J 2023

Extended Fuzzy Intervals and their Application in Optimal Allocation Problem Under Uncertainty.

RAMÍK, Jaroslav

Základní údaje

Originální název

Extended Fuzzy Intervals and their Application in Optimal Allocation Problem Under Uncertainty.

Autoři

RAMÍK, Jaroslav

Vydání

Transactions on Fuzzy Sets and Systems, 2023, 2821-0131

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Stát vydavatele

Česká republika

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizační jednotka

Obchodně podnikatelská fakulta v Karviné

Klíčová slova anglicky

Optimal allocation problem, Division scheme, Interval valued functions, Interval coeffcients, Extended fuzzy interval coeffcients

Návaznosti

GA21-03085S, projekt VaV.
Změněno: 20. 12. 2022 15:33, prof. RNDr. Jaroslav Ramík, CSc.

Anotace

V originále

In this paper we dene a special interval uncertainty by extending the well known concept of fuzzy intervals (or, fuzzy numbers), dening a new concept of extended fuzzy interval and its subspace: extended linear fuzzy interval. We present some examples and derive basic properties. Then we demonstrate an application of the new concept by formulating the well known Optimal Allocation Problem (OAP) and its solution under uncertainty. We formulate the corresponding optimization problem with the extended fuzzy interval coecients and also extended fuzzy interval variables and derive its optimal solution in the form of extended fuzzy intervals. Two numerical examples are presented in order to illustrate particular problems and solution concepts. The main innovation highlights of this paper may be formulated as follows: We generalize the well known concept of the fuzzy interval, i.e. fuzzy set of the real numbers R with triangular or trapezoidal membership function, by dening the new concept of extended fuzzy interval - EFI. Then we dene a special subspace of extended fuzzy intervals with piece-wise linear membership functions called extended linear fuzzy interval - ELFI. We derive basic properties of the newly dened concepts and present some examples illustrating particular new properties. We demonstrate application possibilities and advantages of the new concept by an optimal allocation problem with the extended fuzzy interval coecients as well as variables. We present two numerical examples illustrating a particular problem of allocation type and corresponding solution concepts.