2022
On the derivation of weights from incomplete pairwise comparisons matrices via spanning trees with crisp and fuzzy confidence levels
MAZUREK, Jiří a Konrad KULAKOWSKIZákladní údaje
Originální název
On the derivation of weights from incomplete pairwise comparisons matrices via spanning trees with crisp and fuzzy confidence levels
Autoři
MAZUREK, Jiří (203 Česká republika, garant, domácí) a Konrad KULAKOWSKI (616 Polsko)
Vydání
International Journal of Approximate Reasoning, 2022, 0888-613X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19520/22:A0000288
Organizační jednotka
Obchodně podnikatelská fakulta v Karviné
UT WoS
000860466600003
Klíčová slova anglicky
Pairwise comparisons; Fuzzy numbers; Priority vector; Spanning tree; Multiple-criteria decision making
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA21-03085S, projekt VaV.
Změněno: 11. 4. 2023 11:07, Miroslava Snopková
Anotace
V originále
In this paper, we propose a new method for the derivation of a priority vector from an incomplete pairwise comparisons (PC) matrix. We assume that each entry of a PC matrix provided by an expert is also evaluated in terms of the expert’s confidence in a partic- ular judgment. Then, from corresponding graph representations of a given PC matrix, all spanning trees are found. For each spanning tree, a unique priority vector is obtained with the weight corresponding to the confidence levels of entries that constitute this tree. At the end, the final priority vector is obtained through an aggregation of priority vectors achieved from all spanning trees. Confidence levels are modeled by real (crisp) numbers and triangular fuzzy numbers. Numerical examples and comparisons with other methods are also provided. Last, but not least, we introduce a new formula for an upper bound of the number of spanning trees, so that a decision maker gains knowledge (in advance) on how computationally demanding the proposed method is for a given PC matrix