a significant reduction of greenhouse gas emissions.