J 2022

On the derivation of weights from incomplete pairwise comparisons matrices via spanning trees with crisp and fuzzy confidence levels

MAZUREK, Jiří a Konrad KULAKOWSKI

Základní údaje

Originální název

On the derivation of weights from incomplete pairwise comparisons matrices via spanning trees with crisp and fuzzy confidence levels

Autoři

MAZUREK, Jiří (203 Česká republika, garant, domácí) a Konrad KULAKOWSKI (616 Polsko)

Vydání

International Journal of Approximate Reasoning, 2022, 0888-613X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19520/22:A0000288

Organizační jednotka

Obchodně podnikatelská fakulta v Karviné

UT WoS

000860466600003

Klíčová slova anglicky

Pairwise comparisons; Fuzzy numbers; Priority vector; Spanning tree; Multiple-criteria decision making

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA21-03085S, projekt VaV.
Změněno: 11. 4. 2023 11:07, Miroslava Snopková

Anotace

V originále

In this paper, we propose a new method for the derivation of a priority vector from an incomplete pairwise comparisons (PC) matrix. We assume that each entry of a PC matrix provided by an expert is also evaluated in terms of the expert’s confidence in a partic- ular judgment. Then, from corresponding graph representations of a given PC matrix, all spanning trees are found. For each spanning tree, a unique priority vector is obtained with the weight corresponding to the confidence levels of entries that constitute this tree. At the end, the final priority vector is obtained through an aggregation of priority vectors achieved from all spanning trees. Confidence levels are modeled by real (crisp) numbers and triangular fuzzy numbers. Numerical examples and comparisons with other methods are also provided. Last, but not least, we introduce a new formula for an upper bound of the number of spanning trees, so that a decision maker gains knowledge (in advance) on how computationally demanding the proposed method is for a given PC matrix