
�árka Vavre£ková

Study material

Operating Systems

Architecture

Institute of Computer Science

Faculty of Philosophy and Science

Silesian University in Opava

Opava

Last updated: December 22, 2022

Summary: This document contains the material for the Operating Systems Architecture
course. In particular, we deal with the structure of operating systems, memory management,
processes and devices � in general and speci�cally in Windows and Linux operating systems.

Operating Systems Architecture

RNDr. �árka Vavre£ková, Ph.D.

Institute of Computer Science
Faculty of Philosophy and Science
Silesian University in Opava
Bezru£ovo nám. 13, Opava

Typeset with LATEX

Preface

What we can �nd in this document

The lectures of the Operating Systems Architecture course discuss mainly theoretical concepts related

to the structure of operating systems, the roles of individual parts of the kernel, and mechanisms for

managing processes, memory, and devices, but each topic is then related to speci�c operating systems

(usually Windows and Linux).

Some paragraphs or sections are �additional� (marked with purple icons), these are not discussed

and they do not appear on the exam � their purpose is to motivate further independent study or

experimentation or to assist in the future in acquiring further information. If there is a purple icon in

front of a chapter (section) title, it applies to everything in that chapter or section.

Marking

We use the following colourful icons:

� Quick Preview, in which we �nd out what it's going to be about.

� ¤ Keywords.

� ➸➸ Study Objectives for a chapter tell us what new things we will learn in the chapter.

� ✎✎ New terms are marked with the blue symbol, seen here on the left. This icon (as well as the

following) can be found at the beginning of the paragraph in which the new concept is introduced.

� ✄✄ Methods, procedures and tools (commands, programs, �les, scripts), ways of solving various

situations that an administrator may �nd himself in, etc. are also marked with a blue icon.

� � Some parts of the text are marked with a purple icon, indicating that they are optional

sections that are not discussed (mostly; students can request them or study them on their own if

they wish). Their purpose is to voluntarily expand students' knowledge of advanced topics that

usually don't get much time in class.

� �� The yellow icon indicates links where you can get further information about the topic. Most

often, these icons are web links to sites where the authors go into more detail about the topic.

iii

iv

� �� Red is the icon for warnings and notes.

� JJ This marking means that you can choose between several alternatives for the test. Typically,

this is a decision about whether to explain a procedure, term, structure, etc. on Windows or

Linux.

If the amount of text belonging to a certain icon is larger, the whole block is delimited by a space with

icons at the beginning and at the end, for example to de�ne a new concept:

✎ De�nition

In such an environment, we are de�ning a concept or explaining a relatively familiar but complex

concept with multiple meanings or properties.
✎

Similarly, the environment may look like a longer procedure or a longer note or more links to more

information. Other environments may also be used:

M Example

This is what the environment looks like with an example, usually of a procedure. The examples are

usually annotated to make it clear how to solve them.
M

C Tasks

Questions and tasks, suggestions for testing, which are recommended for practicing the material, are

enclosed in this environment. If there are more than one task in the environment, they are numbered.
C

Contents

Preface iii

1 Introduction to Operating Systems 1

1.1 What the Operating System Is . 1

1.2 Operating System Functions . 2

1.3 Types of Operating Systems . 3

1.3.1 Basic Categorisation . 3

1.3.2 Realtime Operating Systems . 4

1.3.3 Distributed Operating Systems . 5

2 Operating Systems Structure 8

2.1 Basic Types of Architectures . 8

2.2 Layered Structure of Operating Systems . 9

2.3 MS Windows . 10

2.3.1 Older Windows � XP . 10

2.3.2 Windows Vista/7/8/10/11 . 14

2.4 UNIX and UNIX-like Systems . 16

2.4.1 UNIX Standards . 16

2.4.2 Architecture of UNIX Systems . 17

2.4.3 Linux Kernel . 19

3 Memory Management 20

3.1 Memory Management Basics . 20

3.1.1 Memory Strategies . 20

3.1.2 Allocated Memory Space . 21

3.1.3 Garbage Collection . 22

3.2 Complex Memory Separation Models . 22

3.2.1 Virtual Memory and Addresses . 22

3.2.2 Paging . 23

3.2.3 Segmentation . 26

3.2.4 Paging with Segmentation . 28

v

vi

3.3 Virtual Memory Concepts . 29

3.3.1 Page Replacement Algorithms . 29

3.3.2 NUMA . 30

3.4 Memory Management in Windows . 31

3.5 Memory Management in Linux . 32

4 Processes 34

4.1 Multiple CPU Cores . 34

4.2 Obtaining Process Information . 35

4.2.1 Processes in Windows . 35

4.2.2 Processes in Linux . 36

4.3 Process Concept . 38

4.3.1 Program, Process, Thread . 38

4.3.2 Process States . 41

4.3.3 Process Control Block . 42

4.4 Operations on Processes . 43

4.4.1 Process Input and Output . 43

4.4.2 Process Creation and Termination . 46

4.4.3 Priorities . 47

4.5 Multitasking . 48

4.5.1 Context Switching . 48

4.5.2 Types of Multitasking . 49

4.6 Multithreading . 50

4.7 Interprocess Communication . 51

4.7.1 IPC concept . 51

4.7.2 IPC in Windows . 53

4.7.3 IPC in Linux . 55

4.7.4 Jobs in UNIX . 59

4.8 CPU Scheduling . 64

4.8.1 Basic Concepts . 64

4.8.2 Scheduling Algorithms . 64

4.8.3 Scheduling in Windows . 66

4.8.4 Scheduling in Linux . 67

5 File Access and Permissions 70

5.1 File Access Permissions in Linux . 70

5.1.1 Owner and Associated Group . 70

5.1.2 Setting File Access Permissions . 71

5.1.3 Special Permissions . 72

5.2 Working under Di�erent User Account in UNIX systems 77

5.2.1 The su Command . 77

5.2.2 The sudo Command . 79

5.3 Advanced Access Control Mechanisms in Linux . 81

vii

5.3.1 Attributes . 81

5.3.2 POSIX ACLs . 82

5.3.3 PAM . 84

5.4 Security Policy Settings in Windows . 85

6 Synchronization 88

6.1 Why Synchronize . 88

6.2 Petri Nets . 89

6.3 Basic Synchronization Tasks . 90

6.3.1 Critical Section . 90

6.3.2 Producer-Consumer Problem . 92

6.4 Synchronization Tools . 94

6.4.1 Waiting . 94

6.4.2 Mutexes and Semaphores . 96

6.4.3 Messages . 97

6.4.4 Monitors . 98

6.5 Additional Synchronization Problems . 99

6.6 Synchronization in Operating Systems . 103

6.6.1 Possibilities of Synchronization in Windows . 103

6.6.2 Possibilities of Synchronization in Linux . 105

7 Deadlock 109

7.1 Deadlock Characterization . 109

7.1.1 Model . 110

7.1.2 Resource-Allocation Graph . 110

7.1.3 Deadlock Conditions . 112

7.2 Deadlock Treating . 112

7.3 Prevention . 113

7.4 Avoidance . 115

7.4.1 Safe State . 115

7.4.2 Resource-Allocation Graph Algorithm . 115

7.4.3 Banker's Algorithm . 116

7.5 Detection . 118

7.5.1 Wait-for Graph . 118

7.5.2 Banker's Detection Algorithm . 119

7.6 Recovery from Deadlock . 120

8 I/O Management 121

8.1 I/O Devices . 121

8.1.1 Types of I/O Devices . 121

8.1.2 I/O System . 122

8.1.3 I/O Bu�ering . 123

8.2 Device Drivers . 124

viii

8.2.1 Drivers in Windows . 124

8.2.2 Drivers in Linux . 127

8.3 Interrupts and Exceptions . 131

8.3.1 Mechanism of Interrupts and Exceptions . 131

8.3.2 Interrupt Handling . 131

8.3.3 Managing Interrupts in Various Systems . 132

8.4 Running Non-Native Applications . 133

8.4.1 Virtual Machine . 134

8.4.2 Operating System Emulators and Subsystems . 135

8.4.3 Server and Desktop Virtualization . 136

9 Storage Media 138

9.1 Disks . 138

9.1.1 Disk Format . 138

9.1.2 Addressing . 141

9.1.3 Scheduling . 142

9.2 File Systems . 143

9.2.1 File organization and Access mechanism . 144

9.2.2 Directories . 144

9.2.3 File Sharing . 145

9.2.4 Journaling File Systems . 146

9.3 Windows File Systems . 147

9.3.1 Older Windows File Systems . 147

9.3.2 NTFS . 150

9.3.3 exFAT . 152

9.3.4 Protection . 153

9.3.5 Handling Partitions and File Systems . 155

9.3.6 Comparison of Windows File Systems . 158

9.4 Linux File Systems . 159

9.4.1 VFS . 159

9.4.2 File Database Structure . 159

9.4.3 Hard Links and Soft Links . 162

9.4.4 File Systems of the Type extx fs . 163

9.4.5 Other Journaling File Systems . 164

9.4.6 Comparison of Linux File Systems . 165

9.4.7 Virtual File Systems . 165

9.4.8 The fstab File . 167

9.4.9 Handling Partitions and File Systems . 170

Bibliography 172

Chapter 1
Introduction to Operating Systems

 Quick preview: This chapter is an introduction to the subject, we will learn the basic concepts,

de�nition of an operating system, functions and types of operating systems.

In the following we will understand the term operating system a little more broadly than usual.

We will also include software that is used to control any computer system, including programmed laser

printers (i.e., also �rmware).

¤ Keywords: Computing system, physical resources, logical resources, multitasking, multiprocessing,

realtime operating system, distributed operating system.

➸➸ Objectives: The aim of this chapter is to give an introduction to operating systems. You will be

able to explain what an operating system is and what types of operating systems exist.

1.1 What the Operating System Is

Under the term computing system we will understand any system performing automated calculations,

i.e. not only a computer, laptop or tablet, but also a smartphone, smart watch, TV, network device,. . .

✎✎ The physical resources of a computing system are the components that the system uses in its

operation: CPU, memory, storage media, input/output devices, etc.

The logical resources of a computing system also serve the system to perform its operations, but

they are not physical components. Here we will clarify a few terms:

Instruction is the shortest, indivisible command intended to processor.

Contract is the assignment to be executed by a computing system.

Task (job) is the sequence of activities required to ful�l the contract, i.e. the speci�cation of the

procedure for solving the contract.

Task step is a part of a task, an element of a task execution sequence usually representing the execution

of a speci�c program (a task can be a sequence of multiple programs that run simultaneously or

sequentially).

Process is an instance of a task or a task step, it is executed in memory using speci�c data.

1

Chapter 1 Introduction to Operating Systems 2

Processes, their abstract form (tasks, etc.) and their parts (instructions) are the logical means of the

system.

✎ De�nition

The Operating System of a computing system is the manager of the physical resources of the system,

which processes user-speci�ed tasks using logical resources. The software platform of a system is usually

understood as the operating system.
✎

1.2 Operating System Functions

An operating system has many functions, some of which are necessary and arise from the de�nition

of the operating system, others are not so necessary and not every operating system provides them.

The following list is not exhaustive, specialized operating systems may provide many other functions.

Separate chapters are devoted to the most important functions.

The main functions are the following:

Memory management means keeping records of memory, allocating memory to processes, dealing with

memory shortage situations, managing virtual memory.

Processes management means keeping records of running processes, CPU scheduling, monitoring, inter-

process communication.

I/O management means providing interfaces between I/O devices and system/processes, monitoring

device status, resolving potential con�icts, etc.

System management � in modern systems it is common to distinguish di�erent modes of system op-

eration, at least user and privileged mode. In user mode normal activities take place, while

privileged mode is for maintenance, installation, con�guration. We can also include here the

security features of the system � protection against malicious code (e.g. viruses), malfunctions

and unauthorized access.

Files management means not only creating an interface that allows processes to access �les (and other

data) in a uniform way, but also maintaining information about the �le structure on disk, con-

trolling the access rights of processes to �les.

Users management � the system maintains information about users and their activities, ensures logging

in and logging out of users, data protection, especially the mutual separation of the space of

individual users.

User interface is the interface between the user and the system. It is a set of programs and libraries

used to communicate between the user and the operating system.

Program interface is the interface between programs (processes) and the computing and operating

system, usually called API (Application Programming Interface). It is usually represented by a

set of libraries that a program can use to do its work (graphical interface elements, dialog boxes,

function elements, etc.).

Chapter 1 Introduction to Operating Systems 3

1.3 Types of Operating Systems

1.3.1 Basic Categorisation

We will categorise operating systems according to various criteria.

✎✎ Based on the number of controlled CPUs we divide

� single-processor systems � Windows with the DOS kernel (95, 98, ME),

� multi-processor systems � UNIX-like systems including Linux, and Windows with the NT kernel

(NT, 2000, XP, Vista, 7, 8, 10, 11), can schedule at least some tasks so that they can be processed

on multiple processors simultaneously. UNIX-like systems in general can run on clusters with a

large number of processors, while Windows depends on the speci�c edition and license (even

common desktop editions support two processors).

We divide multiprocessor systems into two subcategories:

� when using asymmetric multiprocessing (ASMP), one processor is dedicated to system processes,

and user processes run on other processors,

� with symmetric multiprocessing (SMP), any process can run on any processor.

Almost all modern systems use symmetric multiprocessing.

In fact, even in common desktop computers, which we do not refer to as multiprocessors, we �nd

multiple processors. One of them is the main processor, the others are dedicated to speci�c activities

and their purpose is to relieve the main processor from �routine� or special activities and to speed up

the work of the whole system. For example, the graphics processor on the graphics card has such a

function, taking over in particular the processing of 3D graphics requests. It is not a multiprocessor

system, because the auxiliary processors do not process the common instruction set, but only their

speci�c instruction set. OpenGL, Direct3D, etc. are examples of technologies using special graphics

instruction sets.

� In multiprocessor systems (especially servers) we can encounter the NUMA (Non-Uniform Memory

Access) architecture. Memory is divided into separate parts, nodes, and to each such node one or more

processors are connected by bus (each node has its own memory bus). A processor can access the

memory in �its� node very quickly, while the memory in other nodes can also be accessed, but slower.

Therefore, the processor should primarily use local memory, on its own node.

The purpose of the NUMA architecture is to make the communication of processors with memory

as e�cient and scalable as possible, because in multiprocessor systems without NUMA the memory

bus is a bottleneck that slows down the whole system; moreover, the address range is limited by the

number of bits used to store the address, and NUMA allows to bypass this limit (each node has its own

address space).

✎✎ Based on the complexity of user management we divide operating systems into

� single-user � Windows with the DOS kernel,

� multi-user � UNIX-like systems, Windows with an NT kernel, have sophisticated user manage-

ment that allows multiple users to work on the system simultaneously (at the same time), users

can log in either directly on the device or remotely via terminals or otherwise over network.

In particular, these systems must ensure strict separation of resources (e.g. memory) used by

di�erent users, so that one user cannot access the data and settings of another user.

Chapter 1 Introduction to Operating Systems 4

✎✎ Based on the number of running programs we distinguish operating systems

� single-program � only one program can be running in one time,

� multi-program � multiple programs can be running in one time parallely, We further distinguish

here the subgroup multitask systems, which allow, in addition, resource sharing between the

processes of these programs (memory management etc.).

Multi-program systems that are do not allow multitasking (i.e., they are single-task) solve this

problem, for example, by deferring all memory space of the �settled� program to storage media

or to a protected part of memory, and then restoring the state when the program should resume

its operation.

1.3.2 Realtime Operating Systems

✎✎ Realtime operating systems operate in almost real time. They are used in particular where there

are high requirements for system interactivity, where tasks must be completed almost immediately

or in a suitably short time. These are, for example, systems for controlling aircraft, some factories,

laboratories, power stations including nuclear power stations, in the automotive industry, etc.

The realtime system does not have to respond immediately, only a �upper time limit� is speci�ed for

each type of realtime request, i.e. the maximum response time in the worst case must be guaranteed.

Ordinary operating systems with multitasking cannot guarantee this, especially if many processes are

running, although they usually o�er the possibility to assign a process a realtime priority signi�cantly

higher than the priority of ordinary processes. Still, there are ways to modify these operating systems

to work as realtime.

Realtime priority also exists in classical operating systems, but it means only very high priority, it

is not about guaranteeing processing time.

✎✎ Most realtime systems have a small kernel (microkernel) that performs only the most important

functions (mainly process management, possibly memory management, etc.), the rest of the system is

implemented as normal processes. This model corresponds to a client-server structure. If the system

was created by rewriting a classical system, often the kernel of the original system is a microkernel and

runs as only one of the processes (this is the case for many modi�ed UNIX-like systems).

JJ QNX (pronounced [kju:nix]) is a realtime system based on a much modi�ed UNIX clone, used

mainly in cars and various embedded devices. It has a small microkernel and several most impor-

tant servers (process management, memory management, etc.), the rest of the system runs as normal

processes. It is compatible with the POSIX standard.

It is characterized by exceptional stability and speed, even when working in a graphical interface.

It runs well even on weaker computers. It has excellent network support, and can also be used to access

the Internet if the hard disk is unavailable for some reason.

The disadvantage is the lack of applications for this system, but since it is actually a UNIX system,

it is not such a problem to port UNIX applications to QNX (there are many applications adapted for

QNX on the Internet, including the manufacturer's site).

It is a commercial system, currently it is a completely closed system (under the BlackBerry com-

pany).

Chapter 1 Introduction to Operating Systems 5

JJ RTLinux is a modi�ed Linux, it was originally designed mainly for industry (robot control in

manufacturing, etc.). It was originally a commercial project, but commercial support is no longer

provided and the successor of this project is RT-Preempt Patch (see below).

It has a realtime microkernel, the Linux kernel itself runs as a separate process with lower priority.

The system has been designed to make as little interference with the original Linux as possible. Interrupt

handling1 (i.e., requests that could possibly be realtime) is handled by �rst intercepting the interrupt

by the microkernel, and then, when the CPU time does not require any realtime process, the interrupt

is passed to the original Linux kernel, which already handles it in the classical way.

JJ The Realtime Preemption patch (RT-Preempt Patch) is a special update (patch) for the Linux

kernel that modi�es the kernel to work realtime. This is mainly to modify the kernel's synchronization

mechanisms (there is a separate chapter on synchronization in this document), timers and interrupt

handlers. One of the areas of application is also industry.

JJ RTX (RealTime eXtension) is a module that extends the capabilities of Windows with NT

kernel (NT/2000/ XP/7, 32-bit only) towards realtime systems. So it is not a realtime system, just an

extension for Windows (basically a patch like RT-Preempt).

JJ Realtime systems for Internet of Things. Because IoT devices may need special handling,

including guaranteed response time, special real-time operating systems exist today for this area as

well. Another feature of these systems is their low energy consumption, as these devices are often

battery-powered. Examples of RT systems used for the Internet of Things are the following:

� Contiki-NG,

� TizenRT,

� RT Preempt Patch,

� FreeRTOS,. . .

� Additional information

� https://blackberry.qnx.com/en

� http://www.tldp.org/HOWTO/RTLinux-HOWTO.html

� https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

� https://www.contiki-ng.org/

� https://docs.tizen.org/application/tizen-studio/rt-ide/overview/

� https://www.freertos.org/

� https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems
�

1.3.3 Distributed Operating Systems

✎✎ Distributed system (we can also �nd the term grid) is a system that meets these conditions:

� runs on more than one processor (it can also be a properly designed and managed computer

network),

1Interruption of the normal execution of a program. For example, it can be a keyboard-generated interrupt (when a

key is pressed, the program must know about it and react appropriately).

https://blackberry.qnx.com/en
http://www.tldp.org/HOWTO/RTLinux-HOWTO.html
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://www.contiki-ng.org/
https://docs.tizen.org/application/tizen-studio/rt-ide/overview/
https://www.freertos.org/
https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems

Chapter 1 Introduction to Operating Systems 6

� has its program divided into (separate) parts that communicate with each other (usually by

network protocols or via remote procedure calls � RPC, it is also possible to use object interfaces

designed for this purpose � DCOM, CORBA, etc.),

� each such part is (can be) processed on a di�erent processor, ensuring as much transparency as

possible.

Distributed means that the computation of the system can be spread as far as possible over multiple

sites working in parallel. There are two kinds of distributedness:

distribution with coarse granularity (coarse-grained) � parts of the system tend to be larger, more in-

dependent, communicate less with each other, applicable when there is a problem to ensure good

and fast communication (less interconnection of computers � processors in the system),

distribution with �ne granularity (�ne-grained) � parts of the system are as small as possible, they

communicate a lot with each other.

There are two kinds of distributed systems � distributed applications and distributed operating systems.

✎✎ Distributed Application is a distributed system running on multiple connected computers, each

of the computers has its own operating system. This network of computers can also be the Internet.

Distributed applications are encountered, for example, in the following cases:

� distribution of data � databases, content management systems, information systems, etc. � it is

necessary to share data in many branches around the world,

� distribution of computation � complex calculations are distributed across multiple computers,

� distribution of resources � resources owned by one entity (e.g., processing power, storage, etc.)

can be distributed (o�ered) to other entities, with the location and speci�c method of access

hidden from those entities.

A typical and very common use of distributedness is in databases and (often related) information

systems. Large databases and information systems tend to be distributed across many nodes and

across the globe, although not always a truly distributed application that meets the requirement of

transparency and �exibility (discussed later).

� Let us look at a few speci�c uses of distributed applications.

One of the most well-known distributed applications is BOINC (short for Berkeley Open Infras-

tructure for Network Computing2), which allows any user of a computer connected to the Internet to

lend the computing capacity of their computer to a project using this application. These projects are,

for example, Climateprediction.net (worldwide weather forecast), SETI@home (analysis of radio signals

potentially coming from extraterrestrial civilizations), Einstein@home (search for gravitational waves

generated by pulsars), MalariaControl.net (monitoring and predicting the spread of malaria), several

projects in biomedicine (cells, proteins, etc.), etc.

Grids can be created at home, there are tools for creating grids in a small home network (used for

time-consuming operations such as long compiling software from source � Gentoo Linux, multimedia

processing, etc.).

In the context of Linux, we should also mention distributed version control systems. A version

control system allows a group of programmers to work on the same project e�ciently enough. The

2Information about BOINC can be found at http://boinc.berkeley.edu.

http://boinc.berkeley.edu

Chapter 1 Introduction to Operating Systems 7

distributed version allows you to have code in multiple places (e.g. on programmers' machines). It

is mainly about synchronizing accesses and changes in the source code, the system keeps a history of

changes for each registered �le, the last few versions, information (metadata) about the �les and their

authors, and also reacts in a certain way in case several users of the system want to change the same

�le � either the �rst accessing �le is locked or �change merging� is performed.

There are quite large groups of programmers working on Linux programs and on Linux itself,

physically located in di�erent parts of the world. Therefore, it is often necessary to use a version

control system that is distributed to synchronize their work fast enough (but for smaller projects this

feature is unnecessary). Until recently, Linux developers used BitKeeper, but mainly for licensing

reasons they are switching to the new Git system created by Linux creator Linus Torvalds himself.

Git is not a full-�edged version control system, although it is su�cient for these purposes (it is also a

distributed system). A variant of it, extended with additional scripts, Cogito, which is already a full

version control system, is being promoted (by Petr Baudi² from Czechia).

✎✎ Distributed Operating System is a standalone operating system running on a network of

processors that do not share a common memory, while giving the user the impression of a single

computer.

Although it is physically located on di�erent computers, this does not (should not) a�ect its opera-

tion, and the user does not determine where exactly his data is processed or where it is actually stored.

In the following, we will focus only on distributed operating systems.

The basic features of a distributed operating system are:

1. transparency � the structure or procedure is not visible,

2. �exibility � the ability of the system to adapt to any changes in the environment in which it

operates, including various failures and outages of parts of the system. It is also related to the

migration transparency property,

3. scalability � increasing number of connected machines should not be a problem,

4. openness, reliability, su�cient performance,. . .

Transparency is the most important feature of a distributed operating system, it implies a certain

impression of uniformity of the system for users and possibly for processes. This feature refers primarily

to the relationship between processes and resources of the whole system.

Transparency can be understood in di�erent ways, e.g.:

� access transparency � the process accesses local and remote resources in a uniform manner,

� location transparency � the process has not knowledge on the physical location of resources,

� migration transparency � resources can be freely moved and connected to di�erent parts of the

distributed system without a�ecting the operation of processes,

� execution transparency � processes can run on any processor and can even be moved to another

processor while they are running in order to appropriately balance the load of di�erent parts of

the system,

� . . .

✎✎ Existing distributed operating systems: For example, LOCUS used to be popular (LOCUS

is compatible with UNIX). Nowadays, there would be a place for distributed operating systems at

clusters in data centres, where we can most often �nd some Linux distribution adapted to run in a

cluster (and thus distributed to the devices that are connected in the cluster). Examples: Red Hat

Enterprise Cluster, SUSE Linux Enterprise with High Availability Extension.

Chapter 2
Operating Systems Structure

 Quick preview: To understand how operating systems work, we need at least some basic infor-

mation about their structure. In modern operating systems, the structure is designed primarily with

security and stability of the whole system in mind, and there is always a division into a privileged

part (privileged mode, kernel mode) and a user part (user mode, non-privileged mode), with processes

running in the user part not being able to interfere in any way with the privileged part. Of course,

more simple systems also have their own structure, they often just need a more simple structure.

In this chapter, we'll �rst discuss the basic types of structures, and then we'll look at the structure

of some speci�c operating systems in the Windows and UNIX families.

¤ Keywords: Architecture, structure, kernel, privileged mode, user mode, Windows, UNIX, Linux,

(security) ring.

➸➸ Objectives: The main goal of this chapter is to be familiarized with the structure of common

operating systems.

2.1 Basic Types of Architectures

The following terms (structure types) apply not only to computing systems as a whole, they are also

generally used, for example, for the structure of a system's kernel or the layers in the kernel.

✎✎ The monolithic structure means that the given system consists of the single �le or single component.

All common operating systems have the monolithic kernel, loaded from one �le.

M Example

The Windows kernel is loaded from the �le ntoskrnl.exe, the Linux kernel is loaded from vmlinuz...

(a version label is added).
M

✎✎ All operating systems have layered architecture as well, they are organized as a hierarchy of layers,

where each layer communicates with the neighbor layers. This type of structure lies primarily in

splitting the system into two parts with a di�erent type of access to resources that is supported by

8

Chapter 2 Operating Systems Structure 9

hardware:

� code executed in kernel mode (kernel space) � full access to resources,

� code executed in user mode (user space) � access only through system calls.

These parts can be devided into multiple (sub)layers. E.g. the kernel space is devided to the hardware-

dependent layer and hardware-independent layer.

✎✎ The modular structure is common too. Operating systems have the monolithic kernel with dynam-

ically loadable modules. The modules extend the functionality of the kernel, this structure ensures

scalability of the whole solution. The kernel loads only the needed modules.

As modules we can introduce device drivers, �rewall, network protocols implementation, and so on.

✎✎ The virtual machines (VM) are intended to separate a code from the rest of the system and to

provide a special API for the isolated code. The common operating systems use this concept for running

non-native applications (programmed for di�erent systems, di�erent hardware variants or old versions,

for backward compatibility).

We also know this concept as special applications for running whole virtualized operating systems,

such as Oracle Virtual Box or VMWare Workstation.

✎✎ The client-server model di�erentiates the server and client processes (the both types can run in

the user mode, by the particular architecture). Server (system) processes provide services to client

processes.

✎✎ The microkernel architecture (multiserver architecture) is a special type of a kernel, where only the

most important parts remain inside the kernel (and work in kernel mode) � e.g. process management

and IPC (Inter-Process Communication), memory management, processor scheduling, and the rest is

implemented as a set of system processes working in the user space, including all drivers, �le systems,. . .

Hybrid kernels have their properties between microkernels and monolitic kernels.

The main advantages of microkernel computers to monolithic kernels are high system stability,

fault tolerance and attacks tolerance. The main disadvantage is worse performance.

The microkernel architecture is typical mainly for real-time systems, for example the QNX system

has microkernel, PikeOS for embedded systems, or L4Linux, or Symbian OS.

Another example is the Mach kernel, but not all versions a variations of Mach are microkernels.

Its variant called GNU Mach is microkernel, but Darwin (variant used in Apple MacOS) is a hybrid

kernel.

� Additional information

� https://blackberry.qnx.com/en

� https://www.gnu.org/software/hurd/microkernel/mach/history.html
�

2.2 Layered Structure of Operating Systems

Modern processors use registers to implement hardware resource protection.

On Intel and AMD processors, this protection is implemented in the form of four rings. Each

process runs in one of these rings, which determines its access to protected resources.

https://blackberry.qnx.com/en
https://www.gnu.org/software/hurd/microkernel/mach/history.html

Chapter 2 Operating Systems Structure 10

Everything in ring 0 has direct access everywhere (to system resources and hardware). Ring 1 is

a bit limited, ring 2 means more limitations, and processes in ring 3 have no direct access to system

resources and hardware, and all their needs are performed with system calls.

Ring 3

Ring 2

Ring 1

Ring 0

Figure 2.1: Security rings on Intel processors: farther from center = less privileques

Most operating systems use only two rings � ring 0 for the kernel and ring 3 for common processes.

Ring 0 represents the kernel mode, ring 3 the user mode.

The kernel mode is usually devided to the hardware-dependent layer (hardware abstraction layer

and device control), main kernel with loaded modules, and executive layer providing system calls from

user space.

� Additional information

The principle of rings is descripted in detail in https://manybut�nite.com/post/cpu-rings-privilege-and-protection/.

�

2.3 MS Windows

The Windows NT kernel was developed independently of MS-DOS, and the typical use of the system

as a server or client on a network was already taken into account in its design, so stability and security

options are the main considerations. The inspiration of UNIX systems is evident throughout the

concept.

The system was designed as a multiprocessor (SMP � symmetric multiprocessing) multi-user mul-

titask universal network system.

2.3.1 Older Windows � XP

Some elements are similar to parts of the Windows structure with a DOS kernel, but work di�erently

internally. In particular, the division into two basic parts is important � the part running in privileged

mode (kernel mode) and the part running in user mode.

Windows use the layered model, as we can see on Figure 2.2. It has monolithic kernel (loaded from

ntoskrnl.exe) with loadable modules. The modules are loaded mainly from dymamic-link libraries

in C:\Windows\System32 (also in 64-bit system) � suppose that C: is the system partition. And the

principle of client-server model is used in API.

https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

Chapter 2 Operating Systems Structure 11

Services, some
system processes

Applications (Win64, Win32, DOS)

Subsystems for running processes (CSRSS, WoW64, NTVDM)

Documented API – libraries Kernel32, AdvAPI32, User32, GDI32, network protocols, . . .

NTDLL.DLL (undocumented API)

kernel mode

user mode

System call interface

Services manag.
(SCM)

Security
(LSASS)

Objects
management

Registry
database

File systems
manag. (IFSM)

Processes and
threads manag.

Memory
management

Configuration
management

I/O management Device Models

Graphics
subsystem, win.
management
(win32k.sys)

Hard kernel (IRQ, CPU scheduler, synchronization)
Device drivers, file systems drives,

filters, . . .

HAL (Hardware Abstraction Layer)

BIOS

Hardware

Figure 2.2: Structure of older Windows NT (till Windows XP)

✎✎ HAL is the Hardware Abstraction Layer, the interface between the hardware and the rest of the

system kernel. It is loaded from the HAL.DLL �le when the system boots. It is separated from the rest of

the system to facilitate system portability between the (few) hardware platforms. Drivers communicate

with devices only indirectly through this layer.

✎✎ Kernel (the so-called �main kernel�) and executive are physically stored in NTOSKRNL.EXE.1 The exe

is not directly visible from the picture, we can imagine that it is nearly everything inside the kernel

(blue area) above the HAL layer.

The kernel captures and handles interrupts, performs processor management (synchronization of

processor allocation), etc. The Executive is the control process of the operating system, it is responsible

for managing the entire kernel running in privileged mode and the operation of modules, it mediates

communication between various parts of the kernel and modules. The kernel and the executive are

loaded from the �le NTOSKRNL.EXE (a single �le, i.e. the monolithic kernel) at system startup, other

kernel components are linked to the kernel from dynamic libraries or .sys �les (modules, i.e. the

modular structure of the running kernel).

✎✎ Main system process (in process management applications we see it under the name �System�) is

actually a picture of what is running in the kernel, exported to user space (of course we can't see it

directly in the kernel). In fact, it is not a process, but a container for kernel threads (we will learn

more about threads in the chapter on process management).

✎✎ Drivers are not just device-related, they are generally kernel modules that can be used to access

devices, buses, etc., but they can also be �lters that data passes through (encryption, compression,

1In fact, it is not just NTOSKRNL.EXE. In a multiprocessor (or multi-core) system it is replaced by NTKRNLMP.EXE; in a

system with the PAE function enabled (accessing memory located after the addressable memory), it is NTKRNLPA.EXE for

a single-core system and NTKRPAMP.EXE in a multi-core system. This applies to the naming of �les on the installation CD;

after installation or upgrade to a multiprocessor or PAE system, only the names NTOSKRNL.EXE or NTKRNLPA.EXE can be

found in the �lesystem (the originally di�erently named version is renamed during instalation).

Chapter 2 Operating Systems Structure 12

inter-module routing, �ltering/aggregation/sorting, DRM, etc.).

There is a complex system for working with drivers, which involves several components marked in

the picture, for example Device Models de�ne a uni�ed way of handling drivers.

✎✎ IFSM is an Installable File Systems Manager, it manages di�erent types of �le systems, e.g. NTFS,

FAT16, VFAT (FAT32 with extensions), CDFS (for CD-ROM), UDF (for DVD), etc., through this

component it communicates with storage devices (everything that corresponds to the mass storage

standard with a �le system that IFSM understands), including the cache memory.

✎✎ Virtual Machine Manager (VMM) controls the Windows options for concurrency with programs

intended for (supported) di�erent platforms. The Virtual Device Drivers (VxD) are the controllers

that the virtual device manager needs to handle I/O devices for legacy programs.

✎✎ Con�guration Manager cooperates in the management of drivers, for example it provides the

Plug&Play and HotPlug functions, i.e. it constantly monitors the status of the buses and monitors the

connection of new or previously connected devices, for new ones it tries to perform the installation and

initialization procedure.

✎✎ Security SubSystem is mainly related to the LSASS (Local Security Authority SubSystem) module.

It authenticates users who log in locally and determines access permissions according to the database

in the SAM registry key.

✎✎ The Service Control Manager (SCM) is loaded from the services.exe �le and ensures the running

of services and communication with them. The services themselves run in user space, but usually

with higher permissions and without binding to a speci�c user, and are communicated with primarily

through the SCM module.

Since Windows NT version 4, the kernel is more or less object oriented. A database of objects is

maintained in the kernel, and executive objects are exported to user space. The object database is

maintained by Object Manager.

✎✎ API kernel interface represented by a series of dynamically linked libraries (containing functions,

objects, etc.) are used by processes to access the system.

Documented interface represent functions and objects from system libraries whose names should

be familiar � User32.dll, GDI32.dll, and others. Their purpose is basically similar to what we learned

on older systems, the di�erences are in the way they are programmed.

The Undocumented API is the NTDLL.DLL �le. The functions found here can already directly trigger

system calls � so it might seem better to use the undocumented API right away (it would be faster),

but the problem is that the functions provided by this interface may be di�erent in each version of

Windows and may require a di�erent method of calling (triggering). An unpleasant consequence is that

an application using an undocumented API may not work at all in some versions, or we may encounter

various incompatibility issues when running it. Therefore, it is better to use a documented API that

always behaves the same (documented) way. So the NTDLL.DLL �le is a kind of interface between the

kernel and the user space, but we usually access this interface indirectly.

✎✎ Subsystems in the user mode are interfaces that ensure that di�erent types of processes run cor-

rectly and safely. These subsystems run applications that may not even be compatible with Windows

NT. Subsystems provide an interface to applications that translates the communication (requests for

information, resources, execution of a particular action, etc.) between the application and the operating

system so that both parties can understand each other.

Chapter 2 Operating Systems Structure 13

It is mainly a subsystem for applications programmed for 32-bit Windows, MS-DOS and applica-

tions for 16-bit Windows Win32 (the only subsystem for all these types of applications, in which any

virtual machines are then run), a subsystem for OS/2, POSIX, etc.

The subsystem for 32-bit Windows including NT (subsystem Win32 , in 64-bit system it is simply

called Windows) is represented by the �le CSRSS.EXE, for POSIX it is mainly the �le PXSS.EXE (it is the

subsystem server). The Win32/Windows subsystem is also needed for running many system processes,

so it is the only one that starts right after the computer boots, the other subsystems are started only

on request when an application belonging to this subsystem is started.

Each subsystem needs, in addition to its control program (for example CSRSS.EXE in Win32), also

libraries in which functions and objects are stored and which contain the API (Application Programming

Interface) of the subsystem. For example, the Win32 subsystem libraries also include KERNEL32.DLL,

USER32.DLL, and GDI32.DLL. While these three modules are intended for the Win32 subsystem, to avoid

having to implement these functions in each subsystem separately, calls to graphical functions of other

subsystems are translated to calls in the Win32 subsystem.

✎✎ The Win32/Windows subsystem includes a virtual machine mechanism. The application that phys-

ically runs virtual machines for legacy applications (DOS and Win16) is started by the ntvdm.exe �le

(NT Virtual DOS Machine). When attempting to run these applications, a new instance of ntvdm.exe

is �rst started with the parameter � the name of the DOS or Win16 application being run with a path

that already executes the speci�ed application internally.

✎✎ On a 64-bit system, the situation is a bit more complicated. The Windows subsystem (CSRSS.EXE) is

used to run 64-bit applications. For 32-bit applications, we have a special subsystemWoW64 (Windows-

on-Windows) inside the Windows subsystem, which serves as an interface for 32-bit applications (32-bit

code is translated by this subsystem to 64-bit code, which can already be run via CSRSS.EXE).

✎✎ The window and graphics management modules run in Windows NT series from version 4 onwards

in kernel mode to speed up applications that make heavy use of graphics devices. This part of the

kernel is loaded from the win32k.sys �le.

The placement of GUI code in kernel mode is unusual. However, the disadvantage of this approach

is a higher security risk and the risk of system stability violation if this module fails (it works in kernel

mode, so it has access to the memory of system processes). Another disadvantage is the more di�cult

procedure of replacing the user interface with an alternative one. In Windows Server 2008 onwards, it

is possible to install the system without the GUI (and also without other components that require a

GUI in any way) � the Server Core installation.

� The graphics subsystem in the kernel is the GDI module, in Windows XP also its extension GDI+.

The dynamic libraries gdi32.dll, gdiPlus.dll and gdi32Full.dll are only access points to these mod-

ules in user space. GDI+ in Windows XP is an enhancement of the original GDI (for example, rational

numbers can be used as coordinates, not just integers, support for various 2D operations, additional

�le formats including jpeg and png, etc.).

The Win32k.sys �le is technically part of the Win32/Windows subsystem running in kernel mode

(note that it has a typical kernel-mode driver extension), but it is actually used by all subsystems of

the environment, including POSIX. It contains an implementation of low-level UI functions, calling

routines in GDI device drivers. It is used by all environment subsystems primarily to facilitate the

functionality of these subsystems (so that each subsystem does not have to have its own part in the

Chapter 2 Operating Systems Structure 14

kernel), i.e. calls to each subsystem are translated towards the kernel to calls generated by the Win32

subsystem.

✄✄ How processes run:

� Win32/Win64 applications run in a common (system) virtual machine, each with its own memory

space (under the same numeric address, each of these applications sees di�erent physical memory

locations),

� DOS and Win16 applications each have their own virtual machine, within the virtual machine

their own memory space.

2.3.2 Windows Vista/7/8/10/11

Figure 2.3 is mainly valid for Windows 10, although most of it is also valid for Vista and above (but

e.g. Universal Apps are not in older versions). The DWM window manager is present since Vista, but

it has been reprogrammed a lot over time (the widest changes are in Windows 7 and then Windows

10).

Services, some
system processes

Applications (Win64, Win32, Metro Apps, Universal Apps)

Graphics subsystems: WPF, GDI, GDI+, UWP Window manager DWM

API – libraries Kernel32, AdvAPI32, User32, Crypto API, . . .
subsystems for processes (CSRSS, WoW, NTVDM), .NET API, .NET Framework

NTDLL.DLL (undocumented API)

kernel mode

user mode

System call interface

Services manag.
(SCM)

Security
(LSASS)

Objects
management

Registry
database

File systems
manag. (IFSM)

Network protocol
stack

Processes and
threads manag.

Memory
management

Configuration
management

I/O management Device Models
Network

management

Hard kernel (IRQ, CPU scheduler, synchronization)
Device drivers, file systems drives, filters,

win32k.sys driver

HAL, Boot Manager

BIOS, UEFI

Hardware

Figure 2.3: Structure of newer Windows NT

✎✎ Vista. The core of Windows Vista has been completely redesigned compared to its predecessors,

although the basic principles remain. It has a modular internal structure.

An important change is the implementation of IPv6 in Vista. In addition, virtually the entire

network stack (network support) has been moved to kernel mode, while part of the GUI implementation

has been moved from the kernel to user space.

The installation DVD is the same for all Windows Vista editions for a given architecture (32-bit

or 64-bit), so the full-size DVD contains all modules (speci�cally wim �les with module images) for

any edition. During installation, the modules that are installed are determined primarily by the type

of license (for example, Vista Home Premium has di�erent modules availability than Vista Ultimate).

Chapter 2 Operating Systems Structure 15

There are also separate modules where only the language settings are stored, the other modules

are language independent. The consequence is that patch packages can also be language independent

(i.e. in non-English speaking countries there is no need to wait for a patch package to be published for

a given Windows language variant).

Since Vista SP1, UEFI support has been added and the system boots in a slightly di�erent way.

This does not mean that these systems cannot be installed on systems without UEFI (with the old

BIOS), the installation and boot processes can handle both.

There are a lot of changes in the user space. Some of it is the same again (we also have subsystems

for running processes like CSRSS, WoW etc. and documented and undocumented interfaces), but the

graphical environment is no longer based only on the classic WinAPI (GDI module), but on WPF.

✎✎ Windows Presentation Foundation (WPF, also Avalon) is part of the .NET Framework. It is a

graphical subsystem, i.e. it mainly registers windows and other graphical components inserted into

windows in a tree structure taking into account their nesting, and provides management of windows

(and other graphical components). The desktop is also treated as a window, as are the various panels,

including the main desktop panel. Microsoft seems to have found inspiration here in the X Window

System from the UNIX world.

Older applications have their GUI programmed in GDI or the newer GDI+, newer applications

already use WPF. Since Vista, the system GUI is also programmed using WPF.

� However, the WPF module uses the services of the GDI library/module, so if you look at the list

of dynamic libraries loaded by any GUI application, you will �nd gdi32.dll and possibly other similar

�les.

� Additional information

https://www.leadtools.com/help/leadtools/v19m/dh/to/di�erencesbetweengdiandwpf.html
�

✎✎ Desktop Window Manager (DWM) is a composite window manager (a reminder of the terminology

in X Window) that renders windows whose structure is managed by WPF. While WPF takes care of

the data, DWM renders, provides a sort of primitive 3D view (Flip3D, transparency, etc.), previews,

animations, responds when the monitor resolution changes, etc.

✎✎ In Windows from Vista onwards, the ASLR (Address Space Load Randomization) function is

implemented � libraries are not always stored in the same memory location as in XP when loaded into

memory (after being requested by a process), but randomly to an address from the list. This feature

is supposed to be a defense against memory over�ow exploits (a hacker cannot guess which address to

place the code to so that it will be in the �appropriate� place after a memory over�ow). However, this

protection has been broken long time ago, it is just time consuming to bypass it.

✎✎ Windows 7. In the case of Windows 7, not many changes have been made to the kernel in terms

of functionality; most of the changes are in the internal structure of the kernel, in the management and

operation of the GUI, and in the way the system is used and con�gured.

✎✎ For the kernel, the MinWin concept was used � the smallest possible base kernel (almost a mi-

crokernel), the other parts of the �broader kernel� (i.e. what runs in privileged mode) are modules, so

again another step towards kernel modularity. MinWin primarily includes the main kernel. MinWin

is more self-contained than the original part of the kernel, resulting in a faster boot time and better

https://www.leadtools.com/help/leadtools/v19m/dh/to/differencesbetweengdiandwpf.html

Chapter 2 Operating Systems Structure 16

overall responsiveness (once MinWin is loaded, multiple CPU cores can be used, so other parts of the

system can be loaded in parallel).

We can also see some changes in the use of APIs, the use of virtual DLLs. There are signi�cantly

fewer services running in real life than in Windows Vista (which also makes the system run more

quickly), and the settings are generally adapted to the new types of hardware (for example, Windows

7 can detect SSDs during installation and adjust some settings to accommodate this, such as disabling

the defragmentation service and adjusting SuperFetch). Services running while the system is running

can be temporarily stopped if SCM decides they are not needed.

✎✎ Windows 8, 10. Some parts of the kernel have been redesigned, the communication structure

has become more complex (mainly due to DRM support for multimedia), but none of this is directly

visible in our picture.

In Windows 8, Metro Apps appeared, and in Windows 10, Universal Apps. They also need their

own graphical subsystem (not related to .NET, so no WPF) � for Metro Apps it was the WinRT API,

for their successor Univesal Apps it is Universal Windows Platform (UWP). In both cases it's basically

the same thing (just di�erent names) � Metro Apps are for di�erent hardware platforms (desktop and

mobile RT), Univesal Apps are also for di�erent hardware platforms (desktop, mobile, XBox, etc).

The Windows Subsystem for Linux (WSL) has even moved into the Windows 10 kernel to allow

running applications programmed for Linux. In fact, it is virtualization partially pushed to the kernel.

The main changes are again in the user space and graphical interface, including the availability

of various tools (users have noticed especially the new Immersive Control Panel tool, changes in the

management of updates, new applications or, on the contrary, the removal of some applications or

replacement with universal ones, a new policy in the collection and management of personal information,

more pressure on the use of the cloud, including authentication, etc.).

2.4 UNIX and UNIX-like Systems

2.4.1 UNIX Standards

UNIX systems must meet certain standards to be considered UNIX or UNIX-like systems. There have

been several standards throughout history, but two are currently maintained � POSIX and the Single

UNIX Speci�cation (SUS).

� Remark

UNIX is not just a speci�cation (given by the SUS standard), it is also a trademark (i.e. the name

UNIX is protected as such). The owner of the trademark is the Open Group Consortium, and only

those systems that have been certi�ed as UNIX by this consortium can be called UNIX. Operating

systems that meet the SUS but have not been certi�ed are referred to as UNIX-like.

For example, Solaris went through the certi�cation process, whereas Linux is only the UNIX-like

system.
�

Let's take a closer look at the POSIX and SUS standards.

✎✎ POSIX (Portable Operating System Interface) is a standard published by the IEEE standards

body, in versions POSIX-1 and POSIX-2. It standardizes the form of system calls (i.e., the ways in

Chapter 2 Operating Systems Structure 17

which a process communicates with the kernel), functions in system libraries, and the behavior of

processes, including how they communicate with each other. The purpose is to simplify as much as

possible the transfer of programs between di�erent operating systems (called porting).

So the POSIX standard does not specify how processes (or the system) should look and function

�inside�, it only speci�es how communication between a process and the operating system kernel or

between processes should look like. It therefore speci�es the communication interface.

✎✎ Single UNIX Speci�cation (SUS) � meeting this standard is a prerequisite for a system to be

called UNIX. It is based on POSIX and includes certain speci�cations related to

� the programming interface of programs and libraries (C or similar language is assumed),

� a list of tools (meaning mostly programs�commands for users and administrators),

� requirements for the shell (the program by which the user interacts with the system),

� system calls, services including input/output.

No speci�c code requirements are included, so even systems that do not contain even a line of code

from the original UNIX can comply with SUS.

SUS comes in several versions. The latest (version 4) from 2008 (with several newer editions/subversions,

the newest from 2018) is also called UNIX V7. IBM AIX is certi�ed under UNIX V7, Solaris 11 was in

the past. HP-UX and Apple MacOS were certi�ed under previous version of SUS.

� Additional information

� https://pubs.opengroup.org/onlinepubs/9699919799/

� https://unix.org/version3/

� http://www.opengroup.org/certi�cation/idx/unix.html
�

2.4.2 Architecture of UNIX Systems

✎✎ The concept of HAL is mentioned above, this role is provided by the hald daemon. Some UNIX

and UNIX-like systems always use it, but some of them left it, including Linux and FreeBSD. The role

of HAL was took by another modules, in Linux by the UDEV mechanism represented by the udevd

daemon.

This change was also re�ected in the fact that the hardware information was previously obtained

by the lshal command, and now we use the udevadm command in Linux.

✎✎ Since �everything is a �le� in UNIX systems, there are not only �le systems for external storage

media, but also other, abstract ones, providing access to information about the current state of the

system, con�guration, etc. (e.g. in Linux the proc �le system) or combining other �le systems or

representing a part of another �le system. File systems that do not belong to any particular storage

medium, but are nevertheless treated as such (we work with �les or what look like �les through them),

are called virtual �le systems.

The main module for �le systems is VFS (Virtual File System), and all other �le systems (real and

virtual too) are accessed over VFS. Its role is similar to IFSM in Windows, but VFS is more universal

and scalable (we can add any new �le system, with no problems).

https://pubs.opengroup.org/onlinepubs/9699919799/
https://unix.org/version3/
http://www.opengroup.org/certification/idx/unix.html

Chapter 2 Operating Systems Structure 18

Daemons,
services

Processes, applications

Shells, X Window System other libraries

kernel mode

user mode

System call interface, compatible with POSIX/SUS, system calls (e.g. open, ioctl, write,
mmap, close, stat, . . .)

Processes and
threads manag.

Kernel subsystems Security modules
Socket

implementation

Synchronization,
IPC

Virtual memory,
paging

VFS, file system
drivers

Network protocol
stack

CPU scheduling,
IRQ

Memory
management Device drivers

HAL and/or other modules working with hardware (UDEV. . .)

BIOS, UEFI

Hardware

Figure 2.4: Structure of UNIX and UNIX-like systems

FUSE 2 (FileSystem in User Space) is a mechanism that allows �lesystems to run in user space

(regular �lesystems must be part of the kernel). It consists of splitting the �lesystem into two parts �

the lower part, the FUSE module, is common to all �lesystems of this type and runs in kernel mode.

The upper part runs in user mode and uses the services of the FUSE module. Many �lesystems are

currently implemented in this way (for example, ntfs-3g and ntfsmount for NTFS operation, �lesystems

for data compression and encryption, multimedia interfaces, system tracking, version control, etc.).

✎✎ The kernel subsystems are e.g. encryption subsystem, multimedia subsystem and others.

Security Modules are actually subsystems as well. Depending on the speci�c system, which security

modules are loaded, usually a �rewall (for example, in Linux we use NetFilter), a module to increase

system security (in Linux often SELinux), AppArmor and others.

The important kernel modules are drivers. There are block and character device drivers, including

network and virtual devices, and other specialized drivers. File systems are also implemented as drivers.

✎✎ The System Calls Interface is the interface between the kernel and anything that can be directly

in�uenced by the user (programs, shell commands, scripts). This layer can be interacted via libraries

containing API function de�nitions. The main task is to ensure security, preventing user intervention

in the kernel. System Calls are actually functions that can be used to communicate with the kernel.

There are a large number of libraries on the system, the most important of which is the glibc

library (GNU C Library) on Linux, and libc on other UNIX and UNIX-like systems. This library

mediates most of the communication between user-space processes and the system calls interface.

✎✎ The shell is any user interface. User interfaces are either for text communication (we type commands

and read text information), or graphical. The widely used text shell in Linux is bash.

The base of graphics is provided by X Window System (or X Window, or simply X). There are

2http://fuse.sourceforge.net/

http://fuse.sourceforge.net/

Chapter 2 Operating Systems Structure 19

several implementations, the most used is X.org. Then we need a widget library (a library determining

visible graphical objects such as buttons, check-boxes, menus, etc. � widgets) and a window manager

(a program determining how to arrange widgets and how they shell behave, using X).

2.4.3 Linux Kernel

The image 2.5 shows a more detailed picture of the Linux kernel. Note that the HAL layer is missing,

we won't really �nd it in newer versions of Linux. Its functions have been taken over by other kernel

modules, most notably UDEV.

System call interface, compatible with POSIX/SUS

Processes and
threads

Virtual memory VFS, files,
directories

Sockets,
protocols access

Subsystems for com-
munication with user

CPU scheduling
Memory
mapping

File systems
Network
protocols

/proc, /dev
syscalls

Security
subsystems

Synchronization,
communication

Swap Network storage Device Model
Character

devices

IRQ, system call
management

Virtual memory,
paging

Block device
management,
block device
controllers

Virtual network
devices

Abstract devices, HID
drivers

Specific for HW
architecture

Physical memory
management

Network
interface drivers

I/O drivers, bus drivers

BIOS, UEFI

Processor RAM Storage Network I/O devices

Figure 2.5: Linux kernel in newer versions

This image is purposely created so that the columns contain components that are related to each

other in meaning, including the link to a speci�c piece of hardware. Some components are related to

two hardware components, for example, swap (swap area) is related to both RAM (because pages are

swapped from it) and storage media (because pages are swapped to it). Network storage is related

to the network (because it is accessed over the network) and also to storage media (because it shares

a way of dealing with them). Device models relate to both network interfaces and other I/O devices

because they describe their structure.

� Additional information

The information about the Linux kernel is in https://www.kernel.org/, including the current supported

versions.
�

https://www.kernel.org/

Chapter 3
Memory Management

 Quick preview: In this chapter, we will focus on memory management. First, we will discuss basic

memory management concepts, practices, technologies, and strategies, then we will look at memory

management in Windows and Linux.

¤ Keywords: Memory management, memory strategy, physical address, logical address, virtual

memory, paging, segmentation, page replacement, NUMA, copy-on-write, memory mapping.

➸➸ Objectives: The goal of this chapter is to introduce the concepts of memory management in

common operating systems.

3.1 Memory Management Basics

3.1.1 Memory Strategies

✎✎ When using multiprogramming, some memory strategy is necessary. There are three basic types of

memory strategies:

� fetch strategies � when to move a piece of code of data from storage to memory,

� placement strategies � where in memory to move code of incoming program or data (new process)

to,

� replacement strategies � if memory is full and free place is requested, what resides in memory and

what is removed from memory into swap.

Current operating systems use combination of variations of these strategies.

✎✎ Fetch strategies. The current fetch strategy for memory allocation is the anticipatory fetch

strategy (a new process has its code and data in memory immediately after its creation). Older systems

have used the demand fetch strategy (a piece of code or data is placed into memory when a process

references it). This proved ine�cient because the process was constantly delayed by system calls during

its run.

But the current operating systems for computers and laptops (Windows, all UNIX and UNIX-like

systems including Linux and MacOS) use the copy-on-write method : if multiple processes use a speci�c

dynamic link library or a shared memory section for read-only access, this object is in physical memory

20

Chapter 3 Memory Management 21

only once, and all processes under �their own� logical address see the same physical address. When a

process needs write access to an object, a private copy of that object is created in the physical memory

only for that process, so copying of a library or shared memory section is performed after write access

demand. So, modern operating systems also use a piece of the demand fetch strategy.

✎✎ Placement strategies. When creating a new process, it is necessary to �nd free space in memory

for its address space. These strategies determine how to �nd this space � whether to search from the

beginning and settle for the �rst place where the demand �ts (�rst �t), or to go through the entire

memory space and choose the place to �t with the lowest unused residue (best �t), or to select the

largest free space (worst �t). The goal is:

� to keep the system high throughput (do not delay operation) � the �rst �t method,

� allocate memory as optimally as possible to avoid leaving many free fragments too small to be

allocated to a process � the best �t method,

� not to task the system with a lot of overhead � the worst �t method.

Current operating systems avoid this problem by dividing memory space into many small parts (pages)

and allocating as many pages as a process needs, using multilevel memory pages management, and by

widening memory space by storage space (using virtual memory and swap space).

✎✎ Replacement strategies. When using virtual memory and cache, there are situations in which

memory or cache must be released for a new object (memory page, cache entry, and so). Operating

systems use algorithms that select the appropriate object (memory page, cache entry) as a victim to

create this free space.

3.1.2 Allocated Memory Space

✎✎ When a new process is created, a memory space is searched to allocate for the given process. This

space can be

� contiguous � the searched memory space is without �holes�, but if there is no su�ciently long free

block in memory, the process cannot be started,

� uncontiguous � it is possible to divide the searched space into several blocks where

� each block is intended for some purpose, various blocks are of various lengths depending on

their purposes, we call these blocks by segments (code segment, static data segment, process

stack,. . .),

� all blocks are of the same length, a process obtains as many blocks as it needs (up to the

free space amount).

The second possibility allows to simplify addresses used by processes: the address of a block (of the �rst

byte in a block) is registered by operating system or processor, and a process can use a short relative

address (o�set) valid inside such block.

✎✎ So, the absolute address of an object is the number of Bytes from the beginning of the memory

address space to the �rst Byte of the given object. The mentioned blocks (their beginning) are allways

addressed absolutely, and they are usually placed in the address space at such addresses that are easy

to work with (for example, less signi�cant Bytes in the address are 0).

The relative address (o�set) of an object stored in a block is the number of Bytes from the beginning

of the block to the �rst Byte of the given object.

Chapter 3 Memory Management 22

3.1.3 Garbage Collection

The above described techniques are used in one modern method of memory management for applications

with own memory structure.

Garbage Collection is a form of automatic memory management used in runtime environment of

multiple programming languages. The most known garbage collectors can be found inside runtime

environments for Java, .NET, C++, Smalltalk, Haskell, Ruby. . .

The main tasks of the garbage collector are to look for sections in memory (objects) that are no

longer used, with no reference; subsequently, these sections (objects) are freed and then their addresses

are moved in memory to each other as needed to allocate a larger memory space later (for larger objects

or sets of objects).

The last stated task uses the methods similar to those listed above.

✄✄ Let's look at the options for �nding unused sections in memory. There are multiple possibilities to

�nd unused sections/objects, for example:

� Reference Counting : each object has a counter with number of references leading to its object; if

this counter value is zero, this object can be deleted.

� Mark-and-Sweep algorithm: the memory manager �rst sets the value �visited� to false for all

objects. Then it goes through the memory, looks for references, and sets a value of �visited� to

true for the target object of each reference. Then it will go through all the objects again, and

remove all that have the �visited� set to false.

3.2 Complex Memory Separation Models

3.2.1 Virtual Memory and Addresses

In current computers, there is usually not enough physical memory to run multiple processes. Therefore,

physical storage is increased by storage space, either as a swap partition or one or more swap �les. In

both cases we talk about swapping.

Some parts of memory can be swapped, some parts can not. For example, memory used by kernel

usually cannot be swapped, or read-only �les, locked memory sections or actively used pages.

✎✎ Address space is de�ned as metric on the memory space. All Bytes in memory space are �numbered�

by addresses. In terms of virtual memory usage, we distinguish these types of addresses:

� physical address = address in physical memory,

� logical address = address in the continuous address space, this address is translated (mapped) to

the corresponding physical address when accessing memory,

� virtual address = address in the virtual memory space, this address is translated (mapped) to

the corresponding physical addres as well, but two virtual addresses can lead to the same logical

address, or some virtual pages are not mapped to any logical address space.

Some hardware architectures do not distinguish between logical and virtual addresses, others distinguish

between them. It depends on the particular mapping algorithm, but also, for example, on the extent

to which the segmentation method is implemented.

Usually we also distinguish whether it is a kernel or process address space, for example, there is a

virtual kernel address and a virtual process address.

Chapter 3 Memory Management 23

The virtual address space is divided to blocks called pages or segments, or it is possible to use the

both possibilities. Pages are small blocks with the same size, segments are blocks of various sizes, but

intended for a particular purpose (code segment, data segment, etc.).

✎✎ Address translation between logical (or virtual) address and physical address is provided with the

hardware support � using MMU (Memory Management Unit) and several processor registers, depending

on processor architecture. The process of translation is usually dynamic � we call it Dynamic Address

Translation (DAO). It means that this translation is performed during execution the memory request.

✎✎ If the virtual address space is larger than the physical address space, we must use virtual memory

management methods, that is, methods of expanding physical memory by swap space.

3.2.2 Paging

✎✎ Virtual address space is divided to pages, all pages are of the same size, this size depends on the

hardware architecture. Physical address space and swap are divided to frames (page frames) with the

same size as pages. Each page is either in a frame inside physical address space, or in a frame inside

swap. The size of the pages and frames must be the same, a page must �t exactly into a frame.

M Example

Various hardware architectures allow various page (and frame) size:

� x86 architecture (32-bit) uses page size from 4 KiB till 4 MiB, or till 2 MiB when using PAE

(Physical Address Extension, extending physical memory above 4 GiB, page table entries are

more complicated and it is necessary to transfer addresses in two cycles),

� x86-64 architecture for Intel and AMD processors uses page size from 4 KiB till 2 MiB or 1 GiB

(if the processor has the PDPE1GB �ag present and set),

� ARM architectures usually allow page size between 4 KiB and 1 MiB or 16 MiB (various for

di�erent manufacturers).

The chosen size also depends on the operating system and physical memory size.
M

✎✎ Translation. Since we have a constant number of pages (memory is already partitioned when

the operating system is started) and the pages are all equally long, the page count can be in a simple

table with entries containing the page information. So, a memory manager uses hardware-supported

dynamic address translation and a page map table (or simply page table). The page table is placed in

the kernel memory space, and its addres can be found in one of CPU registers (the CR3 register at x86

and x86-64).

A process can access only its virtual address space, and this address space appears to be continuous.

Its length is

address_space_length = number_of_pages_of_process× page_size

and the addresses from this interval can be used by this process: 0 . . . (address_space_length− 1).

✎✎ So, the virtual (logical) address space seems to be contiguous (the process pages look as if there is

no gap/hole between them), but the corresponding frames usually are not contiguous.

Chapter 3 Memory Management 24

Whenever accessing memory, the memory manager performs this address translation:

� offset = logical_address mod page_size

� page_index = logical_address div page_size

� physical_address =
(
do_map_page(page_index)× frame_size

)
+ offset

Page mapping function is performed according to the list of pages assigned to the process, and the

purpose of mapping is to �nd a physical frame belonging to the page.

� The �rst two formulas can be simpli�ed, if the logical address can be divided into two parts � the

�rst part speci�es the page number (VPN = Virtual page number), the second part determines the

o�set. This simpli�cation is used by all common hardware architectures. An o�set, that is, a shift to a

given address within a page or frame, is the same on the page and frame as well. So, a virtual address

in the virtual address space can be of this form:

Virtual page number (VPN) o�set

� Page tables. So, by the virtual page number we reached a page table entry (PTE). The page

table entry contains information necessary to manipulate with the corresponding page:

� the frame number (identi�cation of the appropriate frame in physical memory or swap),

� �Valid� bit � valid page is page in physical memory,

� �Accessed� bit � this bit is set if the page has been accessed during the last clock cycle,

� �Dirty� bit � this bit is set if the page has been changed after transfer from swap,

� R/W access protection bit, User/Supervisor mode bit, and other memory protection bits.

These items are hardware dependent, and all operating systems running at the same hardware platform

use them in the same way (and with the same bit length).

� Multilevel paging. Most of the current architectures use multi-level paging, i.e. a VPN consists

of two, three or four parts (that is, the address consists of three, four or �ve parts) � we talk about

two-level, three-level,. . . paging.

There are several reasons for using multi-level paging:

� some parts of address space are not used (are empty), it is not necessary to map them for processes

(so the advantage is to reduce page table fragmentation, some PTEs do not exist),

� for small (4KiB) pages, there are lots of pages and we need many bits to store the page number,

but if the multi-level paging is used, we need less bits (because of the �rst item of this list),

� for long addresses (64-bit system), multi-level paging is necessary, because the number of pages

is too large, even if we use larger pages,

� the last advantage is reducing TLB miss, i.e. reducing overhead.

A 32-bit system with 4KiB pages usually uses two levels of pages, a 64-bit system usually uses three or

four levels.

In multi-level paging, we have one or more �container� levels � page-directory tables, and one level

with page tables. Page-directory table entries always point to the tables from the following level; page

table entries already point to pages/frames. The virtual address has hierarchical structure, e.g. for

three-level paging:

Dir level 1 index Dir level 2 index Page table index o�set

The translation process is a bit more complicated. In the case of three levels:

Chapter 3 Memory Management 25

� the �rst index (the �rst part of the address) leads into the �rst level directory table,

� in the found directory table entry, there is a pointer to the second level directory table,

� we use the second index (the second part of the address) leading into the determined second level

directory table,

� this entry contains a pointer to the third level page table,

� we use the third part of the address as the index leading into the found page table,

� and this entry �nally contains the page information.

Figure 3.1: Paging at x86 with two-level page tables1

Figure 3.2: Page Directory Entry and Page Table Entry at x86 with two-level paging1

� Inverted page tables. While a standard (or multi-level) page table is indexed by page numbers,

the inverted page table (IPT) is indexed by frame numbers. Thus, if two logical pages lead to one

physical frame (i.e., a page is shared by two processes), there will be two entries in a standard page

table, whereas only one entry in the inverted page table. Sharing pages is common in the current

operating systems, so using inverted page tables can reduce number of page table entries very much.

Searching in IPT is more complicated: while with a standard page table, using the index (multiplied

by the length of the item) moves us directly to the requested entry, here we have to search the requested

table row line by line.

The inverted page table concept has been used for example at PowerPC, UltraSPARC, IA-64 (the

Itanium processors), it is not used in the most current processors.

1From: http://www.renyujie.net/articles/article_ca_x86_5.php

http://www.renyujie.net/articles/article_ca_x86_5.php

Chapter 3 Memory Management 26

3.2.3 Segmentation

While pages do not have a speci�c purpose and all are of the same length, the segments usually have

a speci�c purpose (code, data, etc.) and can be of di�erent lengths as needed.

✎✎ Usually, hardware segmentation support is available: set of the segment registers, where each register

contains either the start address of the given segment, or the number from which this address can be

calculated, or the identi�er leading to the table with the necessary information, similarly as the prviously

stated page table. Translation is performed by a segmentation unit inside CPU, similarly as MMU for

paging.

Segment address translation is similar to page address translation � there is a segment part of the

address and o�set part of the address. The segment part is used to get the segment base address, and

then we add the o�set part.

✎✎ Architectures and segments. Some architectures use segments (simultaneously with other

possibilities of memory organization), and some architectures do not.

✄✄ We will focus on the x86 (32-bit) architecture. Each segment has a purpose, we use a code segment,

a global data segment, a stack segment, and possibly other segments as required by the operating

system. Each segment has its descriptor containing the segment start address, segment size, and

segment properties �ags (e.g. type, authorization level, whether recently used, . . .).

Figure 3.3: Segment descriptor format for x862

2From: https://notes.shichao.io/utlk/ch2/

https://notes.shichao.io/utlk/ch2/

Chapter 3 Memory Management 27

The segment descriptor format can be found in Figure 3.3. The individual parts:

� BA contains a base address of the target segment (separated in three �elds),

� Limit � length of the segment,

� D/B � implicit length of operans (for code segments) or implicit length of word (for stack seg-

ments), 0 means 16bit, 1 means 32bit,

� S = non/system type of segment (0 means system, 1 means user),

� Type � type of segment (code, data, . . .),

� P = present in descriptor table (see below), 0 means swapped segment,

� DPL � Descriptor Privilege level,

� G = Granularity, 0 means units in the Limit �eld in Bytes, 1 means units in the Limit �eld in

4KiB blocks,

� A = accessed, this �eld is used by page replacement algorithms.

✎✎ The operating system maintains a segment descriptor table for each process � Local Descriptor

Table (LDT), which contains descriptors for all process segments, LTD is in the process context. In

addition, Global Descriptor Table (GDT) exists for globally valid segments, including kernel segments,

as well as descriptors leading to individual LDTs (so pointers to LDT tables). The address of the GDT

is stored in the GDTR register, the address of the currently used LDT is in the LDTR register.

On this architecture, several segment registers can be used, which (if the processor uses memory

protection with 4 rings) have segment selectors stored therein. A segment selector is like a pointer, but

it contains other information (control bits) in addition to the destination address.

The commonly used segment registers are CS (Code Segment, also .text segment), DS (Data Seg-

ment, for global data), SS (Stack Segment for local data of functions), ES (Extra Segment for a

programmer), and additional FS and GS (for speci�c purposes, depending on operating system).

✄✄ The x86-64 (64-bit) architecture does not use segments in the sense of x86 architecture. All the

above mentioned segment registers are inside CPU, but the registers CS, DS, SS and ES contain 0,

the registers FS and GS are mainly used for threads management (e.g. Linux uses GS to store the

address of thread-local storage, TLS � each thread has its own memory space, beside the global one for

a process).

But segments can exist, just without hardware support. For example, in 64-bit Linux we have four

segments:

� kernel code segment,

� kernel data segment,

� user code segment,

� user data segment.

The corresponding segment registers are set to 0, so all these segments start at the same address,

their di�erentiation is at the page translation level. The stack segment is used too, but it is software-

implemented, such as a heap. The stack and heap parts of memory grow against each other (heap

grows to the higher addresses, stack grows to the lower addresses).

✄✄ The ARM architecture does not use segments, but Linux running at ARM uses several software-

implemented segments.

Chapter 3 Memory Management 28

3.2.4 Paging with Segmentation

When combining paging and segmentation, each segment is layed out across multiple pages.

A segment address consists of (at least) three parts: a segment identi�cation, a page number,

and an o�set. The process of address translation is depicted in Figure 3.4 (with only one-level page

hierarchy).

Figure 3.4: Combination of segmentation and paging3

As we can see, it is very similar to two-level page algorithm. According to Figure 3.4:

� the �rst part of the translated address is used as index leading to the segment table of the given

process (to the segment descriptor entry),

� the segment descriptor contains the base address of the corresponding segment page table (each

segment has its own page table),

� the second part of the adderss is used as index leading to the found page table,

� the frame number is found in the page table entry,

� now we know the frame number and the o�set (the third part of the address), so we are at the

�nish.

The x86 architecture allows using combination of segmentation and multi-level paging, and all current

operating systems for this architecture use this possibility. But the 64-bit successor x86-64 limited

hardware support for segments, and using segments here no longer makes sense as for 32-bit architecture,

as explained above. The ARM architecture does not use segments, nor the segment/page combination.

3From: https://edux.pjwstk.edu.pl/mat/264/lec/main85.html

https://edux.pjwstk.edu.pl/mat/264/lec/main85.html

Chapter 3 Memory Management 29

3.3 Virtual Memory Concepts

3.3.1 Page Replacement Algorithms

Some pages are located in physical memory (valid), and some of them are swapped (not valid). If a

swapped page is referenced by its owning process, it is necessary to �nd free frame in physical memory,

load the page into, and update the corresponding page table entry.

if no free frame is available, the page fault is generated. A page replacement algorithm is used

to �nd a suitable �victim� (a page located in memory eligible to swap) and then the found page is

displaced.

� Remark

If we move a page from swap to physical memory, it is not necessary to delete its content in the swap

or overwrite it with another page if there is enough space in the swap. It can happen that the same

page will soon be moving in the opposite direction, back to the swap � then we just release the frame

in the memory and update the page table entry, transfer is not necessary.

With one exception: if the page content has been changed in the meantime, data transfer is

necessary. Whether the page content has been changed is known by the �Dirty� bit (D) in the page

table entry.
�

The main goal of page replacement algorithms is to reduce number of page faults and average page

access time. There are various page replacement algorithms:

✎✎ Optimal (OPT). This algorithm is the most optimal, but not applicable. Such a page that will

not be referenced in the near future is selected as a candidate to swap.

This algorithm shows absolutely minimal number of page faults and the best average page access

times, so it is used as reference algorithm for comparison with another algorithms.

✎✎ First-in-First-out (FIFO). Such page is replaced that has been in physical memory the longest.

The implementation of this method is quite simple, we only use a queue of valid pages. When a page

fault occurs, the page with the entry at the front of the queue is swapped. The entry of the page we

moved from swap into physical memory is placed at the end of the queue.

The main disadvantage is that usually the very often used pages are the most likely swapped.

✎✎ Least Recently Used (LRU). This algorithm is based on heuristics that those pages that have

been used in the recent past are likely to be used in the near future. The victim is the page that was

last used a long time ago.

There are several possible implementations of this algorithm.

� The �rst implementation is to use a counter in the page table entry, which is increased by 1

each time the page is accessed. If we need to �nd a page to swap, that one that has the lowest

counter value is selected. The counter actually determines how many page-related instructions

have already been executed. The problem is that these counters are quite large numbers and the

method is only applicable with hardware support (because each instruction changes the entry for

at least one page), it is very computationally demanding.

� The second implementation requires storing the timestamp in the table entry of the page being

accessed. Victim is the page with the lowest timestamp. It is also very computationally demanding

Chapter 3 Memory Management 30

to work with time stamps.

� The third implementation is to create a page entry queue, and the page entry that has just been

used moves to the end of the queue. The victim's page is selected from the beginning of the

queue. Again, computationally demanding, because each instruction intervenes in the queue.

This algorithm is quite close to optimal, but all the possible implementations are computationally

demanding. The pages that have been widely used at the start of their process have a large counter,

even though they are no longer used so much, while the pages of a new process have this counter near

zero.

✎✎ Least Frequently Used (LFU, Not Frequently Used, NFU). The motivation is similar

to the previous algorithm, only the frequency of page usage in a time interval is calculated, and the

implementation is a bit more simple.

Each page table entry has a counter, and this counter is incremented by the value of the �Accessed�

bit (A) for each clock cycle. I.e. if the page was used during this time interval, number one is added to

the counter, otherwise nothing is added. The �Accessed� bit is reset to zero each time.

The implementation is similar to the �rst implementation of the previous algorithm, but it is less

precise (not all access operations are allowed for). it is a bit less computationally demanding. Other

disadvantages remain.

✎✎ Not Used Recently (NUR). A page that has not been used recently is the candidate to swap.

This algorithm uses two bits in page table entry:

� �Accessed� bit (so called referenced bit) � set if the page has been accessed during the clock cycle,

� �Modi�ed� bit � set if the page has been modi�ed during the clock cycle.

At the beginning of the clock cycle, both bits of all pages are zeroed.

When page fault occurs, �rst a page with unset �Accessed� bit is searched. If no page with this bit

unset is found, we search a page which is accessed but not modi�ed.

This algorithm is quite close to optimal, and it is quite computationally optimal too. But it can

be implemented only at architectures using the both mentioned bits. For example, Intel and AMD

processors do not support �Modi�ed� bit (they support �Dirty� bit, but it is not the same, �Dirty� bit

is zeroed only in case that the page is transmitted into swap).

✎✎ Clock algorithm. This algorithm is hybrid between FIFO and LRU. The �Referenced� (�Ac-

cessed�) bit for each page is used (set each time the page is accessed), it is very similar to the NUR

algorithm, but does not require the �Modi�ed� bit. There are several implementations of this algorithm,

it is very popular e.g. in UNIX systems including Linux.

3.3.2 NUMA

Current operating systems use the SMP (Symmetric MultiProcessing) principle on a multiprocessor

system, where generally all processes share a memory bus, reducing system throughput.

NUMA (Non-Uniform Memory Access) �xes this issue. The system is divided into nodes (or zones),

each node contains one or more processors, and each node has its own physical memory allocated.

Instead of one common memory bus, memory buses exist in every node, each processor preferably uses

physical memory inside its node and the memory bus inside the node. In addition, there is a superior

memory bus (interconnection bus) for communication between nodes, if necessary.

Chapter 3 Memory Management 31

Figure 3.5: NUMA architecture for AMD processors (HT bus) and Intel processors (QPI bus)4

3.4 Memory Management in Windows

Most of the process memory is paged (can be swapped), but processes (and especially the kernel) also

have non-paged memory used by time-critical functions (for example, IRQ or DPC calls).

✎✎ Memory virtualization. Windows uses a virtual metod segmentation with paging on demand.

When it is necessary to release frames in the physical memory, a variant of Clock algorithm is used on

the single-processor systems for the �victim� selection, on multiprocessor systems variant of the FIFO

algorithm.

The paging �le is usually called pagefile.sys and is on the system disk, but in fact we can have mul-

tiple paging �les (in which case everyone should be on a di�erent hard drive). Names of paging �les are

in the Registery database, the key HKLM/SYSTEM/CurrentControlSet/Control/Session Manager/Memory

Management, value PagingFiles.

If we have multiple paging �les, everyone should be on a di�erent disk (if there are more on the

same physical disk, even on other partitions, it can even slow down the system).

Placing a paging �le into a separate partition on the disk (separate from the system and data

partitions) may be useful, because there is no risk of paging �le fragmentation (but on the other hand,

there is a top memory area boundary that can be used for paging).

✎✎ Segments and pages. Segments are used in Windows as described on page 26, so there is one

Global Descriptor Table (GDT) in the kernel space, and each process has its Local Descriptor Table

(LDT), the entries of LDT (and GDT) hold information about segments (e.g. the segment base address,

the control bits, etc.).

In the user space, segments are addressed by selectors. A selector is a structure containing

� the index of the entry in LDT or GDT for the given segment,

� one bit determining if the selector leads to GDT (0) or LDT (1),

� two bits RPL (Requested Privilege Level) � 00 for Ring0 (kernel mode) or 11 for Ring3 (user

mode).

So, the address of an anything in the user address space (variable, instruction,. . .) consists of two parts:

Selector O�set

4From: https://www.sqlskills.com/blogs/jonathan/understanding-non-uniform-memory-accessarchitectures-

numa/

https://www.sqlskills.com/blogs/jonathan/understanding-non-uniform-memory-accessarchitectures-numa/
https://www.sqlskills.com/blogs/jonathan/understanding-non-uniform-memory-accessarchitectures-numa/

Chapter 3 Memory Management 32

A virtual address is actually an address pointing inside a segment. This addres is translated to a

linear address of the length 32 or 64 bits (depending on the architecture � x86 or x86-64) consisting

of two, three or four parts (based on paging levels used), and this address is translated by MMU to a

physical address.

So, the virtual address does not contain page indexes, they are discovered by the selector translation.

At x86, there are these types of segments in Windows:

� the code segment of a process,

� the data segment of a process, the stack segment is implemented inside the data segment,

� the system segments for code or data.

The format of their descriptors is shown in Figure 3.3 (page 26).

At x86-64 architecture, the segments are used too, but their base address is 0.

At x86, two-level page tables (for 4KiB pages) or one-level page tables (for 4MiB pages) are used.

At x86-64, four-level page tables are used, and it is possible to use 4KiB and 2MiB pages.

Two page lengths can be combined. In this case, entries of longer pages are placed one level up in

a multilevel table structure (so, it is possible only if at least two levels of page tables are used).

3.5 Memory Management in Linux

✎✎ Address space allocation. If it is a 32-bit system, 4 GB of virtual memory is available for the

process, usually a 3+1 split is used (i.e. 3 GB for user space, 1 GB for privileged mode).

On 64-bit systems, 256 TB of memory is available and is usually split in half (i.e. 128 TB for

process, 128 TB for privileged mode).

� Additional information

https://www.berthon.eu/wiki/foss:wikishelf:linux:memory
�

✎✎ Memory virtualization. Almost all of today's UNIX systems, including Linux, use paging on

demand or paging with segmentation on demand, according to architecture (this is also the case with

Linux). Page tables are multi-level, number of levels vary on di�erent hardware platforms � two levels

are su�cient on a 32-bit processor (global page directory and page tables), or a third level is added

(middle page directory), three or four levels are used on a 64-bit processor.

✎✎ As the replacement algorithm is used the Clock algorithm, with respect to multilevel paging. The

indication of old pages (eligible to swap) is not only in one bit, but it is a number of the range from 0

till 20, where 0 stands for old page. Each time the page is accessed, this value is increased (by default

by 3 to maximum value), the memory manager constantly (clock algorithm) goes through all these

values and decreases them (by default by 1).

M Example

We can have multiple swap �les (and a swap partition). An additional swap �le can be created as

follows:

� we create a continuous �le on a disk �lled with zero symbols #0 (not the zero numbers!),

� we mark this �le as swapping and we turn it on the swapping process.

https://www.berthon.eu/wiki/foss:wikishelf:linux:memory

Chapter 3 Memory Management 33

For example (creation of a swap �le of the length 65536, pages of the length 4 KiB):

dd if=/dev/zero of=/novy_swap bs=4096 count=65536

mkswap /novy_swap

swapon /novy_swap

To use this �le after restart, it is necessary to add this row into the �le /etc/fstab:

/new_swap none swap sw 0 0

M

✎✎ Sharing and Mapping. These systems support several interesting memory management fea-

tures, for example, in addition to the well-known and commonly used copy-on-write, we encounter the

program code sharing mechanism: if multiple processes � instances of the same program � are running,

they can share the part of memory where the program code is loaded (the code segment).

The �le mapping function works in such a way that any �le can be mapped into the address space

of a process, no matter where it is physically located (it does not have to be in RAM). There are usually

one of two reasons for mapping:

� we want to be able to work with the �le directly on the disk (generally a storage) in the same

way as if it were loaded into the memory (more precisely, we want to work with the �le as with

the memory, except for speed, of course), but we don't actually want this �le in the memory

(for example, because of the large size of the �le), it may also be the executable code of a larger

program (i.e. a segment of the code would remain on the disk),

� shared memory implementation of any size � shared memory directly in the memory is a security

risk, so it is much easier and safer to create a (simulated) shared memory section accessible to

multiple processes on a storage media.

The mapping mechanism is very versatile, in fact it is also used, for example, when swapping.

✎✎ Address Space. Each process has assigned a memory descriptor (one or more), which is a

structure containing all information about the virtual memory allocated to the process, as well as

related functions (e.g., access to the structure to facilitate page lookups, the number of mapped areas,

the address of the �rst mapped area, the total size of the virtual memory mapped to the process,

memory-related synchronization objects, area unmapping functions, etc.). The memory descriptor is

available in the process descriptor.5

� Additional information

� https://stackover�ow.com/questions/31578233/how-does-arm-linux-maintain-segments

� http://www.makelinux.net/reference

� https://pdos.csail.mit.edu/6.828/2014/readings/i386/toc.htm

� https://notes.shichao.io/utlk/ch2/

� https://answers.microsoft.com/en-us/windows/forum/windows_10-performance-winpc/physical-and-virtual

-memory-in-windows-10/e36fb5bc-9ac8-49af-951c-e7d39b979938
�

5In the process descriptor we �nd mainly structures and references related to allocated resources and communication

tools, such as pointers to �le descriptors, pointers to memory descriptors, the current working directory of the process,

the terminal on which the process is running, the structure for registering signals, etc.

https://stackoverflow.com/questions/31578233/how-does-arm-linux-maintain-segments
http://www.makelinux.net/reference
https://pdos.csail.mit.edu/6.828/2014/readings/i386/toc.htm
https://notes.shichao.io/utlk/ch2/
https://answers.microsoft.com/en-us/windows/forum/windows_10-performance-winpc/physical-and-virtual-memory-in-windows-10/e36fb5bc-9ac8-49af-951c-e7d39b979938
https://answers.microsoft.com/en-us/windows/forum/windows_10-performance-winpc/physical-and-virtual-memory-in-windows-10/e36fb5bc-9ac8-49af-951c-e7d39b979938

Chapter 4
Processes

 Quick preview: In this chapter, you will learn the basics of process management. We will de�ne

a process and its properties, discuss the basic forms of multitasking, look at the issue of processor

allocation and the possibilities of process synchronization.

¤ Keywords: Process, multitasking, multithreading, concurrent processes, CPU scheduling, inter-

process communication.

➸➸ Objectives: The goal of this chapter is to understand the principles of process management in

current operating systems and to learn how to work with processes.

4.1 Multiple CPU Cores

Nearly all current processors (Intel, AMD, ARM,. . .) have multiple (physical) cores. Most processors

have two computing threads in each core: Intel calls this property by hyperthreading, AMD calls it by

SMT (Symmetric Multiprocessing) � an operating system can see them as logical cores.

Servers commonly have multiple processors (with multiple cores, each core with two computing

treads), and current operating systems are able to utilize them. So, all modern operating systems

support multiprocessing. Microsoft uses a relatively complicated licensing policy for Windows, where

the license fee depends on the number of processors and cores. For UNIX systems, including Linux,

support for multiple processors is commonly granted.

✎✎ There are two types of multiprocessing: ASMT (asymmetric multiprocessing) and SMT (sym-

metrical multiprocessing). ASMT dedicates one processor to the kernel and the other processors are

allocated to common processes, SMT fairly distributes processors among kernel and processes. Nowa-

days all operating systems use SMT.

✎✎ Systems with more processors working in SMT usually use the NUMA architecture (Non-Uniform

Memory Access): each processor or set of processors has its own part of memory (memory modules),

these parts of memory are independently addressed. The consequence is that such a computer system

may have a lot more memory than a single processor could address, so this system is more scalable.

NUMA is supported by Windows Server and all UNIX systems too, including Linux.

34

Chapter 4 Processes 35

4.2 Obtaining Process Information

4.2.1 Processes in Windows

✄✄ We can use Task manager to obtain information about processes in Windows. The fastest way to

run it is the shortcut Ctrl+Shift+ESC (on the left side of a keyboard, two keys in the bottom left

corner, one key in the upper left corner).

✄✄ Another way is in the text mode:

� in Command Line (cmd.exe) we can use the tasklist command to list processes and basic infor-

mation, the taskkill command can destroy processes,

� in PowerShell (powershell) we can use the get-process tasklet

And we can use the third-party software.

M Example

Let us try the tasklist command.

tasklist displays a list of running processes (jobs) on the local computer (name, PID, session,

allocated memory)

tasklist /S some_computer the same, but on a di�erent computer in the local network (computers

must �see� each other)

tasklist /V more detailed information (with status, user name, CPU time, window title)

tasklist /SVC also services running in processes are displayed

tasklist /M list of all processes with modules (dll libraries etc.) linked into these processes

tasklist /M ntdll.dll we can specify the library � in this example: what processes use undocu-

mented interface ntdll.dll?

tasklist /fi "imagename eq svchost.exe" �ltering the output � we want only the processes with

the svchost.exe image

tasklist /m /fi "pid eq 8482" list of all modules linked into the process with the given PID

tasklist /fi "username eq NT AUTHORITY\SYSTEM" all processes running over the system account

tasklist /fi "memusage le 98000" all processes using at most 98 000 kB of memory (le means �less

of equal�), we can use another operators, e.g. ge, lt, ge, ne (not equal)

tasklist /FO list the output will be list, not tabular

tasklist /FO csv >> proc.csv the output will be in the CSV format, we redirect it into the given

�le (CSV �les can be open in text editors, and in Excel too)

tasklist /? displaying help for this command

The taskkill command is used to terminate processes:

taskkill /pid 5810 terminates the process with the given PID, it is a proper ending just like we

would click on the cross in the upper right corner of the process window

taskkill /F /pid 5810 kills the process with the given PID (F as �Force�), we can use it if the

process does not respond and refuses to quit normally

taskkill /T /pid 5810 terminates the given process and all its child processes recursively

taskkill /IM firefox.exe we can terminate all processes created from the given image

taskkill /fi "username eq some_user" the same �lters as for the tasklist command
M

Chapter 4 Processes 36

M Example

The PowerShell command get-process has the di�erent syntax:

get-process list of running processes

get-process -name firefox.exe -module list of modules linked in the given process denoted by name

(if there are more processes with the same name, we obtain very long list with modules in all

these processes)

get-process -id 9372 -module list of modules linked in the given process denoted by PID

stop-process -name fi* -confirm stops all processes with names begining with ���, asks for con�r-

mation (so we can stop only those �tting processes we really want to end)

get-process | where-object -filterscript {$_.Responding -eq $false} | stop-process stops

all not-responding processes

get-process -id 11264 | select-object -expandProperty threads details on all threads running in-

side the process with the given PID

get-help get-process displaying help for this command
M

There are also tools for working with services (a service is a special type of process) � whether in the

graphical environment (services.msc) or in a text environment (for example, the sc command, or the

PowerShell tasklet get-service).

It is more convenient to use third-party software that additionally provides more information than

a Task manager.

✄✄ Process Explorer is probably the most widely used program for process analysis in Windows. This

freeware is from Sysinternals, which has been part of Microsoft for many years, and it is portable

application (so we do not install it, we only run it). Administrators usually have a USB �ash disk with

useful diagnostic programs, and this application is one of them.

� Additional information

When entering sysinternals.com into your web browser, you will be redirected to https://docs.microsoft.

com/cs-cz/sysinternals/. If no redirection occurs, immediately go out � you probably mistyped. This

address is very popular, and hackers know it: similar addresses are registered by various persons.

We have three possibilities:

� to get only one application � by choosing Process Explorer in Process Utilities,

� to get the entire suite of diagnostic applications (Sysinternals Suite),

� to run these apps directly from web without download (Sysinternals Live).

To get more information about system processes, run this application as an administrator.
�

4.2.2 Processes in Linux

✄✄ There are many di�erent graphical interfaces in Linux, each with a tool similar to Windows Task

Manager. When using the GNOME environment or some similar (Mate, Cinamon,. . .), we have System

Monitor (the name of this application can be di�erent).

sysinternals.com
https://docs.microsoft.com/cs-cz/sysinternals/
https://docs.microsoft.com/cs-cz/sysinternals/

Chapter 4 Processes 37

Figure 4.1: Sysinternals web page

Figure 4.2: Process Explorer

✄✄ In the text shell, we have several commands to work with processes. The most popular commands

are the following:

� ps to list running processes,

� pstree to display a process tree,

� top is an interactive program to display run-time information about active processes,

� htop is similar to top, more information and a bit di�erent environment.

Chapter 4 Processes 38

Figure 4.3: Mate System Monitor in Linux

Figure 4.4: Output of �ps aux� and �pstree�

4.3 Process Concept

4.3.1 Program, Process, Thread

✎✎ A program is an executable �le containing code, constant data, etc., stored on a storage.

Programs for a particular operating system are always in a system-speci�c format. This format is

typical for executable �les, and for dynamically linked libraries as well.

Chapter 4 Processes 39

Figure 4.5: Output of �top� and �htop�

MS Windows use the following formats:

� PE � Portable Executable for 32-bit Windows,

� PE+ for 64-bit Windows,

� .NET PE for .NET applications,

� UWP format (Universal Windows Platform) for universal apps in Windows 10.

These formats are used in �les .exe, .sys, .dll, .ttf (True Type Font), .nls (National Language

Services � language drivers), .ocx (ActiveX),. . .

Linux uses the ELF format (Executable and Linkable Format). Executables in Linux usually have

no extension, and libraries have the extension .so (Shared Object), often with added version number.

Another interesting binary �les are .ko (Kernel Object) for kernel modules, e.g. drivers.

✎✎ A process is an instance of a program created by running the program.

If the process originated by running from a binary executable �le (program), we call this �le a

process image.

Chapter 4 Processes 40

Each process is characterized by:

� its code, loaded from its image,

� execution context: contents of processor registers, including program counter,

� global data (constants and variables),

� one or two stacks for function parameters, values of local variables, etc.,

� heap for dynamically allocated variables,. . .

A process can be created by another process, its parent process. The tree structure of processes is based

on this type of relation � structure of superior parent processes and subordinate child processes.

Processes in current operating systems have a unique identi�cation number PID � Process IDenti-

�er. Most processes keep a record of their parent process � PPID � Parent PID.

✎✎ A process can be devided into several parts called threads. A thread (co called light-weight process)

is relatively independent computational unit of a process. Each process has at least one thread, and

other threads can be created by running functions that are programmed for these purposes.

It the concept of threads is implemented by operating system, its kernel assigns the processor to

the threads, not the processes. So, more threads of one process can run parallely on di�erent cores of

processor, or on di�erent processors at multiprocessor system. Each thread has its own identi�cation

number: TID (Thread ID).

Splitting the process into multiple parts � threads � is advantageous if the process consists of more

independent pieces of code (they do not a�ect each other).

A typical example is an application that communicates with the user, allows him to work or enjoy

it (one thread), and the �background� code copies �les (the second thread). Each of these threads works

independently, one does not a�ect the activity of the other except for possible communication (the �rst

thread can tell the user on a suitable graphic element how far the second thread is in the copy, the

second thread always sends message to the �rst thread after copying a single �le or a certain quantity

of Bytes).

✎✎ Multithreaded Programming can be useful in the following cases:

� games,

� video codecs (e.g. the H.264 codec is able to efectively utilize up to 8 processor cores), modelling

programs, making animations, multimedia applications,

� math applications, computationally demanding calculations,

� comprimation, encryption,

� applications programmed according to the Model-View-Controller concept,. . .

These boundary situations may occur when programming multi-threaded applications:

1. the threads are independent of each other, do not share any resources, do not communicate with

each other � ideal case, they can run without problems at di�erent processors or processor cores

at the same time,

2. the threads share resources, one has to wait for the result of another thread, or they communicate

with each other � need to synchronize, mutual waiting, these threads can not run at the same

time.

Chapter 4 Processes 41

� Remark

We will talk about processes, but very often the topic will be more about threads. Threads have their

states, are scheduled to processor,. . .
�

4.3.2 Process States

✎✎ Each process is in some state, and it passes between di�erent states while running. The set of

possible states is determined by operating system, most systems use these process states:

� new � the process is being created, and resources are allocated to it (momory, open �les/modules,. . .),

� running � the process has a processor (core) to be assigned to, it executes its code,

� ready � the process is waiting to be assigned to a processor, it is ready to execute its code (waiting

in a processors queue),

� waiting (blocked) � the process is waiting for a resource or event to occur, the sychronization

mechanisms block processes as well,

� terminated � the process has �nished its execution, but the structures with its data are still in

the kernel.

Each system has its own typical additional states.

✎✎ In Windows, a process is in the state suspend, if a part of its memory (some memory pages) is

moved from RAM into a swap (e.g. into pagefile.sys). Processes usually go to this state from the

state blocked (waiting) in case that there is a lack of space in RAM, or the process works only sometimes,

in regular intervals (so it sleeps between times of work), or the parent of the process or a user requests

to suspend this process, or the system may suspend any process too.

✎✎ In Linux/UNIX, nearly all processes are in the sleeping state � if a process has nothing to execute

or has to be synchronized, it sleeps. Sleeping is interruptible or uninterruptible, depending on ability

to respond to IRQs. Synchronizations mechanisms cause transition into the uninterruptible state.

Some processes can be stopped by user, by parent process (the both can stop process by sending

the �SIGSTOP� communication signal) or by system (process is being traced). Stopped process can

continue into the state ready by obtaining the �SIGCONT� signal, or during tracing.

A process can be zombie: if a parent process runs some child process with the property �I want

result�, the child process is terminated but the parent process does not collect the result, the child

�
�

�
�new

�
�

�
�ready

�
�

�
�running

�
�

�
�terminated

�
�

�
�waiting

process

initialization

(resources allocation)

assigned to processor

removed from processor

waiting
for I/O

or event

terminate
completed I/O or event

-
-

�

�
�

�
�

�
�

�
�

�
�+ ?

6

Figure 4.6: Process Life Cycle

Chapter 4 Processes 42

process becomes zombie. The parent process is informed by the �SIGCHILD� signal, but if it has not

this signal handled. . .

4.3.3 Process Control Block

✎✎ Each operating system keeps records of its processes in certain kernel structures. The general

designation for the process information structure is PCB (Process Control Block). These blocks are at

least as many as processes, and PID of such process can be understood as an index in the array with

these structures. So, if the system needs information about a process with a particular PID, it will �nd

it in the structure at the appropriate position in that array.

The contents of PCB is speci�c for operating system, some �general� entries:

� image �le name (the process is created from),

� process state,

� security information � e�ective user whose access permissions are used by the process to access

resources (another designations: security descriptor, security token),

� create time information,

� accounting information � time limits, kernel time (amount of time spent in kernel mode), user

time (amount of time spent in user mode),

� CPU registers contents, including the Program Counter,

� memory management structures (what memory pages are used by the process, etc.),

� CPU-scheduling information including process priority,

� I/O status information including assigned resources and I/O priority,

� thread list,. . .

� PCB inWindows. The following data structures are used byWindows kernel to keep information

about processes:

� EPROCESS � contains some properties of a process (PID, process name,. . .) and links leading to

other data structures related to this process,

� ETHREAD � similar structure for thread, the EPROCESS structures contain links leading to the ETHREAD

structures of all threads belonging to the process,

� PEB (Process Environment Block) � this structure is located directly in the address space of the

process (not in the kernel) and is accessible from EPROCESS; PEB contains information needed in

the user space (heap address, synchronization information, list of loaded modules,. . .),

� TEB (Thread Environment Block) � the same for threads,

� KPROCESS, also PCB � part of EPROCESS with information necessary for CPU scheduling (timestamps,

priority, a�nity, process state, quantum,. . .),

� etc.

� PCB in Linux. A process in Linux is represented by the following structure (the output is

shortened):

struct task_struct {

volatile long state;

unsigned int flags;

Chapter 4 Processes 43

void *stack;

int prio, static_prio;

struct mm_struct *mm, *active_mm;

pid_t pid;

struct task_struct *parent;

struct list_head children;

struct task_struct *group_leader;

...

};

The state variable determines the state of the process (values TASK_RUNNING, TASK_INTERRUPTIBLE,

TASK_STOPPED,. . .). The flags word is something similar to state, it says what the given process does

work (values PF_STARTING for a new process, PF_MEMALLOC if the process is currently allocating mem-

ory,. . .).

The stack pointer leads to the currently used stack (each process has two stacks for local information

about functions � one for user mode and one for kernel mode when a system call is handled). A new

process acquires a basic priority (static_prio) that changes over time (dynamic priority, prio). The

variables mm and active_mm represent the address space of the given process.

Each process has its PID (the pid variable). Every process has to know its parent (parent is the

pointer to the structure of the parent process) and its children (the children array). Processes are

grouped together in groups, each group has a leading process of the group (the group_leader pointer).

The task_struct structure is very long, contains a lot of information.

� Additional information

� https://tampub.uta.�/bitstream/handle/10024/96864/GRADU-1428493916.pdf

� https://www.ibm.com/developerworks/library/l-linux-process-management/index.html

� https://unix.stackexchange.com/questions/80038/what-is-the-structure-of-a-linux-process

� https://www.microsoftpressstore.com/articles/article.aspx?p=2233328

� https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/eprocess
�

4.4 Operations on Processes

4.4.1 Process Input and Output

✎✎ In common operating systems, processes can read from the standard input (stdin), write to the

standard output (stdout) and write errors to the standard error output (stderr). The default direction

of this type of communication is from/to console, it means input from a keyboard (for stdin) and output

to a display (stdout, stderr). It all can be redirected, e.g. we can redirect input from keyboard to a �le

(so we use the same method for reading from �le instead from keyboard), and we can redirect stdout

and stderr to a �le instead of a display.

Besides, they can also open �les (for reading, writing, or both), and processes with a graphical

interface can work with structures representing their windows (forms).

We focus on standard input, output and error output. This possibility is applicable to all processes,

including those that do not have a window, in all operating systems.

https://tampub.uta.fi/bitstream/handle/10024/96864/GRADU-1428493916.pdf
https://www.ibm.com/developerworks/library/l-linux-process-management/index.html
https://unix.stackexchange.com/questions/80038/what-is-the-structure-of-a-linux-process
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/eprocess

Chapter 4 Processes 44

There are the following ways to use the concept:

� a program writes its output into a display by default, but a user working with this program wants

to save output to a �le; so the user can redirect output to a �le, similarly for stdin and stderr,

� a programmer can handle some data over either to another process or write them to a display or

store to a �le, but he does not want to deal with several di�erent commands with conditions, he

can leave it to a user of the program (as in the previous item),

� working with standard input and output can help with interprocess communication, this option

is used in communication between parent and child processes.

✄✄ In Windows and UNIX systems, this syntax is used (it comes from UNIX):

program > file the standard output of the given program is redirected to the given �le, the original

content of the �le is deleted, replaced by the program output (if the �le has not yet existed, is

created)

program >> file the standard output of the given program is redirected as in the previous case, but

the standard output is appended to the original content (at the end of the given �le)

program 2> file the standard error output is redirected to the given �le

program > file1 2> file2 we redirect the both standard output and standard error output, into

di�erent �les

program &> file we redirect the both standard output and error output, into the same �le (syntax

for UNIX and UNIX-like systems)

program > file 2>&1 we redirect the both standard output and error output, into the same �le

(Windows syntax)

program < file the standard input is redirected, we read from the given �le instead of keyboard

program1 | program2 | program3... the standard output of each program is redirected to the stan-

dard input of the next program, we call this structure by �pipeline�

program1 | program2 > file we can combine these concepts

We can use either common �les, or some special �les with special meaning. For example, the output

�le NUL in Windows, /dev/null in UNIX systems, is �black hole� � whatever is here redirected, it is

discarded, is not stored or written anywhere. We use it if the output or error output is not important,

or it could bother users.

The input �les /dev/random and /dev/urandom are used in UNIX systems to input random numbers.

In Windows, we use the variable random for these purposes.

M Example

In Windows we can type these commands:

dir > file the output of the command dir is redirected to the �le, instead of display

dir nonsense 2> file the error output of the command dir is redirected to the �le

dir nonsense > file 2>&1 the output and the error output are redirected to the �le

dir nonsense 2> NUL the error output is discarded

dir nonsense > NUL 2>&1 the both the output and error output are discarded

Chapter 4 Processes 45

dir /s /b *.sys > c:\users\some_user\kernel_driver_files.txt (�rst type c: and cd\) the out-

put of the command dir /s /b *.sys is redirected into the given �le located in the user's pro�le

dir c:\windows | sort | more the output of dir is sorted, and the last command allows to scroll

through the output (Enter causes moving one row down, spacebar causes moving one page down)

sort < file1 > file2 contents of the �rst �le is sorted and stored into the second �le

tasklist /v | findstr /i "svchost.exe" we want to �lter the output of the �rst command
M

M Example

In the newer versions of Windows we can use alternate data streams. Some operations with them are

allowed only with using redirection. Let us try:

echo xxx > file.txt we created the given �le, with the content �xxx�

echo yyy > file.txt:something we created alternative data stream associtated to the �le

dir fi* only the �o�cial� �le is visible, the alternative data stream is not visible � output:

Volume in drive C has no label.

Volume Serial Number is 9C71-C2F2

Directory of C:\Users\ui

19.02.2019 18:09 6 file.txt

1 File(s) 6 bytes

dir /r fi* the alternative data stream is visible too � output:

Volume in drive C has no label.

Volume Serial Number is 9C71-C2F2

Directory of C:\Users\ui

19.02.2019 18:09 6 file.txt

6 file.txt:somestream:$DATA

1 File(s) 6 bytes

type file.txt only the �o�cial� content is visible

type file.txt:something error message

more file.txt:something error message

more < file.txt:something this output is ok
M

M Example

In Linux, some commands are di�erent, but the redirection principle is similar.

ls > file redirection of the standard output

ls nonsense 2> /dev/null error output is discarded

time >> file.log current time is redirected to the end of the given �le

tr 'a-z' 'A-Z' < file1 > file2 capitalizes all characters in the �rst �les, the result is stored into

the second �le

Chapter 4 Processes 46

find /etc -name hosts 2> /dev/null error messages will be lost

ls -la | head -10 we want only �rst 10 rows of the output

ps -ef | grep firefox we want information about the �refox processes

dmesg | grep -i usb something is wrong with the USB interface, so we want know if there was some

problem with loading USB drivers
M

4.4.2 Process Creation and Termination

The process is (almost) always created by another process, which determines the parent-child relation-

ship. The parant process either continues to execute its code concurrently with the child process, or

waits for termination of the child process.

✄✄ In Windows, the most common way to create a child process, is the function CreateProcess(). This

function allows to pass various parameters to the created process, including standard input and output

redirection. It checks the type of the �le which is to become the image of the new process, and if it is

not a 64-bit PE �le, the function will ensure that the virtual environment is started (WoW64, ntvdm,

. . .).

✄✄ In UNIX and UNIX-like systems, new processes are created by combination of the functions fork()

and exec() (or some variant of this function, e.g. execve()). fork() makes copy of the original process,

execve() replaces the code in order to allow the new process to interpret its own executable �le, and

restarts the program counter.

Parent:

Process 1: image = ELF1

Child:

Process 2: image = ELF1 ⇒

Parent:

Process 1: image = ELF1

Child:

Process 2: image = ELF2

Figure 4.7: Image of the child process before and after execve() calling

M Example

A new process in Linux is created as follows:

// make a copy of me (of this process), the new instance (process) has different PID,

// but the same code and registers content:

pid_t child_pid = fork();

if (child_pid == 0) {

// fork in first instance (parent) returns PID of the created child process,

// in the new process (child) returns 0

// if this is child, replace the original code with a new code (from another image):

execve(...)

}

// parent's code
M

✎✎ Some operating systems (such as UNIX systems) create the process tree. Each process has, in

addition to its own PID, a parental identi�cation number (PPID), this number is used to construct

the process tree. In Windows, the concept of process structure is lightweight, there is no single-root

process tree. On the other hand, in UNIX systems, the tree structure is strictly adhered to, the tree

process process root being init or systemd or another similar process.

Chapter 4 Processes 47

There is a relationship of dependence between the parent and the child process. Usually, after

terminating of the parent process, all processes of its subtree are terminated as well. A typical example

is the termination of all processes started by the user after logging out (all in the subtree of his login

or initialization process).

✄✄ This means that after process termination

� all child processes are terminated too, or

� all child processes become orphans, they run but without parent process.

The �rst possibility is typical for UNIX and UNIX-like systems (all processes in the subree obtain the

SIGTERM signal), the second possibility for Windows.

If in UNIX we want a user process to run even after the user logs o�, it must be created with the

nohup �ag and its parent becomes the root process (init, systemd, etc.).

� Additional information

http://tuxthink.blogspot.com/2012/06/using-execve.html
�

4.4.3 Priorities

Each process has its priority assigned. This priority is used for various purposes, especially for CPU

scheduling.

✎✎ There are these types of priorities:

� base priority � each process obtains this priority when created,

� dynamic priority � it moves around the base priority, it is used to temporarily favor or, on the

contrary, to disadvantage the process in connection with the use of resources,

� static priority � realtime processes do not use a dynamic priority, their priority stands still, they

have unchanging static priority.

✎✎ Priorities in Windows. The range for process priorities is 1�31. The values 1�15 are dynamic

for common processes, the values 16�31 are intended to real-time processes. The priority values are in

these levels:

� 0 � system level, for special system thread

� about 4 � Lowest (Idle), these processes work if no other process works

� about 6 � Below-normal

� about 8 � Normal

� about 10 � Above-normal

� about 13 (max. 15) � Highest

� about 24 � Realtime

� 31 � Time-critical realtime

User processes have the base priority 8 (normal). System processes have the base priority 8 as well,

only several the most important processes have a bit higher priority (e.g. csrss and winlogon have 13,

services.exe has usually 9).

http://tuxthink.blogspot.com/2012/06/using-execve.html

Chapter 4 Processes 48

✄✄ We can discover the priority in

� Task Manager,

� Process Explorer.

✄✄ We can run a process with the choosen priority in this way:

start /low notepad.exe

(the given process is started with the low priority). For other possibilities see start /?.

✎✎ Priorities in Linux. The range of priorities stored in kernel structures is 1�40 for user processes

(dynamic priorities), realtime processes use static priorities with the range 1�99.

✎✎ From a user's perspective, the priorities map to the range called nice. Nice is actually a base

priority, the dynamic priority moves around with a variance of approximately 5. The �nice� values are

understood to be exactly the opposite of the priority values: the higher priority means the lower nice

value, and vice versa. This metric can be imagined as a degree of �niceness�of the process in relation

to other processes � a process with a higher �nice� is more comfortable with other processes, using less

time in processor, while a process with a lower �nice� is less useful for other processes, more processor

time is left to itself.

The �nice� value is:

� 0 � common priority,

� 1. . . 19 � increasing nice, this process is nicer to other processes, its priority is lowered,

� (−20). . . (−1) � decreasing nice, this process has higher priority.

✄✄ We can discover the priority in

� Process monitor or another similar application,

� some commands, e.g. top, or ps -eo pid,nice,cmd,start (displays PID, nice, command and start

time for each process)

✄✄ We can run a process with the choosen priority (nice):

nice -n 4 pstree

(the given process is started with higher nice value = lower priority).

✄✄ We can change priority of an existing process, we of course have to know PID of this process:

renice +4 1082

(the nice value has been increased, priority has been decreased).

4.5 Multitasking

4.5.1 Context Switching

✎✎ The process context is a summary of runtime information about the process. In particular, here we

include information that could be lost when processes are changed on the processor.

Usually, these items may be in process context:

� address registers contents, including the program counter,

� �ags register, data or general registers,

� registers of mathematical coprocesor,. . .

Chapter 4 Processes 49

The kind of information stored in the process context depends on the type of multitasking.

✎✎ When processes change on a single processor, we call the procedure by context switching, that is,

a change in runtime information stored in �global� locations (e.g. processor registers), so the context

of the currently running process must be saved into the process structure (PCB) or into the space of

the process (its stack) and the context of the next running process must be restored into the global

locations. So � context switching means saving the current context and restoring the new context.

4.5.2 Types of Multitasking

✎✎ Cooperative multitasking allows one process running on foreground, the remaining processes

are on background. The process on the foreground has a processor, but if it does not need it (e.g.

waiting for an event, such as keyboard entry), the processor may be assigned to a background process,

but only for a short time. Next, the processor is returned to the foreground process or, if this process

is still waiting for the event, again to some background process. The user determines which process is

in the foreground (e.g. it moves from the text editor to the calculator).

Processes must cooperate on multitasking, and from time to time return processor by calling the

system service (the foreground process when waiting, the background processes after a dedicated pro-

cessor assignment time). But it is up to the process itself (its programmer) to call up the appropriate

service, and if it does not bother, other processes cannot work.

This type of multitasking has been used in Windows with DOS kernel (version 3.x or older) or

Apple MacOS before the �X�version.

✎✎ Preemptive multitasking consists in switching processes when events arrive (IRQs, etc.). The

processes do not cooperate on multitasking (and even may not know about it), and any process can be

suspended at any time.

The context switching comes at each event in the system, and the processor is allocated to the

target of the event (for example, after an IRQ from the keyboard, the processor is assigned to a process

which the keystroke is intended to, such as a text editor). It is not necessary that the context switches

after each interruption because an IRQ can be (and often is) intended to the currently active process.

The system has to preempt loss of intermediate results and addresses, so the process context is

usually larger to avoid this problem. Processes assume their time to run is continuous, they do not

�know� about suspensions.

✎✎ Preemptive multitasking with Time-slicing is an improvement of the previous method.

Context switching occurs not only when an event is generated, but also at the given time intervals, and

very short (units up to tens of milliseconds). Processes are routed in processor usage, and so quickly

that the user experiences the impression of parallel job processing. The process is interrupted after a

certain period of time, or earlier, if the previous event processing has been interrupted by another event

during the allocated interval, or when the work is completed before the end of the interval.

This type of multitasking is used in all current operating systems � UNIX and UNIX-like systems

including Linux, Apple MacOS, Windows.

Chapter 4 Processes 50

4.6 Multithreading

✎✎ Multithreading is actually the parallel processing of multiple parts within a single process, sort of

like multitasking within a process. Splitting a process into several such parts, subprocesses, threads,

is advantageous if the process consists of several independent pieces of code (they do not a�ect each

other, it does not matter in which order they are executed).

A typical example is an application that communicates with the user, allows him to work or

entertains him (one thread) and �in the background� for example copies �les (the other thread). Each

of these threads works independently, one of them does not a�ect the activity of the other except for

possible communication (the �rst thread can show the user on a suitable graphic element how far the

second thread is in copying, the second thread always sends a message to the �rst thread after copying

one �le or a certain quantum of Bytes).

✎✎ In operating systems that support multithreading, a process (job) consists of one or more threads

called threads, one thread is usually the main thread and is started when the process starts. The process

is only a passive owner of memory space, all activity is performed by threads. Therefore, a process that

has no threads can be terminated. Just as a process has a PID number, each thread is assigned a TID

number, which in operating systems tends to be unique for the entire system.

CPU is not allocated to processes, but to threads. Each thread has its own code (or can be shared

within a process, depending on the implementation) and a pointer to it (program counter), stack, CPU

time, context. Threads may each have their own memory space or may access a shared memory space

(the latter is more common), it is not necessary to apply such strict memory protection mechanisms

or other security methods between threads (threads belong to the same process, they cooperate, they

do not compete), however some synchronization may be needed when accessing resources available to

multiple threads of the same process.

Threads can be implemented in several ways.

✄✄ 1:1 model. Threads are implemented in the kernel of the system. The kernel treats threads

as processes, so context switching is done at the thread level. This solution increases the system

throughput (the system is more responsive, multiple system calls can be processed at the same time

if the kernel can be also multi-threaded), but it is more challenging to solve problems related to the

synchronization of system threads (related to shared system data).

This method is used, for example, by OS Mach, and therefore also by Apple MacOS, as well as

in Windows NT series and in Linux (in Linux, however, the kernel itself is implicitly single-threaded)

with the NPTL (Native Posix Threads Library). This speci�cation is part of the POSIX standard.

✄✄ N:1 model. Threads are implemented at the user level. Thread support is implemented in

libraries, the kernel is only single-threaded and �see� only processes, not threads. The system does not

support threads, the implementation is only on the process side. Threads of a single process share the

CPU time allocated to that process. Threads of a single process cannot run on multiple processors, so

this model is not suitable for multiprocessor systems.

Because the switching of threads of the same process is not implemented �centrally�, it is much faster

(if the process does not communicate too much with the kernel), therefore the response of individual

user applications is better.

The advantage is less complications when accessing system data, the disadvantage is the possibility

Chapter 4 Processes 51

to process only one system call at a time within the kernel. When a thread makes a kernel service call

(system call), all threads in the process stop.

This solution is used in some languages as a custom thread implementation (for example, Java or

Ruby). We also see it in the form Windows Fibers � in Windows, in addition to threads, there are also

threads whose scheduling is fully in the control of the application (i.e. they are visible only in the user

space), using the SwitchToFiber function.

✄✄ N:M model. Hybrid approach. Threads are implemented at the kernel level (kernel-thread)

and at the running process level (user-thread). This model removes the disadvantages of the previous

two models � thread switching is fast, threads can run on multiple processors, the kernel can handle

multiple system calls at once).

Each user thread of a process that makes a system call is connected to a kernel thread; other user

threads that do not communicate with the kernel do not need this connection.

This model is used in most commercial UNIX systems (such as Solaris).

� Remark

The di�erent models are derived from how many of which thread types are mapped between user space

and the kernel.

The 1:1 model means that one thread in user space is mapped to one thread in the kernel (i.e.,

the kernel works directly with user threads). The N:1 model means that multiple user-space threads

(i.e., threads of a single process) are mapped to a single common kernel thread (the kernel does not

see threads, only processes). The N:M model represents a solution in which a set of user threads can

be mapped to a (generally varying) set of kernel threads, i.e. there may even be a situation where one

user thread is mapped to multiple kernel threads, which would be impossible in previous models.
�

4.7 Interprocess Communication

4.7.1 IPC concept

✎✎ One of the advantages of multitasked operating system is possibility of easy communication among

processes � IPC (InterProcess Communication).

✎✎ One process is sender, one or more processes are receivers. A sender can send

� direct data, text string, etc.,

� address of data (an address in memory or storage, it can be a temporary �le),

� signal (number with determined meaning, e.g. SIGTERM with the meaning �terminate� or

SIGSTOP with the meaning �stop working�).

There are two types of IPC:

� direct � sender knows receivers, sends them directly (sending messages),

� indirect � sender does not know receivers, communication passes through a shared location (clip-

board, socket, pipeline).

If the receiver is only one and the sender directly addresses it, the communication model is called

unicast ; if the message (or any data) is intended for all who can communicate, then it is the broadcast

model; if there are more speci�c addressed receivers, the model is called multicast.

Chapter 4 Processes 52

✎✎ Direct communication is usually implemented as sending messages or signals. We assume the

following functions (or similarly named):

� send(P, message) � the sender uses this function to send message, P is the receiver,

� receive(Q, message) or receive(message) � the receiver collects message from its message queue.

� Remark

These function names are really just illustrative. Actual names of functions depend on the operating

system and the speci�c type of communication.

For example: in UNIX systems, the most common communication mechanism is the sending of

signals. A signal can be sent by calling one of the functions kill(), killpg() or sigqueue(), we have

no send() function. For example, this command in the C language sends SIGTERM:

kill(receiver_pid, SIGTERM);

We do not even have any receive() function, instead, each process has a signal capture mechanism

that de�nes a default response for each signal (for example, terminating the process as response to the

SIGTERM signal), and where the programmer can hang up its own function to a signal. For example,

if he wants to run the on_sigterm(int num) function on the SIGTERM signal, he uses this command

in the C language:

signal(SIGTERM,on_sigterm);
�

✎✎ Direct communication can be divided into two categories:

� symmetrical � the both sender and receiver are able to identify each other,

� asymmetric � the receiver does not need to know the sender, only the sender knows who the

message is sending to.

✎✎ There are the following types of direct communication:

� asynchronous � the sender does not have to wait for reply,

� synchronous � the sender must wait for the con�rmation of the message or the response (until

then it is blocked), in the waiting/blocked/suspend state.

The synchronous communication needs the third function, we use:

� send(P, message),

� receive(Q, message) or receive(message),

� reply(P, message).

✎✎ Indirect communication takes place via the interface represented by a connection point, usually

called port, gateway, socket, clipboard. We assume the following functions (or similar):

� send(port_ID,data) � sender puts data into the given port,

� receive(port_ID,data) � receiver collects data from the given port.

✎✎ A socket is a communication interface with the �client-server� type of communication. There are

two types of sockets: network sockets and UNIX domain sockets.

A network socket is intended for communication via computer network. A socket address is a pair

(IP address, port number), the port number in the OSI transport layer sense (protocols TCP, UDP,

SCTP, etc.). So, each connection using TCP, UDP,. . . in one direction between two computing devices

Chapter 4 Processes 53

is determined by a source socket and a destination socket. Network sockets are in one direction only,

so e.g. in the TCP communication we need at least two sockets, one for each direction.

A UNIX domain socket is implemented in UNIX kernel, not in network protocols. This concept is

used for communication inside one instance of operating system, not between two systems via network,

it is used to transfer data between processes, unlike the network socket in both directions. The API is

similar to network sockets API, but addresses of sockets are special �les in UNIX �le systems (�les of

the type �socket�).

✎✎ A pipe is similar to a socket, but the implementation is di�erent. This concept is strictly in one

direction, a sender only sends data, a receiver only receives data. Pipes are implemented as special �le

interfaces too, a sender writes into the �le and receiver reads from this �le.

Pipes are anonymous or named. An anonymous pipe typically transfers data between a parent and

child process, or in command line (text shell) between neighbor processes in pipeline, e.g. program1 |

program2 |... Named pipes transfer data from one sender to one or more receivers, and all processes

knowing the name of this pipe can be receivers.

The implementation of pipes is di�erent in various operating systems, including type of the shared

communication point. In some systems, a full-duplex pipe can be used, although the original concept

is one-direction only.

4.7.2 IPC in Windows

✎✎ Window messages. Communication in user space is primarily via window messages. Each win-

dow has an associtated function Window procedure, which is executed whenever a message is delivered

to this window. For example: when clicking the cross in the corner of the main application window

, we send the message �terminate� to the application (its main window).

The Window procedure of the main window of the process is the most important � if a process

does not call it too long time (does not work with its message queue), this window stops responding

and e.g. it is not possible to terminate the application, application may be frozen.

Each window is uniquely identi�ed by its handler, like any other Windows object, in this case of

the type HWND (Handle to Window). The handle of the target window is one of the parameters of the

message, the next important parameter is the identi�er of the message type (e.g. WM_PAINT to indicate

that the window should be redrawn because the displayed data has changed).

� Additional information

� https://docs.microsoft.com/en-us/windows/desktop/winmsg/window-procedures

� https://docs.microsoft.com/en-us/windows/desktop/learnwin32/writing-the-window-procedure
�

Messages are related to events � applications are managed by events, and when a speci�c application

is created or generated, the application is informed by the message. An application at the appropriate

intervals (when the application has no code to execute) checks whether there is a message to receive.

There are two categories of messages:

� messages intended to put into message queue,

� messages not intended to put into message queue.

https://docs.microsoft.com/en-us/windows/desktop/winmsg/window-procedures
https://docs.microsoft.com/en-us/windows/desktop/learnwin32/writing-the-window-procedure

Chapter 4 Processes 54

The most messages are of the �rst type (e.g. the above mentioned WM_PAINT, WM_KEYDOWN or WM_QUIT

for regular closing window or application termination). The time-critical messages have to be that can

not wait in the queue and need to be processed right away, e.g. WM_SETFOCUS (window obtained focus

because of keyboard IRQ, input from keyboard is directed into this window), WM_WINDOWPOSCHANGED

(position of window has changed), WM_ACTIVE (window has been activated, e.g. by keyboard or mouse),

etc. These messages are sent to window directly.

✎✎ System calls. System calls are API functions, threads use them when asking a service from the

kernel. These functions are something as secure interface to kernel.

✎✎ LPC (Local Procedure Call). This mechanism is not supported in kernel API, it is an internal

kernel mechanism (although it is implemented in NTDLL.DLL, it is not documented and common user

processes are not accessible to it). It is a client-server communication, only in one direction.

LPC serves primarily to communicate within the kernel (for example, Winlogon communicates

with the LSASS subsystem in this way). System processes running in user mode have access to this

mechanism, not user processes. For example, the CSRSS.EXE (Client-Server Runtime Subsystem, part

of the Windows subsystem running in user mode) uses LPC to communicate with some libraries over

the kernel.

✎✎ RPC (Remote Procedure Call). This mechanism is intended for user processes, in contrast to

LPC, it is very often used part of API. This is a call of the procedure that may be in the address space

of another process (thread) or library in the supported format (PE, PE+,. . .). It can be a local RPC

(within a single system), or remotely called RPC (to another computer on a network). However, you

can remotely call a procedure running on another computer only when the �Remote Procedure Call�

service is running.

✎✎ APC (Asynchronous Procedure Call). APC is a mechanism that makes execution of external

code possible in the context of the process (so with usage of the resources owned by this process). When

the process waits for an event (e.g. I/O), the wait time can be exchanged for an APC call, that is, let

a foreign code run in its context.

We distinguish between system and user APC procedures. The system APC is used to implement

system calls, so the kernel code is executed in the contexts of the calling user process (kernel uses

resources of the calling process, the process provides its resources to attend the system call).

✎✎ DPC (Deferred Procedure Call). DPC is additional interrupt handling when the processing

of IRQ itself would take too long time. If an interrupt procedure requires some data transfers that are

time-consuming, or an error occurs and some action is required to repeat or treat an error, the part of

the interrupt handling is being implemented as DPC.

An IRQ routine is executed immediately, in contrast to DPC, which is scheduled to processor in the

same way as common processes. But DPC has higher priority than processes. So, DPC is somewhere

between IRQ routine handling and process execution, in terms of priority.

✎✎ Pipes and sockets. The concept of pipes was taken from UNIX, but in Windows is implemented

di�erently. A pipe is a shared memory to which the sender writes his entire output, and then the

recipient uses the �le as his input. The sender and recipient may not exist in parallel, the recipient can

be created after the sender has �nished.

Chapter 4 Processes 55

Windows sockets (Winsock) are implementation of network sockets, they cooperate with various

network protocols (mainly with TCP/IP suite).

✎✎ File mapping and memory sharing. File mapping is intended to treat the contents of a �le

without transfer the contents into the address space of the process. It is advantageous for very long

�les � mapped �les do not block space in RAM (only addresses are assigned), and a process can access

this �le in the same way as a directly open �le. This concept is of the UNIX origin, as many other

concepts.

A mapped �le (or something that can be treated as a �le) is either on the hard disk or anywhere

else, mapping means creating a uni�ed interface to access data.

Memory sharing is a special type of �le mapping, where the source of mapping is in the address

space of another process, not on disk.

✎✎ Other possibilities. A clipboard is a shared data-exchange interface for all processes with

user interface (not for servicess without user interface) � owners of an object WinSta0. This type of

communication is known all common users.

The DDE (Dynamic Data Exchange) is a dynamic form of data sharing between processes. Both

processes must be running at the same time. This technology is actually an extension of clipboard. For

example, DDE is encountered in o�ce applications where it is used to insert some external data links.

DDE binding is not considered secure.

The COM (Component Object Model) has been designed to make components independent of the

programming language and share them among processes. Each component has its unique identi�er �

CLSID (Class ID), and de�ned its binary interface, that can be accessed, also from other processes.

Another technologies are based on the COM model, including OLE, OCX, ActiveX, and partially the

.NET Framework.

The OLE (Object Linking and Embedding) is an object technology that allows an object to be

embedded in the process's data structure. This process reserves a particular area for a foreign shared

object � a part of a data structure, window, document etc., and if there is a need to work with that

object, a process that works with the object is run.

The OLE technology is used by various applications, for example, o�ce applications use it to share

objects between di�erent parts (for example, if we put an Excel spreadsheet into a Word document),

web browsers use OLE to display those types of �les they do not know, in their own window. The

shared object can be placed either in the source document, or in the target document.

4.7.3 IPC in Linux

✎✎ Signals. For communication between the processes, signals are very often used. They are ideal

for sending simple information, which can be represented by one number.

The number of signal types depends on hardware architecture, usually with at least 30 types

of signals. They are represented by a number or by a word (both forms can be used in commands,

depending on what we remember better). The most used values are in Table 4.1. The signals SIGUSR1,

SIGUSR2 can be de�ned according to own requirements, e.g. the parent process de�nes their meaning

to communicate with its child processes (if children know the signals with the same meaning).

The SIGHUP signal: a typical process response to this signal (especially for daemons) is to retrieve

the con�guration �les, which is actually similar to restart the process (but actually the process is

Chapter 4 Processes 56

Name Number Meaning

SIGHUP 1 do change in the parent process (e.g. it was terminated), retrieve its
con�guration �les (for daemons), or quit (common processes),

SIGINT 2 interruption (termination) of the receiving process, the same as press-

ing the Ctrl+C keyboard shortcut

SIGILL 4 Illegal (incorrect) instruction, error in instruction

SIGFPE 8 exception related to �oating-point numbers (Floating-Point Excep-

tion)

SIGKILL 9 immediate termination, the receiving process cannot ignore it (unlike
SIGTERM), we send it to unresponsive processes

SIGTERM 15 terminate (regular termination, the receiving process is able to clean
up its resources including dynamical structures)

SIGUSR1 30,10,16 user-de�ned signal no 1 (process-de�ned)

SIGUSR2 31,12,17 user-de�ned signal no 2 (process-de�ned)

SIGCHLD 20,17,18 child process changed its state (including termination); the parent

process should pick up the result

SIGSTOP 19,23 stop working (the equivalent of the Ctrl+Z keyboard shortcut)

SIGCONT 18,25 if stopped by SIGSTOP, continue working

Table 4.1: Usual signals in UNIX systems

running all the time), common processes are terminated upon receipt of the signal.

If we want a process in that case not to respond to the SIGHUP signal (i.e., a daemon does not

reload the con�guration, or a common process did not terminate) we use the following command to

run this process:

nohup command &

A signal may come at any time, it is actually as IRQ, the programmer must expect it. Even the

system call can be interrupted by a signal (the usual response is to immediately terminate the system

call handling by making this call either be established or restarted).

✄✄ A process is able for a particular signal to

� ignore (drop) this signal � this action is default for some signals, e.g. SIGCHILD (this signal has

no meaning for most processes), but some signals cannot be ignored (e.g. SIGKILL),

� block with later delivery � the signal is not dropped, but it waits for unblocking, then it is

processed,

� let processed by an default handler routine � this routing either terminates the target process

(for SIGTERM or SIGHUP), or stop it (SIGSTOP), or terminates process and runs debugger

(SIGILL, SIGFPE),

� implement the own handler routine � e.g. when obtainging SIGTERM, we want to close �les and

to release dynamically allocated memory.

Signals can be understood as controlling simple events without the need to create a cycle. The handler

routine should always be as short as possible, as is the case with hardware IRQs.

Chapter 4 Processes 57

M Example

If we want to terminate a process with PID 3189, we can use one of the following commands:

kill -s 15 3189 kill -15 3189 kill -TERM 3189

If the process is not responding:

kill -s 9 3189 kill -9 3189 kill -KILL 3189

The kill -l prints a list of signals for the current platform (�l� as �list�).
M

Sending signals with examples is also discussed later in Subsection 4.7.4, page 59.

� Additional information

https://www.thegeekstu�.com/2012/03/catch-signals-sample-c-code
�

✎✎ Pipes. The inventor of the pipe mechanism is Doug McIlroy, one of the most important creators

of the early UNIX. Turning on and disconnecting after end of communication is done only in one process

(usually parent), but opening and closing must be done in both communication processes.

This means that after turning on the pipe �le (the mkfifo command), we open this pipe (�le) with

the fopen command in one process for reading, in the second process for writing, and when it is open

at the both ends, we can transfer data. After using the �le, we close it and then disconnect it with the

unlink command.

Usage of named pipes is similar to �normal� �les, only the functions have a bit di�erent name.

Anonymous pipes are similar to temporary �les, and unlike named ones, their size is limited (for older

kernels to 4 KB, for newer kernels to 64KB).

Anonymous pipe can be created by the pipe command in program code, or by the | symbol in

shell: ls | less means that the output of the ls command is paged (for paging, we can use more or

less, the second possibility is better).

Programs used in pipeline are called �lters. A �lter has its standard input and standard output,

and does not have to worry about where these channels point to (�le, screen, etc.), the program still

does the same with these channels. The task of the �lter is to transform (e.g. modify, sort, search,

split, print, translate, etc.) its standard input and then pass it on to its standard output.

M Example

An anonymous pipe is a fairly common way of communicating in UNIX systems. It is not just about

use in programs chaining in a text shell, but programmers should be able to use pipes as well.

int pipe_descriptors[2];

int pipe_reading;

int pipe_writing;

// we create a pipe, the parameter contains descriptors of pipe ends:

pipe (pipe_descriptors);

pipe_reading = pipe_descriptors[0]; // pipe tail for reading

pipe_writing = pipe_descriptors[1]; // pipe tail for writing

Next, we use descriptors like �le descriptors, that is, we use them in functions for reading a �le or

writing to �le.
M

https://www.thegeekstuff.com/2012/03/catch-signals-sample-c-code

Chapter 4 Processes 58

M Example

Anonymous pipes are often intended to communication between a parent process and a child process.

... // including stdlib.h, stdio.h, unistd.h,...

int main() {

int mydescriptors[2];

pid_t child_pid;

pipe(mydescriptors);

child_pid = fork();

if (child_pid == (pid_t) 0) { // *** child ***

FILE *myfile;

char buffer[1024];

close(mydescriptors[1]); // close unused tail

myfile = fdopen (mydescriptors[0], "r");

while (!feof (myfile) && !ferror (myfile) && fgets (buffer, sizeof (buffer), myfile) != NULL)

do_something(buffer); // ... do something with data

close (mydescriptors[0]);

}

else { // *** parent *** ; child_pid > 0 (assuming no error)

FILE *myfile;

close (mydescriptors[0]); // close unused tail

myfile = fdopen (mydescriptors[1], "w");

... // writing into pipe

close (mydescriptors[1]);

}

return 0;

}

M

✎✎ Sockets. Implementation of sockets in Linux is in the sys/socket.h library � the both: network

sockets and UNIX domain sockets. The socket address can be of the type AF_INET, AF_INET6 for network

sockets, AF_UNIX or AF_LOCAL for UNIX domain sockets (these two types are synonyms). Network socket

addresses are pairs of IP address and port number, UNIX domain socket addresses are �le descriptors.

The third type of sockets in Linux is netlink sockets � it is the Linux kernel interface for IPC among

kernel and user space processes. Netlink socket addresses are process PIDs, their type is denoted by

AF_NETLINK. Netlink sockets are used by many newer programs, e.g. iproute2 command family uses

this concept for communication with network stack placed in Linux kernel (commands ip, ss, etc. �

see man ip, man ss).

A socket can be imagined as a pipe with many extra features. It is also the use of prede�ned

communication points and it is a client-server communication. Communication can be a stream that

works similarly to a pipe (a data stream is being sent), or a datagram, when a datagram is �rst

assembled and then sent as a batch with a header.

� Additional information

� https://www.gnu.org/software/libc/manual/html_node/Pipes-and-FIFOs.html

� https://www.gnu.org/software/libc/manual/html_node/Sockets.html

� http://www.linuxhowtos.org/C_C++/socket.htm
�

https://www.gnu.org/software/libc/manual/html_node/Pipes-and-FIFOs.html
https://www.gnu.org/software/libc/manual/html_node/Sockets.html
http://www.linuxhowtos.org/C_C++/socket.htm

Chapter 4 Processes 59

✎✎ POSIX Message Queues. This mechanism allows processes to create custom (named) message

queues. Each message has a certain priority (at least 32 priority levels are used, but may be more than

32 768 levels in Linux), messages with higher priority are delivered preferentially.

Creating a message queue is similar to creating a �le (including access permissions), and the queues

are also treated similarly to �les or rather with �les (but the function names are di�erent).The Queue

attribute is the queue length (maximum number of messages) and the maximum length of the message.

When loading messages from the queue, the block of data in the form of a (long) string terminated by

a null symbol is retrived.

A process can either watch its queues by itself, or it can set a signal alert, or directly enter a service

function (which will start automatically if a new message arrives in the queue).

✎✎ Memory mapping and memory sharing. Memory mapping is intended to treat the contents

of any data source (located in memory, storage,. . .) into the address space of the process.

There are two types of memory mapping � private (mmap) and shared (shm). The both are in the

sys/mman.h.

This concept is also used as a basis for some other mechanisms in UNIX systems, including swap

implementation or memory sharing.

� Additional information

� https://www.poftut.com/mmap-tutorial-with-examples-in-c-and-cpp-programming-languages/

� https://gist.github.com/drmalex07/5b72ecb243ea1f5b4fec37a6073d9d23
�

✎✎ System calls, library calls, RPC. There are also system calls in Linux. They are used to

communicate with kernel. Kernel API consists of set of functions to ask kernel services, their calling

means switching between user mode and kernel mode. The calling process only gets to the resulting

value (usually zero or positive value for successful evaluation, negative value for failure). Function

arguments are transmitted through the registers, or the address of a larger amount of data may be in

a register.

The Library functions are functions in the standard C Library (stdlib). Calling these functions is

denoted by library call, and not all functions require kernel mode.

In Linux, we can use RPC (Remote Procedure Call) � calling functions implemented in libraries in

other (remote) instances of operating systems, simply other computers. So, the meaning of RPC is a

bit di�erent from Windows.

� Additional information

� https://www.thegeekstu�.com/2012/07/system-calls-library-functions/

� https://www.linuxjournal.com/article/2204
�

4.7.4 Jobs in UNIX

✎✎ A process group is a collection of one or more processes, usually with a parantal binding. The main

reason to create a process group is easy transition of signals � if a signal is directed to a process group,

all processes in this group obtain it.

https://www.poftut.com/mmap-tutorial-with-examples-in-c-and-cpp-programming-languages/
https://gist.github.com/drmalex07/5b72ecb243ea1f5b4fec37a6073d9d23
https://www.thegeekstuff.com/2012/07/system-calls-library-functions/
https://www.linuxjournal.com/article/2204

Chapter 4 Processes 60

Each process group has its Process Group ID (PGID), taken from the PID of the main process in

the given group (a group leader), usually the parent of the remaining processes in the group.

Most system processes have PGID set to 0. No process with PID 0 exists, so they are not included

in any group. However, this does not apply to all system processes. For example, in Linux using the

older kernel upto version 2.6, the hald process exists (the low-level hardware access daemon, the HAL

layer of kernel), and this process is the main process of its own process group (its child processes). So,

its PID is the PGID of its group.

The smbd daemon (�Samba� technology allows sharing �les and other resources within the local

network) has child processes originated from the same �le (also smbd), all belonging to the same group,

and the same principle applies to some other daemons (such as avahi-daemon).

✎✎ A session is a collection of one or more process groups. It is also a subset of the process tree, for

example, it may relate to the processes of a single logged-on user (typically associated with the terminal

from which the processes are started).

A typical reason for the inclusion of processes in one session is the possibility of cascaded send-

ing signals (processes distribute the signal to their children, those to their children etc., recursively).

Processes belonging to one group (having the same PGID) also belong to one session, but not vice

versa.

Each session has a Session ID (SID), and it is usually PID of the main process in the session � the

session leader PID. Most system processes have their SID set to 0, as well as their PGID.

✎✎ A job is a shell's representation of a process group, so for example all processes in one pipeline

belong to the same job. Jobs management is always performed within a shell, i.e. within a terminal or

console.

While running jobs, full multitasking is provided, even if we do not use graphics mode. This means

that in terminal we can run as many processes as we want, in parallel. One of them can run in the

foreground, others run in the background. The both foreground and background processes can write

their output to the terminal.

We can manipulate with processes using their PIDs (but PIDs are big numbers), or using the job

numbers. Job numbers are small, jobs are numberd relative to shell. In order to di�erentiate these two

types of numbering, the job numbers begin with %, so the designation of jobs is %1, %2,. . . We can

use these commands:

jobs lists all jobs on terminal, each row begins with the job number, followed by �+� for the last

process that went in the background, or �-� for the previous one

fg [job_num] sends the given job to foreground; if no parameter is used, the last backgrounded job

is choosen,

bg [job_num] lets the given job to continue, if it is stopped; the job remains in the background, but

it can work,

some_command & the given command is started in the background, the prompt of the command line

is displayed a we are able to enter additional commands.

When starting a command with the & sign, then if the command has �something to work�, it really gets

the processor and runs (it is in the �running� state); if it has something to write, its output appears in

the terminal.

Chapter 4 Processes 61

M Example

Let us play with processes � jobs. First, we start several processes/jobs in background. The prompt is

displayed in blue.

sarka@DellVostro $ cat &

[1] 7345

sarka@DellVostro $ rev &

[2] 7346

sarka@DellVostro $ yes > /dev/null &

[3] 7347

We have started three processes in the background, their job numbers are written in the square brackets

([1],. . .), followed by their process numbers.

Now we write list of processes running in the terminal (if we wanted to list all running processes,

we would use ps aux or ps -ef, but we only want processes at our terminal):

sarka@DellVostro $ ps

PID TTY TIME CMD

7321 pts/0 00:00:00 bash

7345 pts/0 00:00:00 cat

7346 pts/0 00:00:00 rev

7347 pts/0 00:00:08 yes

7349 pts/0 00:00:00 ps

or

sarka@DellVostro $ ps -Ho pid,pgid,sid,comm

PID PGID SID COMMAND

7321 7321 7321 bash

7345 7345 7321 cat

7346 7346 7321 rev

7347 7347 7321 yes

7350 7350 7321 ps

The second used command displays three identi�ers of the processes, including PGID and SID. As we

can see, all processes are in the same session (have the same SID), but di�erent PGID. The leading

process in session is bash (the shell used in our terminal). The list of jobs in the terminal:

sarka@DellVostro $ jobs

[1]- Stopped cat

[2]+ Stopped rev

[3] Running yes > /dev/null &

The �rst two processes/jobs wait for user action, they are stopped (the cat command withou parameters

is something as �echo� � it writes everything written back to terminal, the rev does the same, but also

performs reversal). The third process is active, running � writing the symbol �y� into the terminal, so

we have redirected its output into the �trash� represented by the special �le /dev/null.

We send the third job to the foreground, so the given process �takes� prompt and runs, but its

output goes to tresh:

sarka@DellVostro $ fg 3

yes > /dev/null

To send this job to the background, we press the keyboard shortcut Ctrl+Z , it means sending the

SIGSTOP signal:

^Z

[3]+ Stopped yes > /dev/null

sarka@DellVostro $ jobs

[1] Stopped cat

[2]- Stopped rev

[3]+ Stopped yes > /dev/null

We want the (paused/stopped) job 3 to run in the background:

sarka@DellVostro $ bg 3

[3]+ yes > /dev/null &

Chapter 4 Processes 62

sarka@DellVostro $ jobs

[1]- Stopped cat

[2]+ Stopped rev

[3] Running yes > /dev/null &

It no longer has fun, so we end the job with the job number %1, and the all remaining jobs:

sarka@DellVostro $ kill %1

sarka@DellVostro $ jobs

[1] Terminated cat

[2]+ Stopped rev

[3]- Running yes > /dev/null &

sarka@DellVostro $ kill %2 %3

sarka@DellVostro $ jobs

[2]- Done rev

[3]+ Terminated yes > /dev/null

M

M Example

Now let us have a look at the possibility of more processes in one process group. For example, parent

and child processes communicating over pipe are often in one process group.

The man command is intended for listing manual pages of commands, con�guration �les, functions,

etc. To write a manual page for the ls (for listing �le contents, similarly as dir in Windows command

line), we type this command:

man ls

The manual page is displayed in interactive mode using a paging command (usually less is used, but

it can be renamed �pager�). So, two processes are running: man and less/pager.

sarka@DellVostro $ man ls

Now we press Ctrl+Z and list jobs running in our terminal:

sarka@DellVostro $ jobs

[1]+ Stopped man ls

However, the list of processes running in our terminal looks a bit di�erent:

sarka@DellVostro $ ps -Ho pid,ppid,pgid,sid,command

PID PPID PGID SID COMMAND

2197 2191 2197 2197 bash

3839 2197 3839 2197 man ls

3851 3839 3839 2197 pager

4052 2197 4052 2197 ps -Ho pid,ppid,pgid,sid,command

The processes with PID 3839 (man ls) and 3851 (pager) are in the same job, and in the same process

group (they have the same PGID 3839 = PID of the �rst of these two processes). The pager process is

the child process of the parent process man ls (see the PPID column).

Let us run the job %1 in the foreground (it is not necessary to enter the job number, we have only

one job):

sarka@DellVostro $ fg

This process can be terminated by pressing the q key, as most interactive programs, or we can

use the keyboard shortcut Ctrl+C .
M

Chapter 4 Processes 63

✄✄ A signal can be sent to a process whose PID is known. This can be done both in the binary code of

a running process and in a text shell (for example, kill, killall, pkill, etc.). One of the parameters

is the signal number or word, and the further parameter determines the process to which the signal is

intended. This is usually a PID, the pkill function also accepts other process identi�cation types �

process name, PID, PGID, SID, etc.

M Example

We show usage of the commands kill, pkill and killall.

kill -l list of all accepted signals for the given platform

kill -9 6223 sends the SIGKILL signal to the process with PID 6223

kill -KILL 6223 the same

kill -9 %2 send the SIGKILL signal the the job #2

kill %2 if no signal is assigned, the SIGTERM signal (#15) is sent (standard termination of a

process, but some processes ignore it)

pkill -HUP syslogd sends the SIGHUP signal to all processes with the name syslogd (logging dae-

mon), it means that the daemon has to reload its kon�guration �les (common processes terminate

while obtaining this signal)

pkill -P 5421 sends SIGTERM to all processes with the given PPID (parent PID) � all child pro-

cesses of the given process

pkill -u 1002 terminates all processes started by the given user (with this UID � user ID)

killall -g 3981 terminates all processes in the given process group (we assign the group leader PID

= PGID)
M

� Additional information

� https://www.tldp.org/LDP/abs/html/x9644.html

� https://en.wikibooks.org/wiki/A_Quick_Introduction_to_Unix/Job_Control

� http://linuxcommand.org/lc3_lts0100.php
�

✄✄ If a process must not be terminated with the end of the session, we need to do one of the two

actions:

1. We start the process inside di�erent session � with the setsid() system call (in a program code,

not in a shell), but we are able to do it only if the given process is not a session leader.

2. We ensure that the process is not in the list of active jobs and that SIGTERM (or SIGKILL) is

not sent to it � we have the nohup and disown commands:

nohup some_program &

disown %job_number

https://www.tldp.org/LDP/abs/html/x9644.html
https://en.wikibooks.org/wiki/A_Quick_Introduction_to_Unix/Job_Control
http://linuxcommand.org/lc3_lts0100.php

Chapter 4 Processes 64

4.8 CPU Scheduling

4.8.1 Basic Concepts

We generally talk absout CPU scheduling for processors, but in most current operating systems CPU

is allocated to threads.

✎✎ Two parts (e.g. modules) of kernel cooperate in CPU scheduling:

� CPU scheduler � this module uses process queues (with ready processes) and determines which

process is assigned to processor and how long time for,

� dispatcher � performs context switching and processor assignment, thus saves the context of the

currently running process including the program counter, retrieves the context of the process

to which the processor is currently allocated, detects the value of the program counter, and

determines the location of the process code run, and if multiple CPU modes are supported (kernel

mode, user mode), then the dispatcher performs switching between these modes.

✎✎ The burst time (execution time) of a process is the amount of time required by a process for its

execution. The usual burst time is in the order of tens to hundreds of milliseconds.

Processes are:

� CPU-bound � these processes use a processor a lot (such as services),

� I/O-bound � interactive processes, they more use I/O devices, including graphical output or

various types of input.

Each of these types of processes has a little di�erent processor requirements. CPU-bound processes

typically use the entire assigned value of the burst time; I/O-bound processes, with higher probability of

I/O interruption, have lower burst time. The CPU scheduler should distinguish between these process

groups so that the CPU usage is optimal.

The scheduling algorithms used by a CPU scheduler are

� preemptive � a process can be interrupted � placed into the ready queue � before depleting its

burst time,

� nonpreemptive � a process cannot be interrupted, it uses up its burst time and usually goes to a

di�erent queue than the ready queue (e.g. waiting for I/O, performing system call).

✎✎ A time quantum (timeslice, processor slice) in preemptive multitasking is the period of time that

the process can spend on the processor while steadily subtracting its real burst time pieces from this

time.

The multitasking functionality and hence the quality of the CPU scheduling algorithm depend at

the appropriate burst time. If too short, the overhead time for context switching is high compared to

the actual running time, and the system is disproportionately slow. If the burst time is unnecessarily

long, then processes using a lot of I/O devices use only a small portion of their quantum, the processor

must be switched more often, and the system is less interactive.

Next, we discuss basic CPU scheduling algorithms. The typical use is a combination of several of

these algorithms.

4.8.2 Scheduling Algorithms

✎✎ First-Come First Served (FCFS). This basic algorithm is simply a FIFO (First-in First-out)

queue, the processes are put to the end of the ready queue and are took from the beginning.

Chapter 4 Processes 65

It is a nonpreemptive method, processes use the processor until the interrupt is generated or if they

pass processor themselves.

The disadvantage is that CPU-bound processes reserve too much processor time and therefore I/O-

bound processes are disadvantaged. This method is therefore only implementable in combination with

process priorities (I/O-bound processes should have higher priority).

✎✎ Round-Robin (RR). Round-Robin is similar to the previous algorithm, we also use a queue

with the FIFO organizations. But this method is preemptive.

When a process spends its burst time (or is interrupted), it is placed at the end of the queue of

ready processes if it is not included in a di�erent queue (e.g. when it is interrupted).

If the time quantum is too large, the functionality of this algorithm corresponds to the previous

method. Again, CPU-bound processes are favored because they anticipate waiting I/O-bound processes.

✎✎ Shortest Job First (SJF). The processor is assigned to the process that are expected to work

the shortest time (they have the shortest burst time). The queue is preceded by the priority being

determined by the size of the assumed used quantum.

The method has a preemptive and nonpreemptive version. In preemptive scheduling, when a process

with shorter expected burst time then the running process comes to the queue, the running process is

immediately interrupted and the processor is assigned to the incoming process.

� It is necessary to estimate the burst time for the current (running) stretch of the process. There

are several methods to estimate the burst time (n is number of passed processor assignments to the

given process), R is the array of the real burst times, and S is the array of estimates of burst time.

1. The following burst time is often the same as the previous burst time, so we can assume that the

next time the process will need is about as much time as it used during the last assignment.

S[n+ 1] = R[n] (4.1)

2. Exponential average � for each process, we record the length of the time actually used for the

processor allocation in the past, and we estimate the appropriate burst time by calculating the

arithmetic average of all previous real burst times. The formula can be simpli�ed by using the

previous estimate and the corresponding real burst time.

S[n+ 1] =
1

n
·

n∑
i=1

·R[i] (4.2)

=
1

n
·R[n] +

1

n

n−1∑
i=1

·R[i]

=
1

n
·R[n] +

n− 1

n
· S[n] (4.3)

3. We will combine both approaches (according to the formulas 4.1 and 4.3), so we can assume that

the next burst time will not be too di�erent from the previous, but we take account of history

(with less weight).

We choose the appropriate constant c, 0 < c < 1. If this constant is closer to one, the weight of

the last real burst time is greater, and if it is closer to zero, history has greater weight. The �rst

estimate (S[1]) is usually set to 0.

S[n+ 1] = c ·R[n] + (1− c) · S[n] (4.4)

Chapter 4 Processes 66

The meaning of the constant c is evident from the recursive distribution of the formula:

S[n+ 1] = c ·R[n] + (1− c) ·
(
c ·R[n− 1] + (1− c) · S[n− 1]

)
...

= c ·R[n] + (1− c) · c ·R[n− 1] + . . .

. . .+ (1− c)n−1 · c ·R[1] + (1− c)n · S[1] (4.5)

This algorithm favors I/O-bound processes whose burst time is less, and greatly disadvantages CPU-

bound processes. Longer running processes can be aging, so they lose importance. If there is an error

in a process (in�nite loop), then the malfunctioning process does not block the processor and can be

easily detected (stays at the end of the queue, it is constantly waiting and not running).

✎✎ Priority scheduling. When applying this method, we assign the processor to a process with the

highest priority, that is, we use the priority queue. The method has a preemptive and non-preemptive

variant, as well as the previous.

Alternatively, we can consider the SJF (previous) method, where the priority derives from the

process burst time (the smaller quantum means the higher priority).

Dynamic priority is used, it reduces risk of aging low priority processes, priority may be gradually

increased in longer waiting processes.

✎✎ Multilevel queue scheduling. This algorithm uses several separate queues. The particular

queues are intended for a group of processes (depending on their priority, type, etc.), and each queue

has its priority.

4.8.3 Scheduling in Windows

Windows CPU Scheduler schedules threads regardless of the number of threads in each process (i.e.,

the threads wait in queues). In the kernel, there is a module for planning the allocation of the processor

(its cores) to the threads � CPU scheduler, and the Vista version and later also provide I/O scheduler

(schedules access to other resources).

Dispatcher, which performs context switching according to scheduler requirements, is not a speci�c

function or library, its components are in di�erent kernel modules. It is based on the fact that switching

takes place during events (event-driven switching).

✄✄ When planning threads, preemptive multi-queue planning is used, the processor thread can be

interrupted at any time if the processor is requested by a thread with higher priority. If the thread

does not use the entire burst time, it can leave this unused time to another thread of the same process

by calling SwitchToThread().

There is one queue of ready processes for each priority, a total of 32 priorities, 0�31. If the thread

has to wait for a processor, it is queued according to its dynamic priority. Higher priority threads

always have precedence over threads with lower priority, so the processor is preferably allocated to

threads waiting in queues with higher priority numbers.

The processor is allocated for the time derived from system clock interval. This interval is �xed at a

value somewhere between 10�15 ms, the actual value can be determined, for example, by the clockres

program by Sysinternals.

Chapter 4 Processes 67

By default, a thread runs for (a burst time is) 2 intervals on desktop (12 on server). For each

additional step, the quantum of the running thread is subtracted, the quantum decreases slightly even

while waiting for IRQ. After the quantum is exhausted, a new quantum is allocated for a thread.

A short burst time is advantageous in a system with many interactive processes (increasing system

throughput, typically on a desktop with a lot of �window applications�), long burst time is advantageous

for a system with many computational processes often running in the background (typically servers).

Dynamic priority of a thread can be lowered when the thread exhausted the previously allocated

quantum and is assigned a new one. For example, the priority may be increased when the I/O operation

or the interactive thread wakes up as a result of a window event.

M Example

In GUI we can determine whether the burst time is short (2 intervals) or long (12 intervals): System ⇒
Advanced System Settings under Performance the Settings button, then the Advanced tab, as shown

in Figure 4.8.

Figure 4.8: Setting burst time

M

✎✎ Process a�nity or thread a�nity is setting processors (or processor cores) on which the

process (thread) can run. This set of processors (cores) can be limited by setting an a�nity mask, for

example, in Process Explorer (in the context menu of the process, selecting Set A�nity), or similarly

in Task manager.

In a program code, either the API function SetThreadAffinityMask or SetProcessAffinityMask can

be used. This setting is called the �hard a�nity�, the �soft a�nity� is the rule that the thread is

preferentially scheduled for the most recently run processor.

4.8.4 Scheduling in Linux

The Linux kernel can be nonpreemptive (the CONFIG_PREEMPT_NONE �ag), or fully preemptive (the

CONFIG_PREEMPT �ag), or voluntarily preemptive (the CONFIG_PREEMPT_VOLUNTARY �ag).

Chapter 4 Processes 68

For a desktop system, a choice of voluntary preemptive behavior is a good option for the kernel

(a kernel thread, such as a system call handler, may voluntarily give up the processor), nonpreemptive

behavior is recommended for servers. Fully preemptive behavior means high response, but higher

switching overhead (context-switching commes more often), it is useful e.g. for embedded systems.

✎✎ In Linux, a processor is always scheduled for the time we call epoch. At the beginning of an epoch,

each process (thread) gets a time quantum that is gradually consuming. When all processes have

consumed their time quantum, a new epoch begins and all processes receive another time quantum.

Common threads use dynamic priorities � the priority of a long-waiting thread grows, the priority

of a long-running task decreases. Real-time tasks are scheduled with a static priority.

The process with the priority 0 is idle. This process has no code, it only creates the init/systemd

process and is scheduled in time when no other process is running.

✄✄ In old versions of Linux kernels (up to 2.4), there were multiple queues of ready processes (threads),

each queue can have its own scheduler. These schedulers can be used:

� SCHED_OTHER � for common threads, it uses the �nice� system for mapping priorities into the user

space, in combination with dynamic priorities (it takes account of how much the thread uses

processor), the dynamic priority a�ects the length of the quantum. It is not possible for threads

with the lowest priority not to receive a processor in the epoch.

� SCHED_BATCH � for batch threads (noninteractive, CPU-bound, often running in the background),

the dynamic priority is used too, but in other way.

� SCHED_FIFO � for realtime processes (threads). This scheduler is nonpreemptive, it uses 99 levels of

static priorities (1�99). Realtime processes are always preferred, even before the threads planned

by another scheduler.

� SCHED_RR (Round Robin) � similar to the previous scheduler, but it schedules preemptively.

In the versions up to 2.6.22 there was only one � O(1) scheduler (with the O(1) complexity, constant

time scheduler), very e�cient for massive amount of running threads.

In the newer versions of Linux kernel we use the Completely Fair Scheduler (CFS) with better

interactive performance. Instead of queues, this scheduler uses a red-black tree. Its complexity is

O(log N), where N is number of ready tasks.

The schedulers O(1) and CFS use the sleeper-fairness principle: sleeping and waiting threads

(mostly interactive) get a comparable share of processor time when they need it.

� Remark

�Big O� Notation represents the time complexity of an algorithm, it is the upper bound of the growth

rate of a function and depicts the worst case scenario. Let n be the number of elements that the

algorithm receives as its input (or the length of the input).

The linear complexity O(n): the algorithm run length is linearly dependent on the value of n, i.e.

the length of the input.

The logarithmic complexity O(log n) means a bit more optimal run length of the algoritm, especially

for very long inputs, because logarithmic functions grow slower than linear functions.

Quadratic or even exponential functions grow much faster, so algorithms with O(n2) or O(2n) time

complexity are considered time-consuming for large inputs.

Chapter 4 Processes 69

The constant complexity O(1) means that the run length of the given algorithm is not dependent

on the input length.
�

� Additional information

https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html
�

https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

Chapter 5
File Access and Permissions

 Quick preview: This short chapter is an insight into the principle of access permissions for users,

groups and processes.

¤ Keywords: File access, permissions, owner, group, SUID, SGID, Sticky, su, sudo, attributes,

POSIX ACL, PAM

➸➸ Objectives: The goal of this chapter is to introduce the concepts of �le access permissions.

5.1 File Access Permissions in Linux

5.1.1 Owner and Associated Group

Each �le has an owner and an associated group, and access permissions are set in three categories �

permissions for the owner, for members of the associated group, and for others: �rest of the world�. It

follows that the primary way to a�ect �le access permissions is to specify the owner and the associated

group.

The owner of a �le is usually its creator or, in the case of system �les, the root user. The associated

group is a bit more complicated � when we create a new �le (or directory, which is actually a �le

too), the associated group becomes the group we are currently working under (if we changed the active

group with newgrp, it will be the one we set). If the parent directory has the SGID �ag set, the new

�le inherits the associated group from its parent directory.

✄✄ The chown command is used to set the owner of the �le (change owner). In the parameters of

chown we specify the new owner and the �le, or we can use di�erent switches. Basic syntax:

chown user_new_owner /path/file

The change of ownership can also be recursive (we would use the -R or �recursive switch, usually

the -h switch is added to avoid a�ecting the targets of symbolic links). Other switches would be found

at the manual page of the command.

We can change the associated group together with the owner:

chown user:group /path/file

70

Chapter 5 File Access and Permissions 71

� Remark

But the owner of a �le can't be changed by just anyone � if we're working under a regular user account,

we can't even give ownership of a �le to someone else (transfer ownership), whereas root can change

ownership of �les at will.

Why? Because ownership implies a certain responsibility. If �harmful content� (defamatory state-

ments or other ethically problematic content, pirated �lms, leaked secret information, etc.) is discovered

during an audit, who will be held accountable? The owner.
�

✄✄ The chgrp command sets the associated �le group. The parameters and switches are similar to

chown, including providing recursion. The basic syntax is

chgrp group /path/file

A regular user can use this command only on �les that he/she owns, and can change their associated

group to one of which he/she is a member. Root is not restricted in use of this command.

5.1.2 Setting File Access Permissions

Access permissions are represented either by a string consisting of the letters r (read), w (write), x

(execute) and possibly dashes, or numerically.

For directories, the r permission means the ability to view the contents of this directory (either in

text mode using e.g. ls or echo, or in the application in graphical mode), the w permission is the ability

to edit the contents of the directory (especially to create or delete �les inside), the x permission allows

to use this directory as a working directory (e.g. by cd). If we want to get inside such a directory and

work with something in its subtree, we also need the x permission.

M Example

Several examples of access permissions string and number:

� �rwxr-xr-x� means that the owner can do anything with this �le (rwx), the members of the

associated group and others can only read and execute; the binary representation is

111∥101∥101, we encode it as
(1 · 22 + 1 · 21 + 1 · 20)∥(1 · 22 + 0 · 21 + 1 · 20)∥(1 · 22 + 0 · 21 + 1 · 20) =
= (4 + 2 + 1)∥(4 + 0 + 1)∥(4 + 0 + 1) = 755,

� �rw-r-----� means that the owner can read and write, the members of the associated group can

read, others can nothing; in binary:

110∥100∥000, we encode it as the following mode:

(4 + 2 + 0)∥(4 + 0 + 0)∥(0 + 0 + 0) = 640,

� the mode 710 means that

� the �le owner has all access permissions set, 4 + 2 + 1 = 7, rwx,

� the associated group has only the right to run (it might be a program), so 0+0+1 = 1, --x,

� the others have no privileges (0 + 0 + 0 = 0, ---),

the corresponding string is �rwx--x---�,

� the mode 754 means that

� the �le owner has all access permissions set, 4 + 2 + 1 = 7, rwx,

Chapter 5 File Access and Permissions 72

� the group has only read and execute permissions (apparently it is a directory, so it is possible

to set the directory as working), so 4 + 0 + 1 = 5, r-x,

� the others have the permissions to read (display the directory contents, 4 + 0 + 0 = 4, r--),

the corresponding string is �rwxr-xr--�.
M

✎✎ When changing �le access permissions, use one of these representation types:

� numeric � we specify the numeric form,

� symbolic � is mainly used for relative representation of changes (we want to add or subtract some

permissions, but we don't change other permissions), but there is also an option of absolute form

(we change everything).

The Symbolic form consists of three de�ning parts:

� to whom permissions are to be changed � u=owner, g=group, o=others, a=all,

� whether some permissions should be added (+), subtract (-) or set (=),

� what permissions we mean � r, w, x.

The absolute form speci�es a full change (we directly enter the resulting permissions), whereas the

relative form means that we change only some permissions and do not override others.

✄✄ The chmod command is used to set the �le mode, i.e. to a�ect �le access permissions. Permissions

can be speci�ed numerically or symbolically, absolutely or relatively.

M Example

We will show typical uses of chmod, starting with symbolic notation.

chmod g+w file we have added privilege to write for members of the associated group

chmod -R g+w directory the same, recursively

chmod ug+x,o-w file the owner and the members of the group have been given the right to execute,

while the others have been deprived of the right to write

chmod g=r-x,o=r file for members of the group, we set the string r-x, the others can only read

chmod u=rw,go-w file group members and others will have their permissions to write removed (but

if they have had permission to read, they will continue to have it)

chmod a-x file we remove the x permission for all (here we cancel the executability of a �le)

Now let's look at the numerical notation, which is in principle absolute:

chmod 754 file the permission string for the �le is set to rwxr-xr--

chmod 640 file the permission string for the �le is set to rw-r-----

M

5.1.3 Special Permissions

When something new is created (a process, a new �le, etc.), its access permissions (for a process) or its

access rights (for a new �le) must also be established.

Usually, a newly created object inherits access permissions from its creator, so when a new �le

(including a directory) is created, the person who created the �le becomes the owner, and when a

process is created, its access permissions are also inherited from the user who started it. The same

Chapter 5 File Access and Permissions 73

is true for a newly created directory. However, the inheritance of these properties can be a�ected by

special access permissions �ags � SUID (SetUID), SGID (SetGID) and Sticky.

Any �le or directory can have these �ags set, although most do not. They are only relevant for

directories and executable �les.

The meaning of the SUID, SGID and Sticky bits is clearly explained in the following tables (SUID

is used only for processes, Sticky for directories; SGID for both processes and directories).

First, let's look at the processes. When we run an executable, a process is created. A process

accesses various objects (�les, devices, etc.) and needs certain access permissions to access them, so we

view it similarly to a user.

✎✎ The e�ective user of a process is the user whose permissions the process applies, e�ective group is

the group whose permissions the process applies. Typically, the e�ective user is the user who started

the process, the e�ective group is the user's primary group (or another group to which the user belongs

if the user switched between groups). The SUID bit set on the executable may a�ect the e�ective user

setting, the SGID bit may a�ect the e�ective group setting.

Executable = 0 = 1

�le:

SUID = When we run an executable, we become

the e�ective user of the resulting process;

the process takes over access permissions

from whoever started it.

When we run a �le, the e�ective user

of the resulting process becomes the �le

owner; the process inherits access per-

missions from the �le owner.

SGID = The e�ective group of a process is the

group of the user who started the pro-

cess. The access permissions for the

group are determined by the group which

the running user belongs to.

The e�ective process group is the group

set for the executable. The access per-

missions for the group are determined by

the group set for the �le.

Table 5.1: Special permissions for processes

Setting the SUID to 1 is used for programs that are normally run by a regular user, but that require

higher access permissions to run.

M Example

When changing the password, a regular user must run a process that accesses the /etc/shadow �le, but

the permissions on this �le are as follows: rw-r-----, with the root user as the owner. This implies

that no one but root has write access to this �le, and neither does a process run by a regular user.

However, the executable that is used to change the password (/usr/bin/passwd) has the SUID bit

set and its owner is root, so when run by a regular user, a �le is created whose e�ective user is root

⇒ this process has permission to write to the /etc/shadow �le and the regular user can change the

password this way.

The GUI application is only the frontend (access interface) to the /usr/bin/passwd executable, so

the same applies to it.
M

Chapter 5 File Access and Permissions 74

� In addition to /usr/bin/passwd, some other executables have the SUID bit set, such as /bin/ping (to

verify the availability of devices on the network), /bin/mount (to mount storage media), /usr/bin/sudo

(to run programs with higher privileges).

The SGID bit has for example the /usr/bin/chage command for setting user account parame-

ters related to validity and password (e.g. you can deactivate the account, set the maximum pass-

word validity time, etc.), /usr/bin/wall for communication between users (they write �on the wall�),

/usr/bin/ssh-agent (authentication agent) or some games.

� Remark

SUID bit of an executable can be dangerous (actually also SGID) � executables owned by root and with

the SUID bit set should be kept to a minimum, only in the most urgent cases.
�

✎✎ Now let's look at the special �ags for directories. When a new �le (including a subdirectory) is

created in a directory, we need to determine its owner, the assigned group and the access permission

string. The owner is the person who creates the �le, and the group of the user who creates the �le is

usually used as the associated group. The SGID bit of a directory a�ects the group assignment for �les

created within it.

✎✎ The sticky bit has an e�ect of a slightly di�erent type. We usually need write permissions for the

parent directory to delete a �le (yes, we can delete a �le that we have no permissions on, we just need

the w permission on the parent directory), because it is actually a change operation on the contents of

the parent directory. In some circumstances, this can be quite annoying � for example, if a group of

people are working on the same project and have the project �les in one shared directory (on a server,

for example), then of course they will all need write access to that directory (so that they can add new

�les there if necessary). But then someone in the group could (either intentionally or unintentionally)

delete a �le created by someone else. This is wrong. However, if the parent directory has the Sticky

bit set, the deletion authority is limited: only the owner of the deleted �le (or root) can delete �les.

Adding new �les is not a problem, but deleting is restricted, although the w permission for the parent

directory would otherwise be su�cient for both.

Directory: = 0 = 1

SGID = When we create a new �le in this direc-

tory, our group becomes the associated

group.

When we create a new �le in this di-

rectory, the associated group is inherited

from the parent directory (the one with

the SGID bit).

Sticky = If the user has the �w� permission assigned

to the directory, he can add and delete

items in the directory. He/she can also

modify an entry (change the contents of

a �le) if he has the �w� permission on that

entry.

If a user has �w� assigned to a directory,

he can add (and possibly modify) items,

but only the owner of the parent directory

or root can delete them.

Table 5.2: Special permissions for directory

Chapter 5 File Access and Permissions 75

✄✄ Setting special permissions will also be re�ected in the access permissions string, in places where

�x� is usually used for execution.

� The SUID bit is represented by �s� or �S� instead of �x� in the �rst third of the string,

� The SGID bit is represented by �s� or �S� instead of �x� in the second third of the string,

� The sticky bit is manifested by �t� or �T� instead of �x� in the third third of the string.

In all three cases, a lowercase letter means that the �x� right is also assigned, and a capital letter means

that the �x� right is not assigned. In the case of the SUID and SGID bits, a capital letter is an error,

because without execute permissions, these two bits are meaningless (so beware � if you see a capital

�S� in the �rst or second third of the permission string, it indicates a problem).

M Example

Let's look at a few permission strings with special �ags set.

rwsrwx--- SUID bit is set (the letter �s� in the �rst third), the owner and members of the associated

group have read, write, and execute permissions ⇒ the process created from this executable takes

access permissions from the owner of the �le, not from whoever it was started by,

rwSrw---- similarly, but the execute permission is not set for the owner, so the SUID bit does not

apply in practice (the correction of the error would consist either in removing the SUID bit or in

assigning the execute permission to the owner),

rwxrwsr-- SGID bit is set (the letter �s� in the second third), the owner and members of the group

have the permission to read, write, and execute ⇒ if it is an executable �le, the resulting process

will have as its e�ective group the one assigned to the �le, not the group of the executing user

(it will inherit the group from the executable �le); if it is a directory, then the items created in it

will inherit the group from the parent directory, it will not get it from the creating user,

rwxrwSr-- again a mistake, it is necessary to either clear the SGID bit or set the permissions to execute

(for example if it was an executable �le, it would not even be possible to execute it under the

given group, let alone create a process with the permissions of the given group),

rwxrwx--T Sticky bit is set (the letter �T� at the end), the owner and group members have all permis-

sions, the others have no permissions (not even execute) � this is not a problem here, the Sticky

bit does not require execute permissions for �rest of the world� ⇒ if we want to delete �les and

subdirectories in this directory, we need to be their owners or have root privileges.
M

M Example

Now that we know how to work with accounts, groups, and permissions, let's use a cumulative example

to show how to create a workspace for a group of employees collaborating on a project.

1. Log in as root or otherwise gain higher permissions.

2. We will create a new group to include employees working on the project:

groupadd new_group

3. The users u1, u2, u3, . . . are to collaborate on the project, so we'll put them into the new group:

usermod -aG new_group u1

usermod -aG new_group u2

...

Chapter 5 File Access and Permissions 76

4. Create a directory where the project �les will be stored:

mkdir /vol/new_directory

5. Set the associated group and owner (group leader � user u1) for this directory, as well as access

permissions:

chgrp new_group /vol/new_directory

chown u1 /vol/new_directory

6. We usually don't have to deal with access permissions much, the existing ones will probably be

enough, just �rest of the world� disable access and set the sticky �ag for safety:

chmod o-rwx /vol/new_directory

chmod +t /vol/new_directory

M

C Tasks

1. Decode these permission strings:

Files:

� rw-rw-r--

� rwxr-x---

� rwsr-xr-x

� rwxr-S---

Directories:

� rwxr-x---

� rwxrwS---

� rwxrwsr--

� rwxrwxr-t

2. For the commands in the /bin directory, �nd out who the owner is, what the assigned group is,

and what the access permissions are.

3. Find the /usr/bin/passwd �le and see what permissions are set on it (including special permis-

sions).
C

✄✄ When converting the permission string to a number, we add one more digit (at the beginning) for

the special bits. We handle the triple SUID + SGID + Sticky just like the triple rwx: the number 4

means SUID, 2 means SGID and 1 means Sticky.These numbers can also be combined. If the �le has

SGID and Sticky bits set, it will be 2+1=3.

M Example

The string rwxr-xr-x means the number 755. The string rwsr-xr-x means 4755, because the SUID bit

is set.

The string rwxr-sr-- corresponds to the number mode 2754, because the SGID bit is set.

The string rwxr-sr-t corresponds to the number mode 3755, because the SGID and Sticky bits are

set. The string rwxr-sr-T corresponds to 3754, because the others do not have the �x� permission.
M

M Example

We can also set or clear special �ags for a �le in a symbolic way:

chmod u+s file the SUID �ag has been set

chmod u-s file the SUID �ag has been unset

Chapter 5 File Access and Permissions 77

chmod g+s file the SGID �ag has been set

chmod +t file the Sticky bit has been set (there is no letter before the �+� sign)

chmod 4755 file the permission string for the �le has been set to rwsr-xr-x (we also set the SUID

bit, which we can tell at a glance by the fact that the mode is four digits and the �rst digit is 4)

How to �nd all programs with the SUID bit set:

find / -perm /4000
M

5.2 Working under Di�erent User Account in UNIX systems

When we need to increase access privileges in text mode, the following commands are available:

� su

� sudo

Each of them has slightly di�erent advantages and disadvantages, and also the method of use.

5.2.1 The su Command

✄✄ The su (Substitute User) command is used to obtain privileges of another user. It is typically

used to get root privileges (but we need to know the password).

The advantage is simplicity � we use this command to indicate that we want to use another user's

privileges, enter the password, and from that point on we become �other user�. We return to our original

identity with exit.

� Remark

Actually, with this command we start a new shell (a new process that will be a descendant of our

original shell), the e�ective user of the new process is the user whose permissions we have obtained

in this way. Therefore, all commands/programs/processes run in this shell are also executed with

the permissions we have obtained. The exit command exits the new shell, the process with �other�

permissions ceases to exist, and we return to the shell whose process has our original identity as the

e�ective user. Alternatively, we can use the logout command.
�

If we enter the command without parameters, it means that we want to get root permissions (this is

the most common case). Otherwise, we specify the login name of the user whose account we want to

work under as a parameter.

✄✄ The default behavior of the command is that the UID we are working under is changed (i.e. the

e�ective user of the shell process is changed) and actually the active group is changed to the primary

group of that user, but all other settings remain �our� � home directory, environment variables (including

the contents of PATH), etc. If we want to override these settings as well, we do so by specifying the

--login or -l parameter, or simply by using the dash itself.

The following options are equivalent:

� su --login user

� su -l user

� su - user

Chapter 5 File Access and Permissions 78

So if we want to work as root, including the home directory and variables, and we don't want to wear

out the keyboard unnecessarily, we type:

su -

(don't forget the hyphen).

M Example

Suppose there is a user anna on the system. We are now logged in as anna. Let's look at this sequence

of commands:

� whoami

output: anna

� id

output: uid=1005(anna) gid=1005(anna) groups=1005(anna),...

� su -

(we are asked for the root password, assuming we have it and have been granted higher privileges)

� useradd -m beata

passwd beata

(we have created a test account, set a password for it; we are asked for the password, then to

repeat it; now there is an account beata, whose password we have also set to be functional)

� exit

(we left the root shell)

� su beata

(enter the password of the speci�ed user)

� whoami

output: beata

� id

output: uid=1008(beata) gid=1008(beata) groups=1008(beata)

� pstree

part of the output will be: ... bash
|� su

|� bash

� ps aux | grep beata

output: root . . . su - beata

beata . . . -su

beata . . . ps aux

beata . . . grep beata

(it is strange that ps and pstree each interpret processes/tasks slightly di�erently)

� exit

su -

userdel -fr beata

exit
M

� Remark

The $ symbol usually appears at the end of a normal user's prompt. If you are working with root

privileges (for example, with the su command), the $ symbol will appear at the end of the prompt instead

of #. Also, the color of the prompt will probably change to red (but it depends on the con�guration).

Chapter 5 File Access and Permissions 79

This is so that a user who needs to work as root from time to time has an overview of what

permissions he is currently working with, so that he does not accidentally start a process with higher

permissions that he is unsure of (i.e. when there is a security risk).
�

5.2.2 The sudo Command

✄✄ The sudo command (SUperuser Do) is directly intended to temporarily gain higher privileges

for a speci�c purpose. The default behavior of this command is that we usually directly specify the

command we want to execute with higher privileges as a parameter.

Unlike the su command, this command is con�gurable, and a variety of other switches and param-

eters can be used, so we can specify in great detail what we actually want to do, whose permissions are

to be used, and what speci�cally is to be overridden. Of course, we usually don't want anything too

complicated.

Compared to su, there is one more signi�cant di�erence from the user's point of view � while the

su command asks for the password of the user we entered (i.e. typically the root password), the sudo

command will ask for our own password (usually, depending on the con�guration and what we actually

want to run).

The con�guration is stored in the /etc/sudoers �le. Here it is speci�ed who can use the sudo

command and how, or who cannot use this mechanism.

✎✎ This follows from the principle of the sudo mechanism:

� It is speci�ed in the /etc/sudoers �le that if a particular user (for example, anna) using sudo

wants to run the xyz program, it will be allowed, and the xyz program is run with the privileges

of the john.

� So if the user anna enters the command

sudo xyz

must �rst properly prove that he is indeed anna, and then a new process from xyz is started as a

subprocess of the original shell, with john as its e�ective user.

� The proof of identity is valid for a certain period of time (depending on the con�guration, usually

5 to 15 minutes), so if anna uses the sudo mechanism again during this time, it is not forced to

enter its password each time.

In practice, the sudo mechanism is used to run processes with root privileges, i.e. to escalate. So in

the con�guration �le, we typically have speci�ed that a particular user can run certain (in the simpler

case, all) programs with root privileges (but they must always enter their password to prove that they

came by the identity legally and are a �physical� user.

✄✄ As mentioned above, the sudo mechanism is con�gured in the /etc/sudoers �le. It is a text �le, but

it is not a good idea to interfere with it in (any) text editor, because a possible error could be quite fatal.

The editing is done in /usr/sbin/visudo, which is actually some other editor, but in addition, certain

syntax elements speci�c to this con�guration �le are highlighted in colour. In most Linux distributions,

vi is used as the base editor (which is not very convenient unless the user is used to certain special

features of this program), while in other distributions (often based on Ubuntu) you will �nd the nano

editor.

Of course not everyone can use /usr/sbin/visudo, for that we need higher access permissions.

Chapter 5 File Access and Permissions 80

✄ Procedure

Let's take a closer look at the /etc/sudoers �le. Assume we have su�cient privileges and have used

the /usr/sbin/visudo command.

For root, there is usually an entry in /etc/sudoers

root ALL=(ALL) ALL

This con�guration can also be used for other users, but only if we fully trust them. Typically it can be

used for alternative administrators.

The general syntax is

some_user computer=(effective user) command

The �rst entry indicates the user for whom the row applies. If we want to specify the whole group

instead of the user, then we write the symbol % before the group name to distinguish the user from the

group, and we put the symbol + before the network group name.

This is followed by the computer on which the setting is valid (i.e. if the entry is in a �le on another

computer, it is not valid). This can be directly the computer name, IP address, (sub)network address,

etc.

Inside parentheses is the name of the user account to which the user is temporarily logged in, and

the last parameter is the list of commands that the user can execute.

Let's have a look to a few lines that may be in the /etc/sudoers �le.

john johnscomputer.company.com = (ALL) /bin/kill,/bin/killall

the speci�ed user can run commands on his computer (even remotely) to terminate other com-

mands

john johnscomputer.company.com = (ALL) NOPASSWD: /bin/kill,/usr/bin/killall

the same, plus the root password will not be required

%wwwadmin www.webserver.cz = (www) /usr/local/apache/bin/apachectl

members of the speci�ed group can run the speci�ed command on the speci�ed web server as the

www user

john mailserver = /bin, !/bin/su

we allow the speci�ed user on the mailserver to run anything from the /bin directory except the

su command (here we see the negation notation), they have to authenticate themselves (they

work under their own account, there is nothing in brackets)

fileadmin ALL, !mailserver = ALL

the speci�ed user can run everything on all machines except the mailserver

ALL = (ALL) NOPASSWD: /sbin/shutdown

everyone everywhere can run the command that shuts down the computer, no password will be

required
✄

M Example

If we are working in a system that uses the sudo mechanism, we precede each command that requires

higher privileges with sudo. E.g. we want to create a new user and set a password for that user:

sudo useradd -m beata

sudo passwd beata

Chapter 5 File Access and Permissions 81

When entering the �rst command, we will be asked for (our) password, but not for the next command,

the system will remember us for a certain number of minutes.

The sudo mechanism can also be used when previewing a password hash �le:

sudo cat /etc/shadow
M

✄ Procedure

The su and sudo commands can also be combined. If we specify

sudo su -

we are prompted for our password (this is provided by sudo), but at the same time a new shell is created

with root privileges, the obtained root privileges are valid for the other commands listed (until exit or

logout is entered). So we get the bene�ts of both commands.
✄

C Tasks

Create a new test user, set a password and any other properties:

sudo useradd -m test

sudo passwd test

Check the result:

� in the /etc/passwd �le, check to see if a new entry has been added and what information is listed

there,

� in the /etc/group �le, also check if a group has been created for this user (assuming you have a

system using UPG � User Private Group),

� using the sudo mechanism, check the /etc/shadow �le for the password hash of the new user,

� in /etc/login.defs you can check what type of hash it is:

less /etc/login.defs

or

cat /etc/login.defs | grep -i ^encrypt (don't forget �^� before the search string)

Then remove the test user:

sudo userdel -rf test
C

5.3 Advanced Access Control Mechanisms in Linux

5.3.1 Attributes

✎✎ Basic Attributes in Filesystems. In Windows we have attributes H (Hidden), S (System),

D (Directory) and others, in UNIX �le systems we use di�erent attributes. We'll look at attributes in

ext2, ext3 and ext4 �le systems, but we also �nd support for attributes (in a slightly di�erent way) in

XFS and others. There are quite a lot of attributes, among others, such as

i (= immutable) the �le cannot be modi�ed, deleted, renamed nor linked to,

a the �le can only be opened in append mode (i.e. we can only add data to the end, but not modify

the original content), useful e.g. for important log �les,

Chapter 5 File Access and Permissions 82

S (uppercase S) after any changes are made, immediate synchronization occurs, i.e. data is imme-

diately written to disk,

A (uppercase A) means that the atime (access time) value will not be updated when the �le is

accessed, which can speed up work with frequently opened �les and is useful for SSDs,

e means that the �le is using extents (new in the ext4 �lesystem) � protects large �les to be

fragmented (keeps the space occupied by the given �le contiguous), etc.

✄✄ We work with attributes using the following commands:

lsattr

lists the set attributes for the speci�ed �le or multiple �les (we use the �le names as parameters

of the command), we can also pass the list of �les (or directories) to this command via a pipe

(e.g. ls -a | lsattr)

chattr

is used to change �le attributes, as a parameter we write the name of the �le whose attributes we

want to set, then the attribute and possibly other options (e.g. for recursive setting of attributes)

M Example

The following command sets the �s� attribute for the speci�ed �le:

sarka@notebook:~$ chattr +s file.txt

sarka@notebook:~$ lsattr file.txt

s-------------- file.txt M

✎✎ Extended attributes. The extended attribute mechanism allows you to de�ne custom attribute

names (and of course their values). Thus, we are not restricted to a limited set of �le system related

attributes. Extended attributes are mainly used in the context of increased security, e.g. in the SELinux

module, and they are also the basis of the POSIX ACL mechanism, which we will see below.

To work with extended attributes, use the commands getfattr and setfattr.

M Example

The following command lists extended attributes of all hidden �les:

lsattr .* M

5.3.2 POSIX ACLs

The POSIX standard also de�nes security access control lists, ACLs. The ACLs themselves are stored

as �le system metadata in the form of extended attributes. Similar to ACLs in Windows or network

devices, the idea here is to de�ne access permissions for named users or group members (a �ner division

than owner-group-others). The principle of rwx access permissions is basically preserved, but we have

more options for assigning them.

There are three types of ACLs:

� ACLs for users,

� ACLs for groups,

� ACL for others

Chapter 5 File Access and Permissions 83

✄✄ The main commands used for working with POSIX ACLs are getfacl and setfacl, which are used

to display and modify ACLs. Basic synstax:

getfacl file list of ACLs for the given �le

setfacl -m u:some_user:some_permissions file adds a user ACL entry for the �le, e.g.

setfacl -m u:john:rw,charlie:r,anna:rwx file

setfacl -m g:some_group:some_permissions file similar for a group

setfacl -x u:some_user file deleting a user ACL entry for the given �le

M Example
sarka@notebook:~$ getfacl ~/.bashrc

file: .bashrc

owner: sarka

group: users

user::rw-

group::r--

other::r--

If an ACL is applied to the speci�ed �le, for example, the user boss should be explicitly set to rw-,

then there would be one extra line:

user:boss:rw-

We can change ACLs as follows:

setfacl -m u:boss:rw-,g::rw-,g:apache:rwx,o:--- file

We have set read and write permissions for one user, the �le group as well, the group created for

the apache web server we have enabled everything (be careful if this is really necessary) and we have

disabled everything for the rest of the world. We can delete most of the hyphens in the permission

strings:

setfacl -m u:boss:rw,g::rw,g:apache:rwx,o:- file
M

M Example

Again, one summary example: we create a new test user, set a password for him, and create a new �le

in his home directory. Then we add a special ACL entry for ourselves to allow ourselves to read and

write to this �le, even though we didn't have these permissions originally. Finally, we return to our

shell and try to write to the new �le.

� First the preparatory operations:

sudo su -

useradd -m janedoe

passwd janedoe

getfacl -m u:sarka:x /home/janedoe (why do you think this will be bene�cial to me?)

exit

� We create a new �le and modify its ACL:

sudo su - janedoe

touch test.txt

getfacl test.txt (we have listed the ACL of our �le)

setfacl -m u:sarka:rw test.txt

Chapter 5 File Access and Permissions 84

getfacl test.txt

exit

� Now let's try access under the own account:

echo "some interesting string" > /home/janedoe/test.txt ; cat /home/janedoe/test.txt

� Cleaning:

sudo su -

userdel -fr janedoe

exit
M

5.3.3 PAM

PAM (Pluggable Authentication Modules) is a mechanism for extending security modules used on

Linux, FreeBSD, Solaris and some other systems. With PAM, we can, e.g., allow logins only at a

certain time and only from a certain location (terminal), set limits on resources (number of running

processes per session, memory consumption, etc., so we can prevent DoS attacks to some level), choose

di�erent password encryption methods, etc.

It is a system based on a stack of modules (pam_stack), where the stack is traversed from top to

bottom during user authentication and each module must �pass�, i.e. each module in the stack must

agree to authentication. We can imagine, e.g., that the system puts certain rules in the stack (as a

LIFO structure), and the process to be authenticated removes individual rules from the stack one by

one by satisfying them. If it fails to satisfy a rule, it is not possible to get to the next rule. Successful

authentication corresponds to an empty stack.

✎✎ The PAM mechanism is used by various services that users authenticate to (including, but not

limited to, the user login service or some daemons to access their con�guration). If a service wants to

use PAM, it creates its own stack of modules, which it speci�es in a �le in the /etc/pam.d directory. In

general, we need to create our own �le in this directory and specify our stack in it. If the service does

not want to create its own �le, it can use the default one /etc/pam.d/other.

A service can create its stack from modules stored in �les with the .so extension (i.e. libraries).

There are quite a lot of modules, e.g.:

� pam_access � it is possible to limit the locations from which a user (or group of users) can log in

(also applies to remote logins, IP addresses can also be speci�ed)

� pam_time � login time can be limited

� pam_securetty � limiting the possibility of root login from speci�ed devices (we de�ne �secure�

terminals for root login)

� pam_cracklib � checking passwords to make sure they are not easily cracked by a dictionary attack

� pam_pwhistory � password history is stored, which can prevent users (who are forced to change

their passwords occasionally) from, for example, cyclically choosing alternating passwords

� pam_tally � this module monitors the number of unsuccessful logins that follow directly after

each other; we set a threshold (e.g. 3) and after crossing this threshold we can conclude that it

is a dictionary attack on the password, so we block the account

� pam_userdb � Berkeley DB database is used for authentication

Chapter 5 File Access and Permissions 85

�� We can get the list of modules from the manual pages:

apropos -s 8 pam

� Each PAM module must be con�gured somehow. The con�guration is usually stored in the

/etc/security/name.conf �les, e.g. the con�guration of the pam/access module (limiting the places

from which it can log in) is in the /etc/security/access.conf �le. These �les are usually well com-

mented, so if we want to change the con�guration, it is usually not a problem.

M Example

However, the speci�c con�guration can also be listed directly next to the module name. E.g. we add a

line into /etc/pam.d/login

account required /lib/security/pam_tally.so deny=3 no_magic_root

This means that after three login failures (deny=3) the account will be locked, and this also applies to

root logins. There are also other parameters that we would �nd in the man page (man pam_tally, e.g.

the length of time the account should be locked).
M

5.4 Security Policy Settings in Windows

In Windows (except Home edition) we have a security policy settings for this purpose. We can access

them, for example, by running the secpol.msc console �le.

Figure 5.1: Local Security Policy in Windows

In all editions we can use the net user, net localgroup and net accounts commands.

M Example

Examples of usage NET USER:

net user lists the users (in several columns)

net user janedoe lists detailed information about the user janedoe, including the groups they belong

to, password information (whether the user can change the password, when it was set, when it

expires, etc.), when the user last logged in, whether the account is active, etc.

Chapter 5 File Access and Permissions 86

net user janedoe password sets the password for janedoe

net user janedoe * like the previous one, but we are asked for the password, no characters are

displayed when entering it (in case the colleague can see our screen)

net user janedoe /active:no we deactivate the given account

net user janedoe /active:yes we activate the inactive user account, it also works with the admin-

istrator account (in newer Windows it is usually deactivated for security reasons and the admin

cannot log in this way)

net user janedoe /passwordchg:no from now on, the speci�ed user has no possibility to change his

password (this setting is typical for the guest account)

net user janedoe password /add /fullname:"Jane Doe"

creates a new user with the speci�ed login name, heslem a zobrazovaným jménem

net user janedoe /delete removes the given user

net user janedoe /times:M-F,6-16 allows a given user to be logged in only on the speci�ed days

and hours (here on workdays between 6am and 4pm; the days are M, T, W, Th, F, Sa, and Su).
M

Usage of the net localgroup is similar, for local groups.

We can use cmdlets in the PowerShell as well:

M Example

How to �nd cmdlets in Powerhsell for working with users and groups? For users:

PS C:\Users\user> get-command *user*

CommandType Name Version Source

----------- ---- ------- ------

Cmdlet Disable-LocalUser 1.0.0.0 Microsoft.PowerShell.LocalAccounts

Cmdlet Enable-LocalUser 1.0.0.0 Microsoft.PowerShell.LocalAccounts

Cmdlet Get-LocalUser 1.0.0.0 Microsoft.PowerShell.LocalAccounts

Cmdlet New-LocalUser 1.0.0.0 Microsoft.PowerShell.LocalAccounts

Cmdlet Remove-LocalUser 1.0.0.0 Microsoft.PowerShell.LocalAccounts

Cmdlet Rename-LocalUser 1.0.0.0 Microsoft.PowerShell.LocalAccounts

Cmdlet Set-LocalUser 1.0.0.0 Microsoft.PowerShell.LocalAccounts

Application quser.exe 6.1.760... C:\Windows\system32\quser.exe

Application UserAccountControlSettings.exe 6.1.760... C:\Windows\system32\UserAccountControl...

Application userinit.exe 6.1.760... C:\Windows\system32\userinit.exe

So, for example, cmdlet get-localuser lists all local users. For more detailed help on the command,

including parameters, we would use the cmdlet get-help -detailed get-localuser.

Similar for local groups: get-command *group*.
M

✎✎ To work with password security policies, we use the NET ACCOUNTS command. This is a security

policy that applies to all accounts.

Examples of using the NET ACCOUNTS command:

net accounts lists the currently de�ned properties of user accounts

net accounts /minpwlen:8 sets the minimum required length of the user's password to 8 characters

(the �pw� abbreviation appears in several parameters, it means that they are related to the

password setting)

Chapter 5 File Access and Permissions 87

net accounts /maxpwage:120 the password is always valid for a maximum of 120 days, after which

the user must choose a new password

net accounts /maxpwage:unlimited the user is not forced to change his password regularly, its tem-

poral validity is not practically limited

net accounts /maxpwage:30 /uniquepw:6 the password is always valid for a maximum of 30 days,

the user (with this relatively restrictive period) can choose a password that he already had, but

only after at least 6 password changes

✎✎ We also have ACLs in Windows (although they are not POSIX ACLs). We can access them through

the context menu of the �le, as seen in Figure .

Figure 5.2: Windows ACL for �les

Another possibility is via Powershell.

M Example

We use cmdlet get-acl:

PS C:\Users\user> get-acl p:\order_cartridge.pdf | fl

Path : Microsoft.PowerShell.Core\FileSystem::P:\order_cartridge.pdf

Owner : O:S-1-5-21-1939040898-431487083-1465283063-1000

Group : G:S-1-5-21-1939040898-431487083-1465283063-513

Access : BUILTIN\Administrators Allow FullControl

NT AUTHORITY\SYSTEM Allow FullControl

NT AUTHORITY\Authenticated Users Allow Modify, Synchronize

BUILTIN\Users Allow ReadAndExecute, Synchronize

Audit :

Sddl : O:S-1-5-21-1939040898-431487083...... (shorten)

To change the ACL of a �le we would use the cmdlet set-acl, or the cacls.exe and icacls.exe for the

Command Line are available.
M

Chapter 6
Synchronization

 Quick preview: In a multitasking system, it is common for multiple processes to need to access the

same resource. This resource can be a common I/O device such as a screen, keyboard, or printer, but

it can also be a shared memory area, variable, or a �le. In this chapter, we describe the basic problems

associated with process synchronization, and the methods that can be used to solve them.

¤ Keywords: Synchronization, consistent state, Petri net, critical section, producer-consumer, model-

view, readers-writers, concurrent processes, raice-condition, passive and active waiting, Bakery algo-

rithm, semaphore, mutex, messages, IRQL, spinlock

➸➸ Objectives: The goal of this chapter is to learn how to synchronize process or thread access to

shared resources.

6.1 Why Synchronize

When multiple processes access the same resource, the main issue is ensuring consistent resource state.

In the case of shared memory, it is about data consistency, i.e. if a process writes to this memory,

another process should not read until the writing process �nishes its work, because it could only read

partially modi�ed data. The data is in a consistent state before the write starts and after the write

completes.

Resources that are not in a consistent state must be protected, so access to them is synchronized.

We synchronize access to resources:

� among kernel threads (sharing hardware resources and kernel structures),

� among processes sharing resources,

� among threads of the same process (sharing common variables, open �les, pipes, etc.).

As in the whole of this chapter, we will talk about processes here, but in fact the issue also concerns

the synchronization of the threads within a process, or kernel.

✎✎ A race condition is such situation that can occur when processes running in parallel request access

to a same object. Although the processes store the contents of the registers independently (when

context is switched, the contents of the registers are stored in order not to be overwritten by another

88

Chapter 6 Synchronization 89

process), but it does not apply to shared variables. If manipulation of the variable is not atomic (i.e.,

it is longer than one instruction and can be interrupted), inconsistency may occur.

The system will either deal with it or it won't. In the worst case, the object may be assigned to

both processes or neither, in the better case, the system decides which process takes precedence.

6.2 Petri Nets

Petri nets are a visualization tool that clearly captures data �ow or any parallel or pseudo-parallel

processes at an abstract level. It is a mathematical modelling language for descibing distributed or

other systems working in parallel, using a graphical notation.

In this document, we use Petri nets for simulation of synchronization problems.

✎✎ Petri net is an oriented graph with two types of nodes:

�
��
places, representing process states or system states,

transitions, representing a certain activity of a process or system between two states (places).

Places and transitions alternate in the graph, there should not be two nodes of the same type directly

behind each other. In places, there may be tokens (dots) representing permissions to continue further

in the graph. Each edge (arc) is labeled by a natural number (if no number is given, it is 1), this

number means the multiplicity of the edge.

Each transition has one or more source places, from which an edge leads to this transition. For the

transition to be feasible for execution, in each source place there must be at least as many tokens as

the multiplicity of the edge (number in label of the edge).

Each transition has one or more target places, to which an edge leadt from this transition.

The transition is executed as follows:

1) for each source place: if the edge labeled by n leads from the source place into the transition, we

take n tokens from the place.

2) for each target place: if the edge labeled by m leads from the transition into the target place, we

give m tokens to the place.

M Example

There are two transitions in Figure 6.1, but only the �rst one is feasible, and the second one is not

feasible because there is no token in C and only one token in B, we need two. When the �rst transition

is executed, one token (only one, the edge is not numbered) is removed from the place A, one token is

put to B and one token is put to C.

����A s - ����1

PPPPq

����B

����
C

s
����1

PPPPq2

�

-����ssD

Figure 6.1: Example of Petri net

Now the second transition is feasible. When executing it, two tokens are removed from B, one token

is removed from C, one token is added to B and one to D. There are three tokens in D.
M

Chapter 6 Synchronization 90

M Example

Figure 6.2 shows a Petri net describing the simpli�ed run of a process using the processor with no other

process running.

-���� ���� ����s - - -- - -����
?

6

6

�������s
new

allocating

resources ready

CPU

scheduling running

termination

of process terminated

free
processor

removing from

processor

Figure 6.2: Petri net describing states of a simple process

The Token in the place new can be understood as the current state of the process. All transitions

are labeled by 1 (number 1 does not need to be listed).

The place free processor represents the state of the system in which a processor can be assigned. It

contains a period only when the processor is free and can be assigned. During executing the transition

removing from processor, we remove one token from ready and put one token to free processor and one

token to the place running.

If multiple processes are run, all of these processes use the place free processor (their own states

would be paths parallel to the process displayed). Whenever a process gets into a running state, it

removes a token from that place and the other processes have to wait in the waiting state, until the

running process returns the token.
M

We will use simpli�ed Petri nets, where a single place or transition can represent an entire subnetwork

whose parts do not need to be distinguished.

6.3 Basic Synchronization Tasks

We will discuss the basic problems that are solved in process synchronization and outline their solution

at the abstract level using petri nets. In current operating systems, threads are also synchronized,

although we will use the term process for generality.

6.3.1 Critical Section

A crititical section is a code working with any shared object, data structure, communication interface,

device, piece of memory or another resource, and the object is shared by n processes {P0, P1, . . . , Pn−1}.
The structure of code inside each of the n processes is the following:

. . . Entry section Critical section Exit section Remainder section . . .

The code of all n processes coincides in the critical section, this code works with a shared object.

Another way to illustrate this situation is the Petri net in Figure 6.3.

In order for a process to execute its part of the code accessing a critical section, there must be a

token in the guard place. In our case, process P2 comes to the transition to access the critical section,

Chapter 6 Synchronization 91

? ? ?

���� ���� ����? ? ?

? ? ?

���� ���� ���� ����? ? ?

? ? ?

���� ���� ����s? ? ?

? ? ?

666

. . .

Process P0 Process P1 Process Pn−1

s Guarding
place

P0.CS() P1.CS() Pn−1.CS()

Figure 6.3: Petri net for the Critical section Problem

and since there is a token in the guard place, this means that no other process is currently accessing

the shared resource and therefore P2 can continue.

After the evaluation of the input transition, the token is removed not only from the process state

of the process location before the critical section, but also from the guard place, and added to the place

inside the critical section evaluation by process P2. Then the process is in the critical section evaluation

state, at location P2.KS(). After a transition is performed that means leaving the critical section, the

token is returned to the guard place and also added to the place of process P2 after the critical section,

i.e. the process continues its activity, and another process can enter the critical section.

If another process wanted to enter the critical section when process P2 is in the critical section

(and thus there is no token in the guard place), it must wait until process P2 returns the token to the

guard place before it can proceed.

✄✄ The requirements for the solution are as follows:

� the data must be in a consistent state if the process expects it,

� no more than one process is allowed in the critical section (mutual exclusion),

� the process is in the critical section for the �nite amount of time,

� the process waits a �nite amount of time to enter the critical section (depends on the previous

one: bounded waiting).

This task is the basis for other tasks, essentially always about � how to ensure consistency of data

accessed by multiple various processes or threads.

� Remark

How do we get it programmed? For example, the guard place is represented by an integer variable, the

number of tokens in corresponds to the value of this variable. In the simplest case, each process would

test the variable in a loop before entering this section (as long as its value is 0, the loop continues), and

when the loop completes (greater than 0, i.e. at least one token in the guard place), it would decrease

Chapter 6 Synchronization 92

the value of the variable by 1, execute the code of the critical section, and then increase the value of

the variable by 1.

This would only work if the processes trust each other (which is not quite common, perhaps only

between threads of the same process). Moreover, there could be a problem on a system with a multi-core

processor, because then there could be a situation where two processes (threads) running in parallel

try to �collect� the last token at the same time, i.e. decrement the variable to 0. We will discuss later

how to solve these problems.
�

6.3.2 Producer-Consumer Problem

✎✎ A producer is a process producing data (e.g. obtaining them from sensors) and a consumer is a

process that accepts this data and executes them or does something with them (e.g. displays). The

purpose for producer(s) and consumer(s) is to work more or less independently, usually asynchronously,

in di�erent speeds.

A case with one producer and one consumer will be described, but this case can be extended to

practically any number of producers and consumers.

The task can be solved in several ways, depending on how much shared memory is available to all

participating processes:

1) Unimited bu�er � we have at our disposal any amount of memory (dynamic data structure).

2) Limited bu�er � we have a limited number of memory locations available, the upper boundary is

set (static data structure).

✎✎ ad. 1) Unlimited bu�er. The solution with using the Petri net is in Figure 6.4. We have a

queue whose length changes dynamically, the requirement is to ensure that the consumer stops when

the queue is empty, and that the data remains consistent. In Figure 6.4 we can see a system where

there are four entries in the queue and the write and read transitions are active (so both processes can

work).

���� ����? ?

? ?

���� ���� ����? ?

? ?

6

?
produce

produced

write

written

read

read up

execute

executed

queue status
ss sss

s

producer consumer

Figure 6.4: Petri net for the Producer-consumer problem, unlimited bu�er

How would we extend the task to more than one producer and/or consumer? We would simply

link other producers and consumers to the queue status place in the same way as the existing ones.

Chapter 6 Synchronization 93

✄✄ The requirements for the solution are as follows:

� the data must be in a consistent state whenever any process accesses data (for the both reading

and writing),

� consumers can only read from non-empty bu�er,

� bounded waiting as for the critical section problem.

� Remark

How to get it programed? We need an integer variable representing the location of queue status, then

the queue itself (like a dynamic list, depending on what the programming language o�ers us).

The producer �rst saves the new element in the queue and then increases the value of the variable

(the order of operations is important to maintain data consistency, especially if the queue was empty

before loading).

The consumer �rst collects (retrieves) the element from the queue and then decreases the value of

the variable (order is important for the same reason � preserving data consistency).
�

✎✎ ad. 2) Limited bu�er. The solution is in Figure 6.5. The limited bu�er can be implemented

as a static round robin queue.

In Figure 6.5, only the write transition can be executed, the consumer must wait before the tran-

sition read (nothing to read, the queue is empty). After executing the write transition, the transitions

produce and read are executable. The total number of queued places is the sum of the tokens in the

free, taken, produced and read up places.

���� ����? ?

? ?

���� ����? ?

? ?

����

����

?

6

produce

produced

write

written

read

read up

execute

executed

free

taken

ss ss
s

s

producer consumer

@
@

@
@

@
@

@
@I

?�
�

�
�

�
�

�
�

Figure 6.5: Petri net for the Producer-consumer problem, unlimited bu�er

✄✄ The requirements for the solution are as follows:

� the data must be in a consistent state whenever any process accesses data (for the both reading

and writing),

� consumers can read from non-empty bu�er only,

� producers can write to non-full bu�er only,

� bounded waiting as for the critical section problem.

Chapter 6 Synchronization 94

� Remark

The way of programming would be similar, we just need two variables, one for each shared place, and

then a static queue (array, etc.). The order of operations (storing or removing an element and working

with variables) are similar to the previous case, to preserve the data consistency in the given queue

element (�rst or last).
�

6.4 Synchronization Tools

6.4.1 Waiting

A hardware assistance for synchronization is in supporting locking instructions. A critical section can

be �locked� by entering process, and no other process can go inside.

Simple locking can be implemented in software, with a locking variable: A variable locked can be

set to 0 (false, free) or 1 (true, taken). If set to 1, a process performs an empty loop.

M Example

Simple implementation of shared locking variable:

shared int locked = 0;

// inside the process code:

while (locked) {}; // waiting with empty loop

// waiting has finished:

locked = 1; // we reserve the protected object

CS(); // we use the protected object (critical section)

locked = 0; // we released the protected object, leaving the critical section
M

This mechanism may fail on a multi-processor or multi-core processor system � there may be situations

where two parallel running processes at the same time ��nd out� that the critical section is free, and

at the same time attempt to change the variable locked.

The hardware solution is in using locking instructions for active waiting: TSL (Test and Set Lock),

swap or XCHG � for various hardware architectures.

All these instructions perform a value exchange of the locking variable and the given variable in

some way. They are used to permanently set the lock to 1 (locked) and to �nd out the original lock

value before this setting. They can be used as part of a more complex active waiting tool.

M Example

Let us show usage of the XCHG instruction (for Intel and AMD processors). The �slock� variable is

shared locking variable; when slock == 1 the critical section (CS) is locked.

CS: mov EAX, 1h // we store 1 into the EAX register

xchg slock, EAX // we call swapping instruction (it swaps the given values)

jnz CS // loop -- Jump if Not Zero (until EAX reaches 0)

// if there is 0 in slock before swapping, CS is free, and performing the instruction

// causes locking (the unlocked CS is immediately locked and we can follow in processing

// into the CS)

... // some code inside CS

leaving: mov slock, 0h // we have to unlock CS when leaving it
M

Chapter 6 Synchronization 95

� Remark

Hardware synchronization can also be implemented as an interrupt masking (if a common IRQ is

disabled, then the process that is assigned to the processor will not be interrupted), but it is not

usable for multi-processor and multi-core systems, or when using it inside kernel, the kernel should be

single-threaded.
�

Operating systems o�er functions encapsulating a similar instruction, because, in current operating

systems, a programmer has only limited access to processor.

M Example

When programming in various languages, we can encounter the system call swap:

shared int slock = 0;

...

// inside the process code:

int checking; // checking variable for swapping

...

checking = 1;

while (checking == 1) // or simply while (checking)

swap (slock, checking);

// if checking is 0, end of waiting:

... // do something inside the critical section

slock = 0;
M

Note that these methods do not solve the race condition problem that occurs when processes (process

threads) run in parallel on di�erent processors or processor cores, because multiple processes can end

the waiting loop at the same time.

✎✎ Lamport's Bakery Algorithm. Each process receives an order number when requesting access

to the critical section.

The process with the lowest order number has the highest priority, and if multiple processes have

the same order number, the scheduler decides between them according to another criterion (PID or

comparison of process names by alphabet). The algorithm works as follows:

1. The ordnum array: each process waiting for the given resource has an order number assigned (if

the resource is not requested there is a number 0),

2. The assigns array: each process has 1 here if the order assignment is in progress for this process;

after the assignment this value is returned back to 0. Only the given process (thread) changes

this value.

The order number is not consistent during the order assignment, so this value is protected in this

way (waiting while(assigns[j])).

3. The waiting process then passes the ordnum array, and while it encounters a process whose order

number is smaller (or the same but has a lower PID), then waits in the empty loop until the

process �nishes waiting and executes its part of the code in critical section.

When the process passes through the whole array, then no process has a lower order number

(none of them are waiting for this resource with better precedence).

Chapter 6 Synchronization 96

M Example

The Bakery algorithm has the following implementation:

shared int ordnum[n] = (0,0,...,0);

shared int assigns[n] = (0,0,...,0);

...

// while assigning order number, the field with ordinal number is protected

assigns[i] = 1;

ordnum[i] = GetHighest(ordnum) + 1; // obtaining order number

assigns[i] = 0; // end of assigning order number, end of protection

for (j=0; j<n; j++) { // discovering processes with higher priority

while (assigns[j]) {}; // j-th process is obtaining order number - during protection

while ((!ordnum[j]) && // j-th process wants the same resource

((ordnum[j]<ordnum[i]) || // j-th process has higher priority

((ordnum[j]==ordnum[i])&&(j<i)))) {}; // the same order number but smaller PID

}

CS();

ordnum[i] = 0; // we no longer need the given resource
M

The Bakery algorithm is applicable to multiprocessor systems. It is a unique and simple algorithm that

avoids aging of processes.

6.4.2 Mutexes and Semaphores

✎✎ A mutex (short for �mutual exclusion�) or spinlock is a simple locking mechanism implemented in

software. There are two functions:

� acquire() called when entering the critical section, for testing if the critical section is free (if not,

the process is blocked by this function until the critical section is free), then the resource is locked

out of this process,

� release() called when leaving the critical section, unlocking the shared resource.

These two functions are usually implemented using the above mentioned hardware mechanisms.

M Example

We can use mutex in this way:

do {

...

acquire(M);

CS();

release(M);

...

} while(true); M

✎✎ A semaphore for processes has similar meaning to a semaphore for cars. It has �free� (green) and

�taken� (red) states, as a result of the �taken� state means suspending (blocking) the calling process.

The value of 0 means �red�. A semaphore consists of an integer value (as a semaphore state) and from

a queue with waiting processes.

typedef struct {

int value;

struct pcb *proc; // queue of waiting processes

} TSemaphore;

Chapter 6 Synchronization 97

✎✎ There are two basic types of semaphores:

� binary semaphore � its internal variable has only one of two states: 0 or 1,

� counting semaphore � its internal variable has a range as required.

The binary version is similar to mutexes.

As in mutexes, a process calls two functions:

� wait() (or down(), or lock(), according to platform) � a process calls this function when entering

the critical section,

� signal() (or up(), or unlock()) � a process calls this function when leaving the critical section.

...

wait (semaphore);

CS();

signal (semaphore);

...

The functions wait and signal should be atomic (uninterruptible). The wait and signal func-

tionality can be easily set up on a single processor system (for example, by disabling interrupts while

executing the function code), but this simple method can not be used in a multiprocessor system.

Usually, this problem is solved by identifying these functions themselves for critical sections and their

software solutions.

M Example

Let us show using the counting semaphores to solve the synchronization problem of a Producer-

Consumer with a limited bu�er. We need two semaphores:

extern struct TSemaphore s_free, s_taken;

Meaning of the given semaphores:

� s_free prohibits the producer to exceed the bu�er size, we initiate it for the number of positions

in the protected array (shared memory),

� s_taken prohibits the consumer to read from empty bu�er, we set its initial value to 0.

Producer:

do {

produce (data);

// wait for a free slot:

wait (s_free);

write (data);

// inc. # of taken positions:

signal (s_taken);

} while (1);

Consumer:

do {

// wait if queue is empty:

wait (s_taken);

read (data);

// inc. # of free positions:

signal (s_free);

execute (data);

} while (1);
M

6.4.3 Messages

Processes can also be synchronized by a messaging mechanism. By this term we mean not only direct

messaging (send and receive), but also indirect communication by sending messages through ports

(sockets).

Chapter 6 Synchronization 98

The method is also suitable for multiprocessor or distributed environments, including synchro-

nization within a computer network. The addressing of communicating processes or objects must be

adapted to this.

✄✄ Processes work with messages using functions (system calls) usually called send and receive. When

using direct addressing, communication works as described above (section 4.7, page 51), with indirect

addressing these functions work as follows:

� the send function checks if the mailbox is full; if it is not full, the sending process sends a message,

otherwise the sending process is blocked and the message is sent only after it is unblocked (when

there is a free slot in the mailbox),

� the receive function called by the recipient checks if there is something in the mailbox; if it is

not empty, the process accepts the message, otherwise the process is blocked until any message

is delivered to the mailbox.

M Example

The following code is a solution to the Producer�Consumer task for a �xed length bu�er. Two mailboxes

are de�ned:

� s_free � when the producer picks up a message from this mailbox, he can produce (it is initially

�lled with messages informing about the possibility to produce), the consumer sends a message

here after each item processing,

� s_taken � the producer sends messages with the produced items to this mailbox, the consumer

picks them up.

#define MAX 20 // the maximum number messages in mailboxes

struct TMessageQueue s_free, s_taken; // two mailboxes

for (i=0; i<MAX; i++) // initialization, prepayment

send (s_free, NULL);

Producer:

do {

receive (s_free, data);

produce (data);

send (s_taken, data);

} while (1);

Consumer:

do {

receive (s_taken, data);

process (data);

send (s_free, NULL);

} while (1);
M

6.4.4 Monitors

✎✎ The monitor is an object-type synchronization resource. It encapsulates a group of data structures

(variables), processes can access them only through interfaces de�ned by access functions (methods).

Functions can be any number and determine di�erent ways of working with monitor data.

Data structures encapsulated in the monitor are referred to as conditions. These conditions can be

implemented using semaphores, and the semaphore operations wait and signal are used by monitor

access functions (not processes), each access function can use one or more various conditions.

✄✄ The idea is that each condition can only be used by one function at a time. Therefore, the accessor

function will immediately call the wait function for each condition it will use, thus preventing any other

Chapter 6 Synchronization 99

Condition 1
Sem 1

Condition 2
Sem 2

Condition 3
Sem 3

Function 1

Function 2

Process 1

✛ Process 2

Condition 1
Sem 1

Condition 2
Sem 2

Condition 3
Sem 3

Function 1

Function 2

Process 1

Process 2

Figure 6.6: Simple monitor with two access functions

function that would also like to use that condition from running. Just before terminating, the function

then unblocks the reserved conditions again with their signal functions.

In Figure 6.6 we can see a simple monitor where the �rst process calls the function 1. This function

locks (sets to red) one of the semaphores, and thus prevents the second function (called by the second

process) from being called. The second function waits until this semaphore is unlocked before it can

execute its code (it needs to lock all three semaphores for itself to work), which we can see in the �gure

below.

6.5 Additional Synchronization Problems

✎✎ Model-View. This problem is similar to the Producer-Consumer problem. We solve it when it

is necessary to track and execute not all items but always the current state of the tracked quantity.

✎✎ Typical usage is e.g. when a producer monitors the status of a sensor (temperature, humidity, etc.),

stores the detected value in a shared variable (only one, no queue), and the consumer reads the value

of this variable at regular intervals, e.g. for the purpose of displaying or triggering the alarm.

✄✄ The requirements for the solution are as follows:

� the data must be in a consistent state whenever any process accesses data (for the both reading

and writing),

� bounded waiting as for the critical section problem.

✎✎ Readers-Writers. In this task, processes are divided into two groups � the group of readers and

the group of writers. A process can belong into the both groups. We need to know how many readers

(reading processes) are.

Chapter 6 Synchronization 100

���� ����? ?

? ?

���� ���� ����? ?

? ?

66

??
produce

produced

write

written

read

read up

execute

executed

Guarding
place

s

s

producer cosumer

Figure 6.7: Petri net for the Model-View problem

? ?

���� ����? ?

? ?

���� ���� ����? ?

? ?

���� ����? ?

?

����?

?

����?

?

����?

ss ss
? ? ?

666

4

4

. . .

Process P1 Process P4 Process Pz

Guarding
place

P1.read() P4.read() Pz.write()

Figure 6.8: Petri net for the Readers-Writers problem

At the time a process writes, no reading or writing can be performed by another process, while

reading operations can run more simultaneously (do not interfere with data consistency).

✄✄ In Figure 6.8, the task is solved for four readers and one writer. Every reader picks up a token

from the guard place before reading. The writer tries to pick up four tokens when attempting to write,

that is, one token for each existing reader. This makes it possible to write only if no reader reads (all

the tokens are in the guard place). If a writer writes, all readers have to wait for the writer to �nish

writing and put back the tokens to the guard place.

If there were multiple writers, any writer would be blocked again if a reader reads and if another

writer writes. From the guard place, the edge would be determined by the number of reading processes.

Chapter 6 Synchronization 101

✄✄ The requirements for the solution are as follows:

� the data must be in a consistent state whenever any process accesses data,

� readers can read simultaneously,

� writing is excluded with any other operation (the both reading and writing),

� bounded waiting as for the critical section problem.

Figure 6.9: Five dining

philosofers

✎✎ The Dining Philosofers Problem. It is a typical task of parallel

programming. The name of the task is derived from a known problem:

(Chinese) philosophers are sitting at a round table and alternately thinking

or eating. Everybody needs two chopsticks, but there are only �ve chop-

sticks on the table, one between each adjacent pair of philosophers. If a

philosopher does not have a chopstick on his left and right hand, he has no

choice but to think.

The philosopher whose neighbors take his chopsticks alternately does

not have a chance to eat, there is an aging process (the process constantly

awaits the necessary resources). If all of them suddenly lift their chopsticks with their right hands, they

are deadlocked, because they all hold one chopstick in the right hand and wait for the left one, which

is just held by the left-side neighbor and therefore unavailable.

When applying to processes, we have �ve (generally n) resources used by �ve (generally n) pro-

cesses (philosophers). Suppose that the resources are interchangeable (no matter how unhygienically it

sounds).

The solution to the problem lies in the fact that not all �ve philosophers are dropped at the

table at a time (and so do not allow all processes at once), but at most four (n − 1 if we have n

resources). The consequence is that at least one philosopher is satis�ed, so even if all of them suddenly

? ? ?

���� ���� ����? ? ?

? ? ?

���� ���� ���� ����? ? ?

? ? ?

���� ���� ����? ? ?

? ? ?

666

Process P1 Process P2 Process P3

s s Guarding

place

Figure 6.10: Petri nets for the Dining Philosophers problem (for three processes and three resources)

Chapter 6 Synchronization 102

lift a chopstick with their right (or left) hands, in the processes case, at least one process can use the

necessary resources and then release it for the next process. Another option is to order one philosopher

to take the chopsticks in reverse order than others (which is not applicable to processes).

In Figure 6.10 the solution is indicated on a group of three processes and three resources. Only

two processes are allowed to work at once to be able to use the resources they need. Generally, the

number of processes is irrelevant, and it is important that we have a maximum of 1 token less than the

resources in the guard place.

M Example

Let us solve the Dinning Philosophers problem using semaphores. We have N critical sections for N

resources, so the array of N semaphores. We initiate them all to 1. One additional semaphore serves

to monitor the resources to be used at most by N-1 processes (initialized to N-1).

The following code is for the i-th process:

#define N 5 // number of shared resources

struct TSemaphore sem[N]; // semaphores for resources

struct TSemaphore S; // semaphore for guarding processes

for (i=0; i<N; i++) // initialize all semaphores

sem[i].state = 1;

S.state = N-1;

// for the i-th process:

do {

think (i); // i-th process does not need a resource yet

wait (S); // ...needs now

wait (sem[i]); // reserve the first resource

wait (sem[(i+1) % N]); // ...the second resource

eat (i); // we have the both resources

signal (sem(i+1) % N]); // we return the both resources

signal (sem[i]);

signal (S); // another process can use resources

} while (1);
M

? ?

���� ����

����
collaboration

of processes

?

?

���� ����s? ?

?

??

?

Process P1 Process P2

Figure 6.11: Petri net for Concur-

rent processes

✎✎ Concurrent Processes. The task of concurrent processes

is solved in a parallel system, where it is necessary to synchronize

the operation of two processes running on di�erent processors or on

di�erent nodes in a network (i.e. concurrently working processes).

These processes need to be synchronized so that they perform a

part of the code together.

If one process takes a common part of the code before the other

one, it has to wait (in Figure 6.11 the process P2 has to wait), this

code can only be executed when the two processes arrive at the

beginning of the common part.

This process synchronization method can be used e.g. in the

RPC mechanism (in Figure 6.11 the process P2 calls a procedure

of a process P1) or in any synchronous data exchange of parallel

processes.

Chapter 6 Synchronization 103

6.6 Synchronization in Operating Systems

6.6.1 Possibilities of Synchronization in Windows

In Windows there are the following synchronization tools:

� IRQL (IRQ Levels) � classical IRQ masking was only applicable on a single processor system,

whereas IRQL is applicable on multiprocessor systems as well, and it is not only about IRQs,

� spinlock, queued spinlock (spinlock with queue),

� mutexes and semaphores (we call them dispatcher objects), fast mutexes, guard mutexes,

� critical sections, events, reader-writer locks,. . .

✎✎ IRQL (IRQ Levels). IRQL is a mechanism that covers various types of events often linked to

interrupts (IRQs). It is divided into so-called levels.

Table 6.1 shows the existing IRQL levels for the x86 architecture (32-bit Windows). However, the

numbering and content of each level varies on architectures (x86, amd64).

31 High (�catastrophic errors�)

30 Power failure

29 Interprocessor interrupt for cache consistency


Hardware

28 Clock timer interrupts

27 Synchronization accross processors
... Device interrupts (common IRQ)

2 DPC (Deferred Procedure Call), thread scheduler
}
Software

Priorities of
{

1 APC, Page Fault interrupts

threads 0�31 0 Low: user threads and most kernel-mode operations

Table 6.1: Levels of the IRQL mechanism

User processes (running in the user mode) with common priority have IRQL 0 (that is, they run on

the IRQL 0 level). Kernel threads performing APC are on IRQL 1, higher IRQLs are then associated

with other kernel activities performed with the majority of hardware interrupts.

The �high� level is used to shutdown the system mostly due to a kernel error (BSOD = Blue Screen

of Death); the termination process has priority over everything else. Level 30 is documented, but it is

not used, theoretically a system would have to go to it in the event of a power outage. Level 29 is used

to communicate with other processors. Level 28, on the other hand, is commonly used � for updating

system clocks and generally for various time allocation activities. Pro�ling (IRQL 27) is a method of

sampling the state of execution of a process, so it is possible to monitor the activity of the selected

process. IRQL 3�26 are intended to prioritize interrupts from devices.

✄✄ Using IRQL, Windows can always mask all IRQLs up to a certain level. For example, if the IRQL

is masked up to 27, the requests of all common processes (IRQL 0), APC calls (IRQL 1), etc. up to

level 27, are ignored. The consequence is that APC takes precedence over a common process, hardware

interrupts take precedence over software interrupts. IRQL 0 is used for most of the system run time.

Processors (cores of a processor) require the index in the above table when an interrupt occurs.

This index tells them if the level is masked, which should be ignored.

Chapter 6 Synchronization 104

� Additional information

All of the above applies to a 32-bit system. On a 64-bit system (amd64), the IRQL table looks a bit

di�erent (paradoxically, it has fewer levels � only up to 15). Additional information can be found on

https://blogs.msdn.microsoft.com/doronh/2010/02/02/what-is-irql/.
�

✎✎ Spinlock. Spinlocks are only used in kernel for synchronization in a multiprocessor system and

are actually mutexes. They have two states � �free� and �busy� (�locked� and �unlocked�). The spinlock

itself is a very simple structure, and is always used with a more complex global data structure whose

consistency protects, typically by queuing procedures or data structures to a particular device.

For example, if in a multiprocessor system a processor selects an entry from any process queue to

run it, this queue must be locked by spinlock during thread selection, and unlocked after a thread has

been removed from the queue, to have the queue in a consistent state.

Or, if a device driver that is currently running on a single processor works with data structures of

its device (e.g. it sends data to the device input), it locks these structures because another part of this

driver running on another processor could also want these structures work at the same time.

Spinlocks in kernel usually have an IRQL 2 level (DPC) or higher.

✎✎ Mutex and semaphore. A semaphore is seen in Windows as a mutex, which allows prepayment

(or vice versa, the mutex can be taken as a binary semaphore). They are always associated with a

particular object to which the access is synchronized. In the user space, they are typically used to

synchronize thread activity inside one process.

� A mutex is created by calling the CreateMutex() function, whose attributes are also a string that

identi�es the mutex (a shared variable of the given type) � inside one of the cooperating threads. This

function returns the handle to the created mutex (each mutex is object). Other threads call the same

function or function OpenMutex() with the same string. Logging out of the mutex is done by calling

ReleaseMutex(), having a mutex identi�er as a parameter.

In addition, the mutex may be used by calling WaitForSingleObject() or in the case more than

one object by calling WaitForMultipleObjects(), which requires the mutex object's handler as one

of the parameters. When mutex is no longer needed, it is released similarly to other objects by the

CloseHandle() function.

Semaphore is treated similarly, only we use the string �semaphore� instead of �mutex� in names of

functions, and there are more parameters.

✎✎ In the kernel mode, instead of mutex, the term mutant is used. There are several additional types

of mutexes (such as fast mutexes).

✎✎ Critical section. The simplest synchronization mechanism is the critical section. This is not an

object, so the initialization function does not return handle.

� We initialize the critical section by the InitializeCriticalSection(&cs) function, we use the object

that we want to synchronize, as a parameter. The EnterCriticalSection(&cs) function is used to

enter the section and LeaveCriticalSection(&cs) to exit the section. Critical sections are designed to

synchronize simple objects or variables, such as counters.

✎✎ Event. It is possible to create an event related to anything in various objects, threads are then

linked to this event (waiting for occurrence of an event with speci�ed parameters). Unlike the critical

https://blogs.msdn.microsoft.com/doronh/2010/02/02/what-is-irql/

Chapter 6 Synchronization 105

section, an event is closer to mutexes and semaphores, it is an object, and we use the handle of this

object in its handling functions.

In Windows, we can also wait for the end of a speci�c process or thread, an I/O operation (usually

related to �le usage), a timer, etc.

� Additional information

https://docs.microsoft.com/en-us/windows/desktop/sync/synchronization
�

6.6.2 Possibilities of Synchronization in Linux

✎✎ Mutex and futex. The basic synchronization object is mutex. Mutex is a kernel object, but it

can be exported to the user space, and then it is called futex (fast mutex). Futexes are represented by

a variable declared as atomic, the purpose of this variable is to speed up detection of the current state

of the futex (otherwise the detection would have to be done by system calls, it is time consuming).

Most other synchronization mechanisms are based on futexes, the atomic variable of futex is a

practical and rapid solution. Implementation can be found in the libthread library (because in the

user space we usually synchronize threads of one process).

Mutexes can be used for both active and passive waiting.

M Example

� Let us show how to create a mutex (futex) for threads synchronization and how to use it. Suppose

the required library � libthread � is loaded.

pthread_mutex_t mymutex; // data type for mutexes

if (pthread_mutex_init (&mymutex, NULL) != 0) {

... // error handling

}

pthread_mutex_lock (&mymutex); // locking the mutex

... // code in "critical section"

pthread_mutex_unlock (&mymutex); // unlocking the mutex

...

pthread_mutex_destroy (&mymutex); // we do not need the mutex

If the mutex is locked by another thread when calling the locking function, the thread goes to the

passive waiting instead of repeated locking, it is suspended.

Suppose we want to use active waiting. Then, instead of calling the locking function, we only test

the mutex state, and � according to the return value � we know when it is being unlocked (if it is, this

test function locks it up for us):

... // declaration, initialization

if (pthread_mutex_trylock (&mymutex) == 0) { // is it unlocked?

... // code inside "critical section"

pthread_mutex_unlock (&mymutex); // unlocking the mutex

} ...

M

https://docs.microsoft.com/en-us/windows/desktop/sync/synchronization

Chapter 6 Synchronization 106

Mutexes are widely con�gurable in Linux. For example, there is a time-lock version (an object is always

locked for a speci�ed time interval), a non-recursive version that allows multiple locking of the mutex, a

robust mutex capable of functioning even after a thread which has locked it and then has not unlocked

has been terminated.

✎✎ Priorities. One of properties of a mutex is also the ability to set the priority ceiling. The priority

of a process (a thread) that has locked a mutex, can be temporarily elevated above the level of all other

processes (threads) that have subscribed to the use of this mutex. The pthread_mutex_getprioceiling()

function is used to determine the priority ceiling for the given mutex, a similar function (set instead

of get) changes this ceiling.

✎✎ Rwlock. This mechanism makes it possible to distinguish between a read lock and a write lock,

which is the equivalent of the Readers-Writers synchronization problem.

M Example

� We'll demonstrate the use of an rwlock. Notice the di�erence in locking for reading or writing. The

read lock has to be done in loop because the number of possible locks of a single read lock is limited and

the thread must be locked for so long until it is released to the code that is protected, or it is suspended.

There is no need for locking for writing because the other threads are immediately suspended.

pthread_rwlock_t mylock;

if (pthread_rwlock_init (&mylock, NULL) != NULL) {

... // error handling for lock creation

}

// locking for reading ("rdlock"):

if (pthread_rwlock_rdlock (&mylock) == EAGAIN) {}

... // we use the lock for reading

pthread_rwlock_unlock (&mylock);

// locking for writing ("wrlock"):

pthread_rwlock_wrlock (&mylock);

... // we use the lock for writing

pthread_rwlock_unlock (&mylock);

...

pthread_rwlock_destroy (&mylock);

M

✎✎ Spinlock. This synchronization object is used mainly inside the kernel, and it represents the

possibility of active waiting. It is not recommended to use it too often (mutexes are better in most

cases), it is intended to provide interprocessor operations. The spinlock is treated similarly to the

mutex, only we write the string spinlock instead of mutex in names of handling functions, and while

waiting, it is necessary to use a loop (for example with an empty command, but it can be any sequence

of commands as well).

✎✎ Barrier. This is a simple synchronization object that is used not to synchronize access to an

object, but rather to synchronize the achievement of a particular point in the code (to coordinate

multiple working threads). The barrier is locked until all synchronized threads reach the speci�ed point

in their codes � as in the Concurrence of processes synchronization problem.

Chapter 6 Synchronization 107

✎✎ Condition variable. Condition variables are similar to �events� in Windows. We use them when

we want to wake up one or more speci�ed threads by ful�lling a certain condition. The appropriate

variable is tested by the thread, and if it has the value �not ful�lled�, the testing thread is automatically

suspended.

The consistence of this condition must be ensured, so it is necessary to use a mutex for every access,

including testing its value.

✎✎ Semaphore. Semaphores are generalized mutexes. There are two types of semaphores � named

and unnamed.

There are two possible implementations of semaphores (in two libraries) � originating from POSIX

standard and from System V (one of two UNIX systems branches), these two implementations have

di�erent syntax. In the example below we use the second type.

M Example

� Let us demonstrate programming of a named semaphore. Each semaphore has to be declared and

initialized.

// declare and initialize the semaphore, "prepay" the value 5:

sem_t *mysemaphore = sem_open ("/fmysemaphore", O_CREAT, S_IWUSR | S_IRUSR, 5);

if (mysemaphore == SEM_FAILED) {

... // error handling while initializing the semaphore

}

if (sem_wait (mysemaphore) == 0) {

... // the critical section, we use the protected object

sem_post (mysemaphore); // end of the critical section

}

// closing and unlinking the semaphore:

sem_close (mysemaphore);

sem_unlink ("/fmysemaphore");

M

Named semaphores have their name that we have speci�ed as a parameter when opening and unlinking.

This is actually a device �le that can be found in /dev/shm.

M Example

� Unnamed semaphores are actually de�nec over a shared memory area. It is also possible to control

the dynamically allocated memory (or access to this type of memory), the threads should have accessible

the both shared memory and semaphore. In the following example, the semaphore is prepaid to 5 too.

// we allocate a memory area as the base for the semaphore:

void *sem_memory = // any suitable allocation function

// we declare and initialize the semaphore:

sem_t *mysemaphore = sem_memory;

if (sem_init (mysemaphore, 1, 5) != 0) {

... // error handling

}

if (sem_wait (mysemaphore) == 0) {

...

sem_post (mysemaphore);

}

Chapter 6 Synchronization 108

sem_destroy (mysemaphore); // closing the semaphore

... // releasing memory,...

We can see that the use of unnamed semaphores is similar to named variant, it di�ers only in the way

it is used.
M

✎✎ All the synchronization objects described above can be shared not only among threads of a single

process but also among processes. To do this, we need to set attributes for that object (enable sharing)

and allow other (selected) processes to access synchronized memory.

All above described programming techniques are intended for synchronization in the user mode

(except spinlock). Mutexes, semaphores and other synchronization mechanisms can be also used in the

kernel, but with using di�erent data structures and functions.

� In the kernel we also can �nd other mechanisms that can't be used in the user mode, such as

sequential locks, RCUs (Read-Copy-Update, for data that are often read but little changed), Completion

(waiting to terminate another job), etc.

� Additional information

� http://www.informit.com/articles/article.aspx?p=2085690&seqNum=6

� https://docs.oracle.com/cd/E26502_01/html/E35303/sync-11157.html

� https://0xax.gitbooks.io/linux-insides/SyncPrim/
�

http://www.informit.com/articles/article.aspx?p=2085690&seqNum=6
https://docs.oracle.com/cd/E26502_01/html/E35303/sync-11157.html
https://0xax.gitbooks.io/linux-insides/SyncPrim/

Chapter 7
Deadlock

 Quick preview: Process deadlock occurs when a process is waiting for a resource that is allocated

to other waiting processes. Of course, a deadlock is undesirable, so it is advisable to either design the

system so that it cannot occur, or to prevent the situation by trying to predict the deadlock, or, if it

does occur, to handle it as gently as possible with respect to the system and the processes.

¤ Keywords: Deadlock, waiting, class, safe state, Resource-allocation Graph, Banker's Algorithm,

Wait-for Graph, Banker's Detection Algorithm, recovery.

➸➸ Objectives: The aim of this chapter is to understand the mechanism of dealing with the processes

deadlock.

7.1 Deadlock Characterization

If there are shared resources that processes (threads) have to reserve, there is a risk of a deadlock. This

situation can occur when a process waits for a resource that is allocated to other waiting processes.

✎✎ Deadlock is a situation where a set of processes (threads) are blocked because each process from this

set is holding a resource and simultaneously is waiting for a resource held by another process belonging

to the set. This situation can also be described as �mutual waiting�.

Another de�nition: The set of processes is in deadlock if each process in this set is waiting for an

event that only any of the processes in the same set can invoke.

Deadlock is mainly about waiting for release of a resource used by some process, or some types of

communication (e.g. waiting for con�rmation of a message).

✎✎ Resource starvation is in�nite blocking of a process by in�nite waiting for resources. The a�ected

process is perpetually unable to get necessary resources to perform its work.

The methods described below can be used by an operating system to handle deadlock of processes

or by a programmer to handle deadlock of single process threads.

109

Chapter 7 Deadlock 110

7.1.1 Model

Each (operating) system manages a �nite set of resources to be used by competing processes and by

the system self.

✎✎ This set of resources can be devided to classes (types), every class consists of the identical or

mutually interchangeable resources, e.g. class of memory frames consists of all frames in the memory,

or a class of open �les consists of all accessible open �les.

� Remark

We can contruct a class of all printers shared in LAN, but it depends if the given printers are inter-

changeable. Two printers, the �rst one in the �rst �oor and the second one in the seventh �oor, are

di�cult to consider as interchangeable.
�

✎✎ Each class therefore consists of a number of mutually interchangeable resources, which we call an

instance of a given class. For example, memory pages are instances of the class of virtual memory

pages. Some classes have only one instance.

In common operating systems, if a process (running in Ring 3) wants to use a resource, it needs

to ask for a kernel (running in Ring 0) using a system call. The kernel either allocates the requested

resource to the process, or it temporarily refuses and the process must wait.

✄✄ The resources are treated at the following stages:

1. Request � the process requests the resource. The result is:

(a) the operation is permitted, so the process obtains the requested resource, we continue with

the step #2.

(b) the operation is denied, the process must wait (active or passive waiting).

2. Use � the process can use the assigned resource.

3. Release � if the process no longer needs the resource, it is necessary to release the resource to free

it for another requesting process.

� Remark

Deadlock is discussed in the previous chapter. This situation can occur if processes (threads) share

several synchronization mechanisms, as we have seen in the �dining philosophers� task. An example of

a code with possibility of deadlock between threads of a same process using two shared mutexes is on

page 317 in [Silberschatz2013].
�

7.1.2 Resource-Allocation Graph

✎✎ A resource-allocation graph is the directed graph used to describe the resource allocation status

in system. There are two types of vertices in this graph:~n process node � all active processes in the system have the own process node,

resource node � all resource classes have the own resource node.

Inside each resource we have dots (similar to tokens in Petri nets) representing the particular instances

of the resource, e.g. the node
r r r

has three instances.

Chapter 7 Deadlock 111

There are two types of directed edges:

� request edge � leading from a process to a resource ~n−→ , it signi�es that the process requests

the given resource,

� assignment edge � leading from an instance of a resource to a process
r r r−→ ~n, it signi�es that

the instance of a resource is assigned to the given process.

✄✄ When a process Pi requests an instance of a resource Rj (by a system call), the request edge leading

from Pi to Rj is created.

When the request is approved, the request edge is removed and the assignment edge leading from

the assigned instance of Rj to the process Pi is created.

If there is no cycle in the graph, there is no deadlock over resources. If a cycle appears in the graph,

it means the possibility of a deadlock, but not a certainty (a non-zero probability of a deadlock).

M Example

The left picture in Figure 7.1 shows three processes and three resources. The resource R1 contains two

instances, the both allocated to processes. The resource R2 has only one instance, allocated to P3. The

resource R3 has three instances � two instances are allocated to P2, one instance is free. The process

P2 is requesting an instance of R1, the processes P1 and P2 have enough resources and can work.

⑦P1
♥ ⑦P2

♥ ⑦P3
♥

R1 R2 R3
r r r r r r

⑦P1
♥ ⑦P2

♥ ⑦P3
♥

R1 R2 R3
r r r r r r

Figure 7.1: Resource-allocation graphs without deadlock

The request may be approved after the process P3 releases its resource from R2. It is possible,

because P3 can work, it is not waiting for resources.

The right picture in Figure 7.1 is a bit di�erent � two processes are requesting for resourcess (P1

and P2). P1 is requesting for the resource belonging to P2, and P2 is requesting for the resource which

one instance is belonging to P1. There is this cycle in the graph: P1 → R2 → P2 → R1 → P1.

But it is not deadlock � if the process P3 releases its instance of R1, the request of P2 can be

approved and the cycle is away. ⑦P1
♥ ⑦P2

♥ ⑦P3
♥

R1 R2 R3
r r r r r r

Figure 7.2: Resource-allocation graph with deadlock

Chapter 7 Deadlock 112

Figure 7.2 shows the graph with deadlock. There is a cycle in this picture: P1 → R2 → P2 →
R1 → P1, all allocated instances in R1 and R2 belong to the processes P1 and P2 (so they mutually

wait each other) and there is no way to break it, if the allocation is non-preemptive.
M

� Remark

The existence of a cycle in the resource-allocation graph is a necessary, but not a su�cient condition

for deadlock.
�

7.1.3 Deadlock Conditions

✎✎ Deadlock is not something we would meet commonly. In order for it to come, certain conditions

must be met:

Mutual exclusion. There are some unshareable resources in the system (only one process can use such

resources). If we have no unshareable resources, deadlock cannot occure.

Hold and wait. A process must be holding a resource and waiting for an additional resource currently

held by another process.

No preemption. Resources cannot be preempted; a process releases the resource after it completes its

task (system is not able to release resources). If resource allocation can be preempted (i.e. if

system can release a resource in order to allocate it for another process), deadlock canno occure.

Circular wait. A set {P0, P1, . . . , Pn} of waiting processes must exist where P0 = Pn and each process

Pi is waiting for a resource held by Pi+1 for 0 ≤ i ≤ (n− 1).

The last condition is implication of the previous conditions.

C Tasks

Look at the system � does this picture describe deadlock?
⑦P1
♥

R1 R2
r r r r

⑦P2
♥ ⑦P3

♥ ⑦P4
♥

C

7.2 Deadlock Treating

✎✎ As we can see, the deadlock is very problematic state of a system. What shall we do with it?

� Prevention in design � we prevent deadlock by designing the system so that it cannot enter the

deadlock state.

� Avoidance (prevention by checking) � we avoid the deadlock state by checking current state after

each request for a resource.

� Detection and recovery � we allow to enter the deadlock state, but we detect it and recover.

Chapter 7 Deadlock 113

� Ignoring � we ignore possibility of deadlock, a user will solve it himself.

Let us look at the �rst three possibilities.

7.3 Prevention

Deadlock prevention is set of methods consisting in excluding at least one of the deadlock conditions

(subsection 7.1.3). We will go through the particular conditions and the way to use them to prevent

deadlock.

✎✎ Mutual exclusion. If unshareable resources (where synchronization is necessary) are a problem,

we will try to ensure that all resources are shareable.

Files open for writing are unshareable. Some of them can be open for reading only, this operation

may not be synchronized. But this solution is not applicable to all �les.

There is another solution for some other resources: creating an access interface, a special process

that will have dedicated access to the resource, other processes will only access this resource through

this special process.

This solution is commonly used for printers. The role of the special process here is ful�lled by the

operating system's print service (e.g. Print Spooler in Windows, cupsd in Linux). This service manages

the print queue. If a process needs to print a document, it passes its print job to the print service and

does not have to wait for the request to be handled.

⇒ This condition can be eliminated only partialy.

✎✎ Hold and wait. To avoid this condition, a requesting process does not hold any other resources.

There are two possibilities:

1. The �rst possibility is to allow processes to request resources only when they are newly created

(in the �new� state), and later they can no longer request for resources. So only the �rst system

calls are of the type �request for resources�. When a process performs any di�erent system call,

requests for resources are forbidden. This possibility is not suitable for most types of resources

in the current operating systems.

2. The second possibility is to allow processes to request resources only after releasing all previously

assigned resources. It is suitable only for some resources which may not be owned all the time

(e.g. CPU time for the given process may not be continuous, and no information is lost when

leaving CPU, if the process context is saved).

Some resource classes can be managed according to the �rst possibility, some of the remaining classes

according to the second possibility.

⇒ This condition can be eliminated only partialy too, it is not possible to release some resources, and

some resources are needful simultaneously, e.g. memory frames when their content is necessary for

using another requested resource. Resources assigned by the �rst possibility are used in a non-optimal

way � the owning process is not motivated to release them.

✎✎ No preemption. The solution for this problem is to aassign some resources preemptively. This

method is only suitable for those classes of resources that can be released without the risk of damage to

the process. The previous method was similar, but non-preemptive (the processes deliberately release

Chapter 7 Deadlock 114

resources, with cooperation), while in this method, the resources are released without cooperation of

the processes.

Preemption is used for such resources as a process CPU time (CPU scheduling) or page fault

exception (virtual memory management): in general, for resources whose state can be saved and restored

later.

One of methods suitable for preemptively accessed resources is to preemptively release resources

only on demand.

M Example

Denote R1, Rx resources, P, Q are processes where P is requesting for R1:

if (is_free(R1))

{

assign (P, R1)

}

else if (exists Q: (belongs(R1,Q) && exists Rx: (is_waiting_for(Q,Rx)))

{

release (R1)

assign (P, R1)

}

If the resource R1 requested by a process is free, the resource is allocated to that process. If not, we

�nd out the process owning the requested tool, it is Q. If Q owns another resources, the resource R1 is

preemptively released (we suppose that Q can request this resource later) and allocated to the requesting

process.
M

⇒ This condition can be eliminated only partialy too, for the resources eligible to preemptively release.

✎✎ Circular wait. To avoid this condition, we determine a total ordering of all resource classes,

where each process may request only in an increasing order.

Let us de�ne a function order(class) returning the order number of the given class, so

order: class → N .

M Example

If a process holds resources belonging to classes R1, R4, R5 and is requesting a resource from R8, it is

allowed, because order(R8) > max(order(R1), order(R4), order(R5)).
M

The second possibility to solve this problem is the requirement that a process requesting a particular

resource has to release all resources belonging to the higher order classes beforehand.

The order for resources is used (often in form of recommendation) mainly for synchronization

objects.

⇒ This condition can be eliminated only partialy. The �rst possibility prescribes the order in which

the resources need to be requested, the second possibility is dynamic version of the �rst one. In any

case, the success of the method depends on determining the order of the classes.

The method is practically applicable only to synchronization objects, with only one instance in

each class (ie, we work with individual synchronization objects, not classes, we determine their order).

Chapter 7 Deadlock 115

7.4 Avoidance

When using this method, processes are not forced to release prematurely the allocated resources, but

the principle is to estimate when the allocation of additional resources could cause a deadlock and delay

that allocation.

7.4.1 Safe State

✎✎ The algorithms in this section require that each process declares the maximum number of resources

of each class to possibly request in future. This information is used in simulation to verify that allocation

of another requested resource would not result in a deadlock.

✎✎ A safe sequence for the current allocation state is the sequence of processes {P1, . . . , Pn} where for

each Pi, the maximal resource requests (as mentioned above) can be satis�ed by the currently available

resources increased with the resources held (and released) by the processes Pj for 1 ≤ j < i.

The safe sequence can be constructed in simulation where we nondeterministically choose the order

of P1, . . . such as a process Pi may wait for resources held by the previous processes, but must not wait

for resources held by the following processes.

✎✎ A system is in a safe state if there exists a safe sequence, so if there is at least one resource allocation

order in which all processes can successfully complete their activity without deadlock.

A state that is not safe (i.e. a system is in an unsafe state) does not necessarily mean deadlock,

but may lead to it.

7.4.2 Resource-Allocation Graph Algorithm

A variant of the above described graph can be used to avoid deadlock, but only in case of resources

where each class has exactly one instance.

Besides the stated edge types, we use one additional edge type: a claim edge, leading from a process

to a resource, but unlike the request edge, it is dotted and determines that the process is claiming the

resource in the future (it does not need it now, but it declared that it will probably need later).

Claim edges for a particular process arise when the process is created. If the process requests a

resource to which the claim edge is leading from it (it cannot request the resource to which the claim

edge does not lead), the claim edge changes to the assignment edge (the edge orientation changes too),

and when released, changes to the claim edge again (re-orientation).

Claim edges for a particular process arise when we run this process if the process requests a resource

to which the claim edge is leading from it (it cannot request the resource to which the claim edge does

not); the resource changes to the resource allocation edge (the edge orientation changes), and when

released, changes to the claim edge again (including re-orientation).

A request edge can be changed to an allocation edge (and hence a resource is allocated) only when

the change does not create a circle � the change means changing the orientation of the edge. Therefore,

the algorithm only simulates the change of edge orientation and starts the circle detection procedure

on the graph.

Chapter 7 Deadlock 116

M Example

Figure 7.3 shows a resource-allocation graph with two processes and three resources (each with one

instance, so we do not depict it). ⑦P1
♥ ⑦P2

♥

R1 R2 R3

Figure 7.3: Resource-Allocation Graph for avoidance algorithm

The process P1 is requesting the resource R2, and in future this process will request the process

R1. The process P2 has R2 and R3 allocated, and in future it probably will need the resource R1.

Suppose that P2 can use the resource R1. In the simulation, we change the claim edge to the

assignment edge, as we can see in Figure 7.4.⑦P1
♥ ⑦P2

♥

R1 R2 R3

Figure 7.4: Resource-Allocation Graph for avoidance algorithm

There is no cycle in the graf, so deadlock will not occure and the resource can be allocated to P2.

In case the resource allocation was risky (it could lead to a deadlock), the �tested� edge would

change to the request edge.
M

� Remark

If we have exactly one instance in each class (and therefore we don't work with classes but directly with

resources), the existence of a cycle in the graph is a necessary and su�cient condition for deadlock.

The algorithm is simple � we only change one edge and use the graph algorithm to search a cycle.
�

7.4.3 Banker's Algorithm

In case of resources where multiple instances can be in classes, the graph algorithm is not applicable.

We can use the banker's algorithm.

Each process must announce when it is started how many resources it will need for its activity.

Whenever a process requests for resources, the system will �nd out how much other processes might

need, and allocates them only if it considers that allocating the requested resources will not lead to an

unsafe state.

Chapter 7 Deadlock 117

✄✄ Suppose that there are n processes and m di�erent classes of resources. We need the following data

structures:

AVAILABLE � a vector of length m which indicates the number of free (available) instances for each class

of resources.

ALLOCATION � an n×mmatrix deteriming the number of resources of each class currently allocated to the

particular processes. This matrix can be understood as the vector of vectors, where ALLOCATION[i]

is a vector of all resources allocated to the given process Pi. This matrix corresponds to the

allocation edges in the resource-allocation graph.

MAX � an n × m matrix determining the maximum demand of each process, it is the number of the

remaining resources needed by the particular processes to complete their work.

NEED � an n×m matrix for the �future needs� of the particular processes. This matrix corresponds to

the claim edges in the resource-allocation graph.

It is obvious that NEED[i][j] == MAX[i][j] - ALLOCATION[i][j].

After the process is started, the appropriate matrix line in MAX is �lled with information about how

much of resources it will require in future.

� Remark

We will use the ≤ relation (or <= in code) for vectors de�ned as follows: let V1 and V2 be vectors of the

length m. V1 ≤ V2 if and only if ∀i(V1[i] ≤ V2[i]), 1 ≤ i ≤ m. In words: the �rst vector is less than or

equal to the second vector if all its elements are smaller or equal to elements with the same index of

the second vector.
�

✎✎ The safety algorithm. This sub-algorithm (function) of the banker's algorithm tests if the

current system state is safe. We need two additional structures:

WORK � a vector of length m indicating the available resources during simulation.

FINISH � a vector of length n of the values true/false, the value FINISH[i] = true means that the

process Pi has �nished its work during simulation and its resources can be allocated to another

processes.

Initialization:

� WORK = AVAILABLE

� for (i=0; i<n; i++) FINISH[i] = false (for all processes Pi)

Iterative simulation:

1. Find an index i such that the both the following conditions are ful�lled:

� FINISH[i] == false (the i-th process has not been not ��nished� yet)

� NEED[i] <= WORK (its �future� needs can be met)

If no such process exists go to step 3.

2. WORK += ALLOCATION[i]

FINISH[i] = true

Go to step 1.

3. If FINISH[i] == true for all i (all processes have been ��nished� during the simulation), then the

system is in a safe state.

Chapter 7 Deadlock 118

✎✎ The resource-request algorithm. The main part of the banker's algorithm is used whenever

a process is requesting for a resource. We need one additional structure:

REQUEST � an n×m matrix for requests of processes. This matrix corresponds to the request edges in

the resource-allocation graph. REQUEST[i] contains all the requests of the i-th process.

When the i-th process requests for a resource (and this request is set to the vector REQUEST[i]), these

steps are performed:

1. If REQUEST[i] <= NEED[i], go to the next step. Otherwise, refuse (e.g. raise an exception), because

the process exceeded its declared maximum needs.

2. If REQUEST[i] <= AVAILABLE[i], go to the next step. Otherwise, suspend Pi to a waiting state,

there are not enough resources.

3. Beginning of simulation. Modify the structures as follows:

AVAILABLE - = REQUEST[i] (available resources are decresed by the required resources)

ALLOCATION[i] + = REQUEST[i] (resources are allocated for simulation purposes)

NEED[i] - = REQUEST[i]

4. Test if the system is in the safe state (the previous algorithm).

� The state is safe: do REQUEST[i] = (0,0,...,0), all the requested resources are allocated.

� The state is unsafe: return all changes made in the previous step, the request data remain

in the vector REQUEST[i].

7.5 Detection

Again, we distinguish two cases: the �rst method (using a graph) is for a system where there is just

one resource inside each resource class, the second method (modi�cation of the banker's algorithm) for

a system where multiple instances are allowed in resource classes.

7.5.1 Wait-for Graph

A wait-for graph intercepts the interactions between processes (a process waits for another process to

release a resource). As we are only interested in what process has been trapped at the moment, we do

not need information about which resources the processes are waiting for (it is easier to detect a cycle).

M Example

We can make the wait-for graph by collapsing the resource-allocation graph, as we can see in Figures

7.5 and 7.6. ⑦P1
♥ ⑦P2

♥

R1 R2

=⇒ ⑦P1
♥ ⑦P2

♥

Figure 7.5: Resource-allocation graph and the corresponding wait-for graph, without deadlock

Chapter 7 Deadlock 119

⑦P1
♥ ⑦P2

♥

R1 R2

=⇒ ⑦P1
♥ ⑦P2

♥

Figure 7.6: Resource-allocation graph and the corresponding wait-for graph, with deadlock

M

7.5.2 Banker's Detection Algorithm

This algorithm is similar to the �full� banker's algorithm, but it only detects existing deadlock. The

used structures are similar, but processes need not declare their �future� needs.

✄✄ We need the following data structures:

AVAILABLE � a vector of length m which indicates the number of free (available) instances for each class

of resources.

ALLOCATION � an n×mmatrix deteriming the number of resources of each class currently allocated to the

particular processes. This matrix corresponds to the allocation edges in the resource-allocation

graph.

REQUEST � an n × m matrix for requests of the particular processes. This matrix corresponds to the

request edges in the resource-allocation graph.

✄✄ We need two additional structures for each simulation:

WORK � a vector of length m indicating the available resources during simulation.

FINISH � a vector of length n of the values true/false, the value FINISH[i] = true means that the

process Pi has �nished its work during simulation and its resources can be allocated to another

processes.

Initialization:

� WORK = AVAILABLE

� for (i=0; i<n; i++) FINISH[i] = false (for all processes Pi)

Iterative simulation:

1. Find an index i such that the both the following conditions are ful�lled:

� FINISH[i] == false (the i-th process is not �nished yet)

� REQUEST[i] <= WORK (its �future� needs can be met)

If no such process exists go to step 3.

2. WORK += ALLOCATION[i]

FINISH[i] = true

Go to step 1.

3. If FINISH[i] == false for some i (some processes are not ��nished� during the simulation), then

the system is in an unsafe state, and the processes with �false� in the vector FINISH are deadlocked.

Chapter 7 Deadlock 120

7.6 Recovery from Deadlock

The deadlock detection algorithm cannot be run too often, it is possible to run it at regular intervals

or hang it on an event when CPU usage falls below a speci�ed level.

✄✄ If we work with resources non-preemptively, the only solution is to terminate processes as long

as there is a deadlock state, the resources of terminated processes are released and allocated to other

processes.

Again, it is important to choose the victim(s) because a forcibly terminated process cannot, of

course, complete its work. There are processes that can be terminated and then restarted without the

risk of data loss or data inconsistency.

The system must specify conditions for terminating deadlocked processes. For example:

� using priority of processes,

� type of processes (interactive or batch, system or user),

� if the resources can be accessed preemptively,

� amount of resources used by a process,

� how long a process has computed,. . .

✄✄ With the preemptive work with resources, we gradually release the resources that are allocated to

the deadlocked processes, and allocate them to other processes until the deadlock is removed.

The key is the choice of the victim(s) � the processes that will gradually loose their resources, and

it should also be ensured that, after deadlock elimination, these processes can gradually recover the

resources and be allowed to complete their work.

So, these issues need to be addressed:

� Victim selection: which resources of which processes are to be preempted? It is necessary to

minimize cost.

� Rollback : when releasing resources of some process the given proces must remain in a safe state,

so we need to ensure that the process can continue its work after a certain waiting.

� Starvation: if deadlocks occur frequently, it is possible that some process becomes a victim

repeatedly. So we have to make sure that when a deadlock situation is repeated, some process is

not choosen too often.

� Remark

Common operating systems such as Windows and UNIX systems ignore deadlocks, there is possibility

of deadlock detection. Windows is able to use deadlock detection only for drivers � in Windows XP

and later versions.
�

Chapter 8
I/O Management

 Quick preview: In this chapter, we will �rst look at the structure of the I/O system, the types

of peripherals, the drivers, and then brie�y discuss the issue of low-level access to peripherals using

interrupts.

¤ Keywords: I/O system, peripherals, bu�ering, drivers, driver models, kernel-mode drivers, user-

mode drivers, device �le, IRQ, interrupt handling.

➸➸ Objectives: The aim of this chapter is to become familiar with the principle of I/O device man-

agement, especially to get into the issue of drivers and interrupt management.

8.1 I/O Devices

8.1.1 Types of I/O Devices

We distinguish various types of I/O devices � type of working or communication (some of these types

are related to a device interface).

✎✎ Character-stream or block: Character-stream devices transfer bytes or words � as a continuous

data stream. Character-stream devices are e.g. a terminal, keyboard, mouse.

Block devices transfer blocks of data, similar to packets, attached with metadata. Examples of

block devices are HDDs, SSD, RAM disks (for temporary data).

✎✎ Sequential or random access: If a sequential device needs to work with data at a particular

address, it must �rst pass through all the addresses between the current and the searched location, it

cannot be moved directly to the destination. A random access device can move to that address directly.

Magnetic tapes are sequential, whereas disks or semiconductor memories are random access devices.

✎✎ Synchronous or asynchronous: A synchronously communicating device is synchronized with

other communicating devices using the same clock signal. An asynchronously communicating device

uses its own clock, it must be synchronized with remaining devices on the bus by a special signal when

initializing the device and then continuously during transmission.

Storage devices are synchronous devices, a keyboard is asynchronous.

121

Chapter 8 I/O Management 122

✎✎ Sharable or dedicated: A sharable device can be used by multiple processes simultaneously,

access to a dedicated device must be synchronized by some of the synchronization mechanisms.

Fully shared devices are e.g. keyboard, mouse, timer. A fully dedicated device is a printer. Shared

devices can be partitioned, with a di�erent process accessing each (dedicated) part, such as memory

with page frames.

✎✎ Device speed. Various devices have various speed parameters: bandwidth, transfer rate, seek

time, latency,. . . These parameters are also related to the I/O interface.

✎✎ I/O operation direction. A process can read from an input device, write to an output device,

and some devices allow the both types of operations.

A simple keyboard is an input device, a printer (without scanner) is an output device, a touch

screen or multifunction printer enables the both reading and writing: it is an input-output device.

8.1.2 I/O System

The role of the I/O System (I/O kernel subsystem, respectively) is to manage and control I/O devices.

✎✎ A device communicates with a computer via a connection point � port, socket, shared memory, etc.

Further, the communication line continues with a bus (PCI Express, SATA, Thunderbolt, memory bus,

etc.).

A controller is an integrated circuit (on a PCB or a separate chip) designed to communicate with

connected devices. The controller is either simple, or it can be a circuit comparable to a conventional

processor. For SSD controllers, ARM chips have often been used recently.

The next level of the communication hierarchy consists of device drivers and device �rmware.

Drivers can be accessed directly only by kernel modules (and they are usually kernel models themselves);

common processes have to use a system call when necessary.

Depending on the particular operating system, we may also encounter other components involved in

communication between I/O devices and processes. For example, in the kernel, I/O Scheduler typically

handles access requests of processes.

✎✎ When a process (a thread) performs a system call with impact to a device (e.g. �le access, memory

allocation), the I/O request is generated. This request is put into the queue of the device by the I/O

scheduler.

The kernel maintains the device status information in the device-status table. For each device, its

status and all pending I/O requests are in its table entry.

✎✎ I/O handling. A processor needs to be informed about I/O request, status of request handling,

and ful�lling the request. The I/O system accesses devices in one of the following ways:

� Program-driven I/O uses a special process or routine that has full control over access to de-

vices. This process periodically checks the device status table, and ensures all the corresponding

operations (discovering I/O request, passing the request to the I/O scheduler,. . .).

The problem is the checking loop, the process spends too much time by waiting in this loop.

� Interrupt-driven I/O does not check any table, but the processor is informed of all phases (in-

cluding con�rmation of operation completion from the device) by interruption.

Chapter 8 I/O Management 123

8.1.3 I/O Bu�ering

✎✎ A bu�er is a memory storing data being transferred between two devices or between a device and

a process.

The most common reason for using a bu�er is to balance communication between two devices

operating at very di�erent speeds, for example, a �le to be printed after being sent from the print

queue is waiting in the printer bu�er, or a large �le to be sent to the network is waiting in the network

interface bu�er. Bu�ering is used in the communication in the producer-consument model.

Another reason is to equalize the di�erence in the size of the processed blocks (or bus width), or

the need to complete a larger block before handing over to the target device.

✎✎ Sometimes it is necessary to use multiple bu�ers. For example, if a single bu�er is not su�cient to

balance the device's speed (a sender is too fast), we will use an additional bu�er, and alternate the two

additional bu�ers in communication.

In advanced graphics methods, we use at least two bu�ers in video memory � a frame is gradually

processed in the back bu�er, and then moved to the front bu�er (to send through a graphical interface

into a display).

Three bu�ers are sometimes needed to synchronize communication between CPU and GPU in

video memory, and the I/O interface. The both these units, and I/O transfer work in parallel, the

CPU encodes operations to create a display frame and the GPU executes them to generate a frame.

Each vertex bu�er (front, �rst back and second back) holds information for one frame, multiple frames

are completed in parallel without data hazard and delay. Figure 8.1 shows using three bu�ers for this

purpose.

Figure 8.1: Triple bu�er model in V-sync1

� Remark

Beside bu�er, we also use cache. What is the di�erence between bu�er and cache? All transmitted data

passes through the bu�er in the original order, and can also be completed there. In contrast, cache

needs mapping function and predictive algorithms, data is only copied between two locations, cache is

placed between them.
�

� Additional information

� https://www.displayninja.com/what-is-freesync/

� https://lifehacker.com/learn-the-basics-of-nvidias-g-sync-and-amds-freesync-mo-1831578473
�

1From: https://developer.apple.com/documentation/metal/synchronization/cpu_and_gpu_synchronization

https://www.displayninja.com/what-is-freesync/
https://lifehacker.com/learn-the-basics-of-nvidias-g-sync-and-amds-freesync-mo-1831578473
https://developer.apple.com/documentation/metal/synchronization/cpu_and_gpu_synchronization

Chapter 8 I/O Management 124

8.2 Device Drivers

A device driver is a software communicating with a device controler, providing a software interface

to a hardware device. A driver enables kernel to access functions of the device without knowledge of

implementation details speci�c to the particular device.

✎✎ Each operating system de�nes certain types of drivers as well as driver architecture. Driver ar-

chitecture determines the driver structure, its interface, the way it communicates with the device, the

kernel modules, or processes.

8.2.1 Drivers in Windows

In Windows, we distinguish di�erent types of drivers according to various criteria. The overall structure

is quite complicated, the description below has been simpli�ed.

✎✎ There are these types of drivers in Windows, two basic models (i.e. how a driver is programmed,

what it can implement and how it communicates with other components):

� WDM (Windows Driver Model) � most drivers of common devices (keyboard, mouse, sound card,

etc.), used since Windows 2000,

� WDDM (Windows Display Driver Model) � special model for multimedia drivers (graphic cards

etc.), used since Windows Vista,

� older drivers (predecessors of WDM) � e.g. PMD (Protected Mode Driver), and RMD (Real

Mode Driver) for very old devices, we do not usually meet them at current systems.

The models WDM and WDDM exist in several versions, their speci�cations may vary slightly.

Figure 8.2: DirectX Diagnostic Tool, display driver information

Chapter 8 I/O Management 125

Figure 8.2 shows the DirectX Diagnostic Tool (to run this tool, use the dxdiag command), its

second tab for diplay driver information, and as we can see, its type is WDDM. The next tab contains

information about sound devices, the driver type is WDM.

✄✄ The driver data can be found in the registery database, the same keys as for services (Windows

handle drivers and services in the same way): in the key HKLM/SYSTEM/CurrentControlSet/services.

Each driver or services has its own key here, and the variables for each key are:

� DisplayName � long name of the driver or service, or the location of this string in some library or

executable �le,

� ImagePath � path leading to the �le of the driver or service (executable �le, .sys �le, library),

� Type � type of service or driver, e.g.

� 1 (Service Kernel Driver) is a device driver working in the kernel mode,

� 2 (Service File System Driver) is a �le system driver (e.g. NTFS),

� 16 (Service Win32 Own Process) is a service with the own process, no other service is inside

its process,

� 32 (Service Win32 Share Process) is a service running in a shared process with multiple

services,

� 272 (Service Win32 Own Process Interactive) similar as 16, but it can work interactively

(e.g. a tool with a window),

� 288 (Service Win32 Share Process Interactive) similar as 32, but it can work interactively,

� Start � when the driver or service should start, e.g.

� 0: a driver or service runs during system boot,

� 1: when the kernel is initialized (after all modules with the value 0),

� 2: automatically after system start,

� 3: it can be started, but not automatically,

� 4: disabled, it is not possible to start this module,

� Tag � ordinal number indicating the order in which drivers and services with the same value in

�Start� are started (it is used only for these modules which depend on other modules, and their

order is important for their dependence),

✎✎ We can divide drivers by code location (or form of communication with system):

� kernel-mode drivers � these drivers are kernel modules, they are mostly loaded from .sys �les,

� user-mode drivers � more similar to services, they usually run inside a host process, mainly in

svchost.exe.

For example, the NTFS �le system driver ntfs.sys runs at kernel mode.

✎✎ Each of these types of drivers has its auxillary subsystem providing their running:

� Kernel-Mode Driver Framework (KMDF) � subsystem for kernel-mode drivers,

� User-Mode Driver Framework (UMDF) � subsystem for user-mode drivers, its part is also the

Driver Manager module providing communication of drivers with processes (similar module exists

for services � SCM, Service Control Manager).

The kernel-mode drivers have better communication capabilities (with all kernel modules including

device drivers), which mainly a�ects communication throughput (it is not necessary to switch between

Chapter 8 I/O Management 126

Figure 8.3: Threads of the System process in Process Explorer

kernel mode and user mode as often), but on the other hand, they are at risk for the kernel � whatever

goes wrong in the kernel, it a�ects the entire system (blue screen, etc.).

As we can see in Figure 8.3, many kernel-mode drivers work as one or more system process threads,

here, for example, the ACPI.sys driver runs as a thread with the priority 8 (normal).

✎✎ There are two types of drivers according to the installation method :

� Plug-and-Play drivers � they are related to a speci�c device that makes sense to consider this

function (removable media, some types of expansion cards, keyboards, mice, printers, etc.), and

communication with the power manager is also assumed for these devices,

� non-Plug-and-Play drivers � they are usually not hardware-related, or they are, but they commu-

nicate with the associated device via another driver (typically communication protocol drivers).

� Remark

When installing a driver (not only a device driver), above all, the system needs an .inf �le containing

driver information, compatibility (e.g. supported OS version), installation �le location, and installation

method including registery keys to change or add. Many drivers, in particular the general drivers,

have their .inf �les in the ...\Windows\Inf folder. If the appropriate �le is not found, then the driver

installation �le is not available and we are asked to supply a driver (again, the location of some .inf

�le must be provided).

Chapter 8 I/O Management 127

The .inf �les are text �les with the standardized structure, similar to .ini �les. They are divided

into sections, each section has its name (written in square brackets), and inside each section there are

value settings (of the form variable = value). The .pnf �les (with the same name) are the binary

version of the .inf �les.

We can explore the �les e.g. disk.inf (generic disk driver information), display.inf (generic

display driver info), netip6.ini (IPv6 support driver info) or winusb.inf (USB support driver info).
�

✎✎ The WDM drivers can be divided according to their function in the system, and to integration into

the kernel communication structure:

� function drivers � these drivers communicate directly with the particular device, their task is to

provide an interface to the device,

� bus drivers � manage buses (such as a PCI or USB driver), these drivers detect Plug-and-Play

devices connected to the bus, ensure bus power, etc.,

� �lter drivers � a�ect communication from or to a function driver, thus either extend functionality

of the linked function driver or change it in some way; e.g. encryption, conversion, monitoring,

�le systems handling, etc.

✎✎ Device drivers (the function drivers in general) are divided into classes. Each class has its own

characteristic procedures, functions and data structures (e.g. class for storage media). Each class has

its standard driver which allows to access devices from di�erent vendors in a standardized way so that

the device works even if its features are not fully utilized.

� Most �full� drivers consist of two parts:

� a port driver � this part implements all standard features for such driver class (thus this driver is

common for all devices of the same class),

� a miniport driver � this part implements vendor-speci�c and device-speci�c features.

� Additional information

� https://msdn.microsoft.com/en-us/windows/hardware/drivers/wdf/overview-of-the-umdf

� https://msdn.microsoft.com/en-us/windows/hardware/drivers/wdf/user-mode-driver-framework-frequently-asked-

questions

� http://technet.microsoft.com/en-us/library/cc778056%28WS.10%29.aspx
�

8.2.2 Drivers in Linux

✎✎ There are several types of drivers in Linux:

� device drivers � drivers of existing devices,

� �le system drivers � all �le system needs its driver,

� network protocols � modules wit network protocols implementation.

✎✎ There are two basic types of drivers by code location:

� kernel-space drivers � work as kernel modules,

� user-space drivers � they work in the user space as services/daemons, and they cooperate with

an �agent� providing access to kernel resources.

https://msdn.microsoft.com/en-us/windows/hardware/drivers/wdf/overview-of-the-umdf
https://msdn.microsoft.com/en-us/windows/hardware/drivers/wdf/user-mode-driver-framework-frequently-asked-questions
https://msdn.microsoft.com/en-us/windows/hardware/drivers/wdf/user-mode-driver-framework-frequently-asked-questions
http://technet.microsoft.com/en-us/library/cc778056

Chapter 8 I/O Management 128

The �rst type of drivers has the advantage of having direct access to kernel structures and various

communication options with other kernel modules, but on the other hand, their code needs to be

thoroughly debugged because any error could fatally a�ect the kernel's operation. It is necessary to

take great care to use mutexes, spinlocks and other synchronization mechanisms, in addition to locking

also unlocking, to thoroughly analyze anything that comes from outside (such as an input device)

because it could be a hacker attack.

The modules are stored in the .ko �les (kernel object), inside the �les

/lib/modules/kernel_version /kernel/drivers/class_of_module /name_of_module.ko.

In contrast, drivers running in the user space have the advantage of minor security issues (but this

does not mean that their programming might be fuzzy), but on the other hand they need a way into

the kernel. This is mostly done by the FUSE kernel module (FileSystem in UserSpace), which acts as

the mediator for communication with the kernel.

� Remark

A huge number of drivers are being handled today through FUSE (File System in User Space, but it is

not only for �le systems), just for security reasons (and also easier to program, libraries with pre-built

code are available). These are mostly used just as a data �lter (all of which are actually in the UNIX

systems as a �le system), also for encryption, compression, logging, etc. Besides Linux, other UNIX or

UNIX-like systems use FUSE: FreeBSD, OpenSolaris and others.

Examples of projects using the FUSE module: ntfs-3g (NTFS �le system driver), EncFS (�le

system for encryption), FuseCompress (compression, among others, using the gzip algorithm), ClamFS

(antivirus �le access control), sshfs (SSH implementation), etc.
�

� Additional information

� https://github.com/libfuse/libfuse/wiki/Filesystems (not all projects)

� https://developer.ibm.com/articles/l-fuse/
�

Other disadvantages of user-space drivers are similar to those of conventional processes, such as their

memory pages can be swapped. Their communication with anything in the kernel is slower (it is

necessary to switch between modes) � this can be seen, for example, with Gigabit Ethernet cards, if

their drivers are designed in this way.

✄✄ Several commands for working with (kernel-space) drivers and other kernel modules:

� /sbin/lsmod � list of modules loaded into the kernel, with the basic properties,

� /sbin/modprobe � getting information about modules loaded in kernel, including their dependen-

cies, and it can the both load and remove a module into/from the kernel,

� /sbin/modinfo name_of_module � basic module information.

Modules can be started with parameters, especially watchdogs (modules guarding some device and

system property) use this option.

M Example

The lsmod command lists all currently loaded kernel modules and the list is very long. If we are looking

for something speci�c, it is a good idea to �lter the output. For example:

https://github.com/libfuse/libfuse/wiki/Filesystems
https://developer.ibm.com/articles/l-fuse/

Chapter 8 I/O Management 129

lsmod | grep wifi

iwlwifi 188416 1 iwldvm

cfg80211 524288 3 iwlwifi,mac80211,iwldvm

It lists the name of the module, its size, how many other kernel modules it is used by, and which ones

they are. More detailed information about the iwlwifi module can be obtained as follows:

modinfo iwlwifi

It will list the name and location of the module �le, license, description, dependencies on other modules,

as well as digital signature information (kernel modules need a digital signature) and other information.

M

✎✎ Each device (including virtual devices) has its driver (or multiple devices can share one driver).

Each device has also its device �le � the low-level communication interface (so when we need to pass

data to some device, we write to its device �le, and when we need to receive data from the device, we

read them from its device �le, and that all using standard system input/output calls). The device �le

name serves as the identi�cation of the device in the user space.

In the kernel space, devices are identi�ed by two numbers: the major and minor number. The

major number determines the class of the device (thus, all disks belong to the same class, so they have

the same major number), the minor number is an index of the device, various devices at the same class

have di�erent minor numbers.

M Example

The major and minor device number can be seen in the following command listing:

ls -la /dev
M

The character devices (a keyboard, a mouse, etc.) are identi�ed in the user space only by their device

�les, we do not need any other information. The block devices (a disk, a disk partition) are a bit more

demanding: we need

� a device �le for low-level access and identi�cation,

� a mount point through which the contents of the storage medium (�les) are available.

Linux includes all partitions and removable media in a single abstract tree, and the mount point of

a partition or media is a subdirectory through which a user or process can access �les on that partition or

media. The root of the tree is denoted by / (slash), and this symbol is used for separation of directories

of a path in this tree. The main partition with Linux installed in is mounted to the mount point /.

If we have e.g. users' home directories in the separate partition, the mount point for this partition is

/home (or if it is not a separate partition, this directory is simply a common directory). The mount

point intended for removable media is /media, all these mount points are here, e.g. /mount/usbflash

can be used for a USB �ash disk contents (the �les are accessed in the subtree of this node).

Some devices are not �physical�, they are only virtual. Some of them are used by users:

� /dev/null is a trash can � everything we write into is discarded, we use this output device to

redirect unwanted output or error output of commands,

� /dev/random and /dev/urandom are input devices generating random numbers,

� /dev/zero is input device generating zeros (zero-value bytes).

Chapter 8 I/O Management 130

/

bin dev etc home root lib proc tmp usr var media . . .

john clara martin . . . usb diskC . . .

Figure 8.4: Simple structure of directories in Linux

✎✎ The kernel must ensure that access to devices is as abstract as possible � so that processes do not

need to address the technical details of each category of devices. Until recently, in Linux, the HAL

(Hardware Abstraction Layer, abstraction of access) module, in conjunction with udev (dynamic device

handling) module, performed this task, but all newer kernels use udev only, it assumed the role of HAL

as well.

✎✎ Device information can be found in a virtual system called sysfs. This �le system is mounted to

the /sys directory, and contains running information about devices. Its subdirectories hold information

according to various criteria:

� /sys/devices � physical relations among devices (connections among devices),

� /sys/bus � information and structure related to buses (PCI, USB, . . .),

� /sys/class � information and structure related to classes (device types),

� /sys/block � access to block devices, mainly disks,

� /sys/power � low-level access to the power management.

� Remark

If you want to access a (physical) USB �ash drive inside a virtual machine, this is possible. In the case

of VirtualBox, you need to have Virtual Box Extensions installed, and the procedure for a speci�c USB

�ash drive is outlined in the �gure below (of course �rst connect the given �ash drive).

Figure 8.5: USB �ash drive inside VirtualBox

�

Chapter 8 I/O Management 131

8.3 Interrupts and Exceptions

8.3.1 Mechanism of Interrupts and Exceptions

✎✎ The term interrupt is understood as an interruption of the normal running of a process (the sequence

of executed instructions of its program). In a multitask system, the interrupt causes a change in the

state of the running process (the processor may be removed), but only after the �nishing of the currently

processed instruction.

Interrupts can be generated either by hardware, then we are talking about hardware interrupt,

these interrupts have assigned numbers IRQ (Interrupt Request), or software by the operating system,

then it is software interrupt.

Hardware interrupts are, for example, generated by I/O devices such as the keyboard (key press)

or mouse (movement or button press), but also by the processor, interrupts generated by a timer (at

regular intervals, preset in advance), in the case of hardware implementation of memory protection, an

interrupt is generated by the processor in case of unauthorized access to protected memory.

Software interrupts are generated by a process, e.g. when requesting a resource (including output

to the screen) or when trying to invoke an event and thus its service routine (within a process or even by

another process or operating system), or by the operating system, e.g. when a system security violation

occurs, or a page fault.

The basic characteristic of interrupts is that they come �unexpectedly�, without direct relation to

the program code being executed.

✎✎ An Exception is similar to an interrupt (it noti�es a situation that needs to be responded to), but

unlike an interrupt, it results from the code being executed and would be generated again if the same

code is repeated in the same situation (running the same processes, etc.) with the same data.

We also distinguish between hardware and software exceptions (e.g. a divide-by-zero error is a

software exception, a bus error is a hardware exception) � although for hardware exceptions the line

between exception and interrupt is unclear.

✎✎ In the operating system kernel we can �nd interrupt handler module, which handles interrupts from

the point of view of the operating system.

8.3.2 Interrupt Handling

✎✎ In order to send interrupt signals to the processor, the device must register interrupt handling

routine, and the same applies to exceptions. The interrupt handler contains the code to be executed

when the device generates this interrupt.

The handling routine must not block the processor for long, and since it also often has the permission

to access synchronized kernel objects, strict requirements are placed on it:

� must be as short as possible,

� to use only static data structures,

� atomic operations.

If code that does not meet the requirements needs to be executed, it can be split into parts:

� upper part (must be executed immediately, matches handler requirements),

� lower part (time-consuming but not critical operations, etc.).

Chapter 8 I/O Management 132

The lower part (the less critical part) can be implemented in several di�erent ways (depending on the

speci�c operating system), usually having less priority on the processor than the interrupt handler

itself, but more than the normal processes.

✎✎ Under certain circumstances, interrupts intended for a given process must not be handled (i.e. they

must be ignored), e.g. for synchronization reasons, then we speak of interrupt ban. Disabled interrupts

are masked (masked interrupts are ignored), but some interrupts cannot be masked and the process

must receive a message about them (e.g. division by zero). This means that interrupts can be divided

into two groups:

� maskable interrupt � this includes most interrupts from various devices,

� nonmaskable interrupt (NMI) � never masked, for example interrupts indicating hardware prob-

lems, and on UNIX systems interrupts causing a reboot after a system has frozen.

� On UNIX systems, shared interrupts cannot be masked. Masking is usually applied to one speci�c

interrupt, although it is possible to disable all interrupts that can be disabled locally (on a single

processor or core) at once. It is recommended to disable a single interrupt only in absolutely unavoidable

cases, and it is even more recommended to avoid interrupt masking in general if possible.

8.3.3 Managing Interrupts in Various Systems

� MS-DOS. Peripheral management must �rst ensure that interrupts are handled correctly. In

the simplest case, this is done by interrupt vectors specifying the address of the handling routine. In

MS-DOS, interrupt handling is performed as follows:

� for each interrupt is de�ned program code (handler), which is to be executed in case this interrupt

is generated,

� the interrupt vector is an ordered pair (a vector of two elements) [segment,o�set] that speci�es the

address in memory (i.e. it's actually a pointer) where this program code is, and if we know where

to look for this vector, then we can easily execute the handler for the interrupt that occurred,

� interrupt vectors are stored starting from an address that is known not only to the system but

also to all programs, each vector contains two entries, each taking up 2 B, so in total the vector

takes up 4 B of memory,

� vectors are stacked in a table of interrupt vectors, so when we know the number of interrupts that

occurred (interrupts are numbered from 0), we just do the calculation

starting address + interrupt number ∗4,

we get the address where the interrupt vector is with the address of the code serving the interrupt

with that number,

� if an interrupt is generated, the program execution is interrupted and the interrupt handler

speci�ed by the vector is processed, then the program execution can resume.

✎✎ Linux. After each instruction is executed, the processor determines whether an interrupt was

generated during its execution and, if so, proceeds as follows:

1. A running process is interrupted and placed in a queue, its context is saved.

Chapter 8 I/O Management 133

2. Control is taken over by the operating system, or its interrupt handler module, which �nds out

what the interrupt is and creates a data structure with data related to the interrupt (type, how

it was invoked, related data, . . .), if such structures are required.

3. If the interrupt channel for a given IRQ is not shared, the handler is called directly, but if the

channel is shared, all handlers registered to that channel are called in turn until the processor is

noti�ed that the interrupt has been serviced The

⇒ part of the handler should be to determine if the interrupt is indeed coming from a device belonging

to that driver.

4. After the handling procedure is executed, the processor is assigned to one of the prepared processes

(it can be the same one that was interrupted).

As written above, the (more complex) driver can be split into two parts � an upper critical one, which

must be done now, and a lower less critical one, which �can wait�. The lower part can be implemented

in several di�erent ways. The most common are the follows:

� tasklet (time criticality somewhere between handler and normal process, priority slightly lower

than handler), runs as software interrupt on the same processor as the original interrupt,

� work queue (priority lower, similar to normal processes), runs in the context of a kernel thread,

is normally scheduled on any processor,

� execution within a system call, that is, in the context of a normal process (no matter the speed).

✎✎ The basis of the interrupt table is Interrupt Descriptor Table (IDT, it is fully in the control of the

operating system), the same as the MS-DOS interrupt vector table � for each interrupt there is all the

necessary information, but there is a bit more information. For each interrupt, we keep track of the

handler addresses (including the necessary data, it's a concatenated list, each entry has a pointer to the

next), as well as status information, statistical information, and a spinlock to provide sequential calls

to the handlers.

This is a concatenated list because multiple registrations (multiple registered devices) can be asso-

ciated with a single IRQ � sharing � and it is necessary to have handling routines and other information

stored for all of these registrations.

✎✎ Windows. In Windows in general, much of what was written above about Linux applies to

interrupts, but with some di�erences.

When sharing interrupts, it is also necessary to keep a full list of records for each IRQ, and if an

interrupt comes with a speci�c IRQ, one speci�c (correct) handler must be started. While in UNIX

systems, the handlers registered to a given IRQ are run sequentially, and each must test whether or not

the interrupt came from it, in Windows it is instead a query is sent over the bus to determine which

device actually sent the signal, and only that single handler is started.

8.4 Running Non-Native Applications

Non-native applications are applications intended for a di�erent operating system.

✎✎ The programs we can use for this purpose can be divided into several groups:

� virtual machine � simulates a computer (it can be a completely di�erent HW platform than the

one on which the system runs �in real�), we can have any number of other operating systems

installed on this computer that we have a license for,

Chapter 8 I/O Management 134

� operating system emulator � simulates a particular operating system,

� subsystem to run applications of another operating system.

8.4.1 Virtual Machine

Each of these programs has its own typical features, for example there are emulators used purely to

emulate a speci�c hardware platform (for Amiga, ZX Spectrum, PowerPC, etc. � used mainly by

programmers of these devices, game consoles, etc.) or allowing to choose between several platforms

(installation of a new platform is then done by installing the appropriate module), or with the choice

of HW platform we choose the operating system (on some platforms �not to choose from�, for example

with Amiga).

✎✎ Some products support paravirtualization. The emulator does not need to virtualize the hardware,

but only creates a communication interface within the host system that translates the hardware requests

from the guest (internal) operating system into requests that the actual computer hardware understands.

This technology requires direct support in the host operating system and must be added by modifying

the kernel. In the case of open-source operating systems, this is not a problem, but only Microsoft's

virtualization solutions can run paravirtualization on Windows as the host system.

✎✎ Current processors include hardware support for virtualization (but its support is also required

for other hardware, especially motherboards and network cards). If the virtualization solution runs

on top of a processor that supports virtualization, the di�erence in response between the real (host)

and virtualized operating system is smaller. If the internal operating system is 64-bit, then hardware

support is practically necessary.

Hardware support must be enabled in the BIOS/UEFI. If the virtual machine refuses to run a 64-

bit guest system, the reason may be that the hardware support for virtualization is disabled (it can

happen, for example, after some Windows update).

The most well-known solutions:

� VMWare Workstation, VMWare Player runs on both Windows and Linux (host systems), virtu-

ally any can be installed inside as guest systems. It is one of the best and most popular universal

simulators, commercial (there is a freeware version for personal non-commercial use).

VMWare's products have traditionally been at the forefront of development in this area � this is

where virtualization began.

� VirtualBox is a free product from Sun, running on Windows, Linux and macOS. Windows, Linux

and various UNIX systems can run inside.

� MS Virtual PC is distributed by Microsoft (it was originally developed by another company,

Microsoft bought this company), it runs only under Windows, commercial. In the latest versions,

only running various versions of Windows as guest (internal systems) is o�cially supported,

uno�cially Linux can be installed on this product, but at your own risk. The con�guration

options are rather sub-average, and even surprisingly does not support Direct3D.

� Xen takes the hardware platform from the computer it runs on, otherwise we can install any

operating systems . Freely distributable, for Linux and some other UNIX systems.

� Qemu is fast and easy to use, while being able to emulate di�erent hardware architectures. It

runs on Linux, Windows and macOS and is freely available.

Chapter 8 I/O Management 135

✎✎ Hypervisor. Especially in data centers, we can see full (native) virtualization. This means that

the lowest layer of the whole system (closest to the hardware) is not the kernel of an operating system,

but there is hypervisor � a thin layer that is basically similar to the kernel. None of the installed

operating systems are preferred (at least for most of these solutions).

The virtual machines and their speci�c operating systems then run on top of the hypervisor. The

hypervisor is actually the interface that provides transparency to the operating systems. All hardware

requests from the operating systems are routed to the hypervisor, and the systems enclosed in the

virtual machines do not interact with each other and do not �see� each other (but can communicate

with each other over the virtualized network).

Figure 8.6: Type-1 and type-2 hypervisor2

Type-1 hypervisor is just a native hypervisor. Type-2 hypervisor is an application-level virtualiza-

tion solution installed on an operating system (e.g. VirtualBox).

Products o�ering a native hypervisor are

� VMWare ESXi Server,

� Citrix XenServer,

� Microsoft Hyper-V for Windows,

� KVM as the kernel module for Linux.

8.4.2 Operating System Emulators and Subsystems

These programs simulate the running of a speci�c operating system, so we do not have to install the

new operating system itself.

If an operating system with everything (almost) is emulated, we can work with everything in this

operating system, including con�guration. However, if it is a subsystem, the purpose is primarily to be

able to run non-native applications.

We only install applications that we want to run virtually, using the tools provided by the emulator

(subsystem). We must already have a license for the applications if the license terms require it (EULA,

etc.).

2From: https://microkerneldude.�les.wordpress.com/2012/01/type1-vs-2.png

https://microkerneldude.files.wordpress.com/2012/01/type1-vs-2.png

Chapter 8 I/O Management 136

Examples of emulators and subsystems:

� Wine is actually a recursive abbreviation of �Wine Is Not Emulator�. The authors used this

name to emphasize that they did not intend to emulate Windows, but only to allow programs

written for Windows to run on UNIX systems. It is a custom implementation of the Win API

(the interface, the translation layer between the application and the kernel of the real operating

system).

The Wine developers' site has an extensive list of programs, possible problems when running

them through Wine, and solutions. Unfortunately, some programs cannot be run this way or

have unrecoverable problems (but these are exceptions). The programs, and their individual

versions, are sorted into groups according to the di�culty of running them in Wine � platinum,

gold, silver, bronze and others.

� CygWin is similar to Wine, but works as a subsystem in Windows to run Linux applications (a

set of libraries plus an API translation mechanism). It is freely available and is often used even

when we want to use Linux tools on Windows (including the shell).

CygWin includes a lot of di�erent tools (word processing, programming tools, networking, even

a graphical environment, and many more), and during installation we decide which of these tools

to install.

In Windows 10 and 11 we can run WSL (Windows Subsystem for Linux), which is an emulation of

several speci�c Linux distributions. Unlike other virtualization solutions, it is a module in the kernel,

which means better system throughput, but on the other hand more risk for the kernel.

8.4.3 Server and Desktop Virtualization

✎✎ Server Virtualization. Server virtualization has already been written about here. This is

basically full (native) virtualization, where the native hypervisor is underneath the entire system kernel

(actually usually several di�erent operating system kernels). Only the hypervisor has direct access to

the hardware and resource allocation mechanism. The kernels of the virtualized operating systems run

on top of the hypervisor.

Thanks to the fact that only the hypervisor has a gateway to access the resources it allocates to

each OS, the individual OSes do not restrict each other, �do not know about each other�. They usually

even run at the same time (we have more than one processor on the server), and a huge advantage is

the ability to run applications native to di�erent OSes without interfering with each other.

Products: VMWare ESXi Server (also VMWare vSphere and other related products), Citrix

XenServer, Microsoft Hyper-V.

✎✎ Desktop Virtualization. The datastore stores generic or personalized desktop images (full OS

and application installations). The user has either a thin client or any computer with the appropriate

software (dedicated software or a speci�ed web client, depending on the solution). The user �logins�

into the corporate network, working remotely with �his� desktop.

There are two variants � centralized and distributed. In the centralized variant, the data center

processor works primarily (hypervisor principle), only the interface is on the client side. In the second

case, the client works on a full-�edged computer, where it runs its desktop image (images can also be

distributed on removable media).

Chapter 8 I/O Management 137

The purpose of desktop virtualization is primarily the possibility of simple mass management of

desktops, the ability to run the same desktop on di�erent devices according to the current position,

and with remote access also the ability to work from home on the same desktop.

Again, we encounter mainly VMWare, Citrix, Microsoft products.

Chapter 9
Storage Media

 Quick preview: This chapter is devoted to block devices, primarily storage media. We will cover

their structure, directories, and �le systems intended for Windows and Linux.

¤ Keywords: Storage media, partition, MBR, GPT, directory, �le system, attribute, journaling,

FAT, NTFS, exFAT, VFS, ext4, virtual �le systems, UDF.

➸➸ Objectives: The goal of this chapter is to get an overview of data organization on storage, especially

various �le systems.

9.1 Disks

Block devices, including disks, are characterized by the fact that data blocks are transferred, metain-

formation is required (data is more complex), block devices are the random-access devices, and the seek

operation can be used.

✎✎ Disks can be attached in these two ways:

� host-attached storage (local),

� network-attached storage (over network, NAS).

The interfaces used for local disks and SSDs are SATA, eSATA, M.2 (or older mSATA), USB, Thun-

derbolt, SAS. The interfaces used for NAS devices are simply the network interfaces (Ethernet, Wi-�,

etc.), and it can be possible to transfer (local) disk operations over network: e.g. SCSI operations can

be transmitted over network using the iSCSI interface, or the Fibre Channel technology can be used.

FB is more expansive, but with better throughput, and iSCSI can be implemented in software (Linux

has the iSCSI driver installed, and it is possible to load it into Windows as well).

9.1.1 Disk Format

✎✎ A disk can be divided into several partitions. A partition can be set as active, usually when an

operating system is installed on it. We have a �le system on each partition, such as NTFS (Windows),

ext4fs (Linux), HFS+ or newly APFS (Apple MacOS), ZFS (BSD systems, Solaris), swap (Linux for a

swap partition).

138

Chapter 9 Storage Media 139

✎✎ There are two common disk formats: MBR and GPT.

� MBR (Master Boot Record) disks have a maximum of 4 primary partitions, one of which can be

extended. Any number of logical disks can be chained in an extended partition (but e.g. Windows

cannot be installed on a logical disk, it must be on the primary partition).

� GPT (GUID Partition Table) disks can contain up to 128 partitions, no extended partitions are

used.

✎✎ MBR disk structure. Only numbers that �t in 32 bits can be stored in address �elds in

structures on a MBR disk � if we use the LBA addressing (see below). For this reason, the maximum

partition size is only about 2 TiB, and the partition start address must also �t in 32 bits (i.e. the last

partition on the disk must start at about 2 TiB and its size is not more than 2 TiB, the total size

4 TiB).

Figure 9.1 shows common structure of a MBR disk where the third primary partition is extended.

MBR is the main sector of the disk. Here we can �nd the main boot record (BIOS instructions

that tell a CPU what should happen when an operating system has to be booted), and the partition

table. The main boot record detects which partition is marked as active, and then attempts to boot

the operating system from this partition (starts the partition's boot program). If multiple operating

systems are installed, there is a boot manager in the main boot record, this program allows to choose

one of multiple installed operating systems. If only one operating system is installed, the �rst part of

the boot loader of such operating system is here.

The Partition Table occupies 64 B on the disk. It has four entries (one for each primary partition

B
S

M
B
R

︷ ︸︸ ︷Primary
partition 1

B
S

Primary
partition 2︷ ︸︸ ︷ Extended partition (Prim. 3)︷ ︸︸ ︷ Primary

partition 4︷ ︸︸ ︷
B
S

E
B
R

B
S︸ ︷︷ ︸
Logical disk

E
B
R

B
S︸ ︷︷ ︸

Logical disk

E
B
R

B
S︸ ︷︷ ︸
Logical disk︸ ︷︷ ︸

included ext. partition︸ ︷︷ ︸
included ext. partition

ppp

pppppppppppp

ppp

ppp

ppp

pppppppppppppppppppp

pppppppppppppppppppp
pppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppp

ppp

ppp

pppppppppp
ppppppppppppppppp
ppppppp

Windows:

C: D: F: G: H: E:

Linux:

/dev/sda

/dev/sda1 /dev/sda2 /dev/sda3 /dev/sda4

/dev/sda5 /dev/sda6 /dev/sda7

MacOS:

/dev/disk0

/dev/disk0s1 /dev/disk0s2 /dev/disk0s3 /dev/disk0s4

/dev/disk0s3a /dev/disk0s3b /dev/disk0s3c

Figure 9.1: MBR disk structure and notation in various operating systems

Chapter 9 Storage Media 140

� the extended partition is also considered primary), For each entry, the following information is about

the corresponding primary partition:

� if this partition is active (hexadecimal number 0×80) or not (the number 0),
� location of the boot sector of the partition (the start address of the partition),

� type of the partition (extended, or what �le system is present, each �le system has its identi�cation

number),

� other metrics (the ending address of the partition, number of sectors from MBR till begin of the

partition, length of the partition in sectors).

BS (Boot Sector) is the boot sector of the partition. If an operating system is installed in the partition,

the main part of the boot loader of the system is here.

EBR (Extended Boot Record) is similar to MBR, there is the extended partition table here with

two entries: one for the included logical disk and one for either second included logical disk, or for

another included extended partition. The included extended partition can either contain one logical

disk, or be divided into two logical disks, or be divided between one logical disk and one included

extended partition, etc.

Each logical disk has its own boot sector.

� Remark

Figure 9.1 shows names of the special �les of the partitions in Linux and MacOS. BSD systems and

Solaris use a bit more complicated hierarchy, with one additional level (it is de�ned for the ZFS �le

system):

� the special �les for disks are denoted by /dev/ad0, /dev/ad1,. . . for SATA disks, /dev/da0,

/dev/da1,. . . for SCSI/SAS and USB disks,

� each disk is divided into slices, the slices for the �rst disk (SATA) ared denoted by /dev/ad0s1,

/dev/ad0s2,. . . , e.g. the second slice from the fourth SAS disk is /dev/da3s2,

� each slice is divided into partitions, the special �les for partitions have a distinctive letter in

addition to the special �les of slices, e.g. /dev/ad0s2a is the special �le of the �rst (�a�) partition

at the second (�s2�) slice of the �rst (�ad0�) SATA disk.
�

� Additional information

� http://linuxbsdos.com/2014/11/08/a-beginners-guide-to-disks-and-disk-partitions-in-linux/

� https://www.freebsd.org/doc/handbook/disk-organization.html

� https://developer.ibm.com/tutorials/l-lpic1-102-1/
�

✎✎ GPT disk structure. GPT is part of the UEFI standard from Intel. This is a 64-bit concept,

giving more options for addressing (that is, partitions can be very large). GPT only uses LBA addressing

(CHS is not supported at all), see below.

We can have up to 128 partitions on one GPT disk. One partition can be up to 9.4× 1021 B = 8

ZiB, but so large partitions are not supported by operating systems (i.e. an operating system would

have a problem with using and addressing this partition), for example, Windows can handle no more

than 18EB partition.

http://linuxbsdos.com/2014/11/08/a-beginners-guide-to-disks-and-disk-partitions-in-linux/
https://www.freebsd.org/doc/handbook/disk-organization.html
https://developer.ibm.com/tutorials/l-lpic1-102-1/

Chapter 9 Storage Media 141

Protective MBR (1 sektor)

the rest of GPT header (33 sectors)

partitions

copy of the GPT header (34 sectors)

Table 9.1: Basic structure of a GPT disk

The structure of the GPT disk is shown in Figure 9.1. The GPT table takes up 34 sectors, one of

them is called Protective MBR and its purpose is to ensure compatibility with older non-GPT systems.

An operating system not supporting GPT considers such a disk to be a single-partition MBR disk with

unreadable data. The rest of the GPT header is the primary GPT table.

� The primary GPT table contains the following information:

� GPT version, length of the header,

� checksum of the header (this �els is counted as with zero value),

� LBA address of this and the backup GPT header (the backup header is at the end of the disk),

� LBA address of the �rst partition, and the last LBA address usable for partitions (i.e. the last

sector before the backup GPT table),

� GUID number of the disk,

� information about partitions (the array of entries with information about the particular partitions,

before these entries we can �nd information about this array � the number of entries, etc.).

In the array of entries with information about partitions, there are entries with the following informa-

tion:

� the GUID number of the type of the partition, then the GUID number of the partition (16 B

each),

� LBA addresses of the begin and end of the partition (8 B each),

� attributes (8 B), e.g. read-only, system, hidden,

� name of the partition (72 B).

The partitions follow, and the last part of the disk is the backup GPT header (copy of the primary

GPT header).

9.1.2 Addressing

Each sector of a magnetic disk has its own address, and there are two types of addressing: CHS and

LBA.

✎✎ Cylinder-Head-Sector (CHS) is old addressing scheme based on the disk structure. An address of

a sector is a vector of three numbers � the number of the cylinder where the sector is located in, the

number of the platter (= the read-write head for this platter; the �rst two numbers take the track) and

the number of the sector at this track. The cylinder closest to the edge is numbered by 0.

Chapter 9 Storage Media 142

This adressing scheme is not used now, it has one signi�cant disadvantage: we have three numbers,

thus three limits resulting from the way in which the BIOS, controllers, and interfaces use and store

these three numbers.

� The old IDE (PATA) allowed to address only 512 B, with the 512B sector length. Its successor,

EIDE, allows to address 1024 B. The next generation, XCHS (eXtended CHS), is able to address 8 GB.

✎✎ Logical Block Addressing (LBA) is strictly linear addressing scheme, it does not take into account

disk geometry. The sectors are numbered from 0, we start at the track closest the edge.

There are some limits set for this platform. The oldest LBA used 28 bits per address (228 sectors,

128 GB), later versions use 48 bits per address (248 sectors), and it is su�cient for the current large

disks.

✄✄ For MBR disks, the both addressing types can be used, GPT disk are used only with the LBA

addressing type.

� Remark

MBR and GPT format is not �de�nitive�. The MBR disk can be converted to GPT disk, the trans-

formation consists in creating the appropriate metadata structures on the disk (GPT table, etc.). If

nothing is installed on the disk yet, we can boot into a live Linux distribution (i.e. the system is running

from removable media, not from hard disk), and we will execute this change with the command

sgdisk -g /dev/sda (if the given disk has the special �le /dev/sda)

But there are also non-destructive methods, for example, a newer builds of Windows should handle this

change from the graphical interface (in the Disk Management tool, diskmgmt.msc).
�

9.1.3 Scheduling

An I/O request contains the following information:

� whether it is an input or output operation,

� the source/target address of the place to read/write, either LBA or CHS,

� the number of sectors to transfer,

� the corresponding target/source address in memory for the read/write operation.

� The LBA address is converted to the CHS vector, the cylinder part of the address is the most

important for the following algorithms.

FCFS. Suppose that the sequence of I/O requests contains the following cylinder addresses:

85, 170, 25, 130, 10, 140, 60.

and the initial cylinder number is 35. The �rst disk scheduling method uses a simple queue � First-Come

First-Served.

The �nal number of tracked cylinders is a sum of (absolute values of) di�erencies between the

neighbor numbers of cylinders, including the initial cylinder:

|85− 35| + |170− 85| + |25− 170| + |130− 25| + |10− 130| + |140− 10| + |60− 140| = 715

If the given sequence of I/O requests is ful�lled in the original order, it means a lot of head seeking

through many tracks. It would be desirable to rearrange the I/O requirements so that the heads arm

Chapter 9 Storage Media 143

does not have to alternate in both directions (among lower and higher cylinder addresses), or otherwise

optimize the heads path.

SSTF. the Shortest-Seek-Time First (SSTF) algorithm favors requests requiring the shortest heads

seek from the current position.

If the current position is 35, the nearest request is for the address 25. Thus the third request is

moved to the head of the queue, and it is �rst ful�lled. So, the entire queue is rearranged, and if a new

request comes into the queue, it is put in the same meaning. Our queue is rearranged:

25, 10, 60, 85, 130, 140, 170.

The �nal seek time is 185 clusters passed.

The disadvantage of this method is that the order in the queue can change very dynamically

(whenever a new request comes in) and, moreover, requests for farther places may get stuck in the

queue when requests for near addresses are constantly outdated.

If the same address is in the queue twice, the order of these addresses has to be kept.

SCAN. The heads start at the lowest cylinder address and ful�lls the requests from the lowest

address till the highest address (it scans the addresses in their order, not in the order of requests).

When reaching the highest address, the direction is reversed, and the heads scan the addresses from

the highest till the lowest address.

For our example, the �nal order is

60, 85, 130, 140, 170, (max), 25, 10.

(the start position is 35).

C-SCAN. The Circular SCAN algorithm is similar to the previous algorithm, but it does not change

directions. If the heads reach the highest cylinder address it immediately moves to the lowest address,

and the following �circle� begins.

For our example, the �nal order for the initial position 35) is

60, 85, 130, 140, 170, (max), 0, 10, 25.

LOOK and C-LOOK. The previous two algorithms really reach the outer limits (the zero cylin-

der and the maximal number cylinder), but it is not e�ective, these edge addresses are not used for

reading/writting. The optimized forms do not reach the edge addresses, they turn back earlier. For

example, the LOOK algorithm for our sequence:

60, 85, 130, 140, 170, 25, 10.

9.2 File Systems

✎✎ A volume is a part of a disk in which we create a �le system. It can be one partition, or the entire

disk (e.g. USB �ash disk), or several partitions from one or more disks (thus we can use a logical

volume, associating multiple partitions, e.g. with using LVM � Logical Volume Manager).

✎✎ A �le system is set of methods and data structures by which the operating system maintains �le

records. File systems are simple databases that allow access to speci�c data, sorting (to directories),

and keeping track of those data.

Chapter 9 Storage Media 144

9.2.1 File organization and Access mechanism

Suppose that we have a �le containing a sequence of records.

✎✎ File Access. Files can be accessed in one of the following ways:

� sequential access � the records are accessed sequentially, starting on the beginning of the �le,

� random access � the records are accessed randomly, without relations between neighbors, and

without passing the previous records,

� index access � we have an index = sequence of pointers to various records, this index is sorted by

a certain criterion.

✎✎ File organization. There are several methods of �le organization (the way data is stored in

a �le):

� sequential � the records are stored in a particular order, sorted using a key �eld, the records are

accessed in sequence (we have to pass the previous records), this method is suitable for magnetic

tapes,

� serial � the sequence of the records is as the original, no sort operation is performed, the records

are accessed in sequence,

� random (direct) � the records are stored in random locations with no relationship between neigh-

bor records, so they are accessed directly without passing the previous records, e.g. optical disks

are of this type, this method can be used for magnetic and optical media,

� indexed-sequential �le organization � the records are stored in the sequential order, they are

accessed sequentially but using an index.

✎✎ File attributes. Besides data, each �le needs some metadata, e.g. name, creator/owner, secu-

rity information for access protection, �ags (read-only �ag, system �ag, hidden �ag, archive �ag,. . .),

timestamps (time of creation, time of last modi�cation, etc.), current size,. . .

✎✎ File operations. We can manipulate with �les using the following operations:

� Create � the �le is created with no data,

� Delete,

� Open, Close,

� Read, Write, or Get, Put,

� Append � we can add data to the end of the �le,

� Seek � carry the �le pointer to a speci�ed place inside �le,

� Get Attributes, Set Attributes,

� Rename,

� Lock, Unlock.

9.2.2 Directories

✎✎ Files are organized in directories. Directories are containers for �les and other (nested) directories

� subdirectories.

Usually, a directory contains information about the �les that are embedded in it, including their

physical location on the disk (address), hence the name. Because a directory is actually a collection

Chapter 9 Storage Media 145

of �le data, in many operating systems it is also transparently understood as a �le, albeit with special

meaning.

✎✎ Directories form a structure that takes on varying degrees of complexity. The directory that contains

everything else on the media is called root. We distinguish the following types of directory structures:

Single-level directory � only one directory exists, all �les are contained in it. This concept was used by

the CP/M system.

Two-level directory � the root directory contains directories, but these directories can contain only

�les, no nested directories. The directories are used for users separation, each user has its own

directory.

Tree-structured directory � directories can be nested, each directory can contain subdirectories, the

entire structure is a tree with one root. This structure is used by Windows.

Acyclic-graph directory � in addition to the tree structure, it adds the ability to have �les and some

directories stored in multiple directories, so more than one path can lead to some items. It is

necessary to ensure acyclicity so that the search algorithm does not loop around.

An item (�le or subdirectory) is physically only at one address that can be listed in multiple

directories. The main advantage is easy access to the same �le from di�erent directories.

It is used in UNIX �le systems.

General graph directory � there may be more than one path to items, and cycles are allowed, as opposed

to the previous solution. This type is used only as a virtual superstructure for simpler structures.

For example, it may be a symbolic link system in UNIX �le systems or Windows shortcuts.

These links are short �les with information about the actual address of the item and possibly

other information.

✄✄ The acyclic directory structure may cause the retention of acyclic graph problem while adding new

addresses to directories. This can be addressed in several ways.

The easiest way is to limit multiple addressing to �les (to exclude directories) � there may be only

a �le in multiple directories, not a directory (that is, when creating alternative paths, they can only

lead to common �les, not directories), or we can add some directories with special signi�cance to this

mechanism.

For example, in UNIX systems, an alternative paths can be created only for �les, not for directories,

but the implicit directories . (pointer to the current directory) and .. (pointer to the parent directory)

exist as the alternative paths in each directory. The searching algorithm ignores �dot� paths, thus it

does not loop.

✄✄ Furthermore, in this acyclic structure, when deleting items, it is necessary to ensure non-existence

of orphans without any location. UNIX systems use this solution:

Each �le has a counter that captures the number of links to that entry. When deleting an item, its

counter is decremented by 1. If, after this reduction, it is 0, the item is physically deleted, otherwise it

is left.

9.2.3 File Sharing

Each �le has its owner (for common �les and directories, the owner is mainly the creator, for system

�les, it is a system account or a main administrator). The owner usually has maximal access privileges.

Chapter 9 Storage Media 146

(a) Two-level directory:

��������? ?
����

��������?

?

?

?

�
�
�
�

�
�
�

���

A
A
A
A
A
A
A
AAU

(b) Tree-structured directory:

����
�
�
�
��� ����?

�
��	

�
�

���

����
�
�
�

���

����?

����
A
A
A
AAU

A
A
A
AAU

Q
Q

QQs

����
�

�
�

��+

����
A
A
AAU

(c) Acyclic-graph directory:

����
�
�
�
��� ����?

A
AAU

�
��	

�
�
���

�
�
�
�
���

����
�

�
�
���

A
A
A
A
A
A
AU ����?

����
A
A
A
AAU

A
A
A
AAU

Q
Q

QQs

����
�

�
�

��+

����
A
A
AAU

(d) General graph directory:

����
�
�
�
��� ����?

A
AAU

�
��	

�
�

���

�
�
�
�
���

����
�
�
�

���

A
A
A
A
A
A
AU ����?

����
A
A
A
AAU

A
A
A
AAU

Q
Q

QQs

����
�

�
�

��+

����
A
A
AAU

�

Figure 9.2: Directory structures

Then, other users and groups of users can have assigned certained permissions, so access to such

�le is shared among multiple users.

Some �le systems can be handled remotely. For UNIX systems, it is the NFS �le system, supporting

�le sharing over computer network.

In Windows we can use CIFS for sharing in the local network. CIFS is implementation of the SMB

speci�cation, and another implementation is Samba, supported in UNIX systems, so it is possible to

share �les, printers, etc. in a local network among computers with various operating systems.

9.2.4 Journaling File Systems

A journaling �le system is a �le system that retains information about ongoing operations.

✎✎ Each operation (such as saving a �le), called a transaction, is subdivided into atomic sub-operations,

and whenever a sub-operation is performed, the record is written to a special �le or other structure,

which is usually called a journal (or a �le system log �le). When a sequence of sub-operations of a

transaction is written to the journal, this sequence of sub-operations is progressively performed, and

Chapter 9 Storage Media 147

each sub-operation is noted to have been performed.

After all the sub-operations of the operation have been performed, the corresponding sequence of

records is deleted, i.e. the journal contains only information about operations in progress.

If there is a power outage, the working process is killed, or the �le system is otherwise interrupted,

all journal entries are rolled back in the reverse order, so any un�nished operations are canceled. The

goal is to bring the �le system back into a consistent state.

More advanced journaling also stores the data blocks to work with, not just operations. It means

that the log �le acts as a bu�er in which the result of the performed operation is completed by sub-

operations, and when the result is complete in the bu�er, it is written directly to disk in a single

request.

Examples of journaling �le systems:

� for Windows: NTFS,

� for Linux: ext3fs, ext4fs, XFS, JFS, ReiserFS and others,

� for MacOS: HFS+, APFS,

� for other UNIX systems: ZFS (does not use a traditional journal, the consistent state is ensured

in another way).

Some of these �le systems log only metadata (such as NTFS, and it is default for ext3 and ext4, but

can be changed to full journaling).

9.3 Windows File Systems

✎✎ Files are stored in clusters, one cluster decays over several sectors (4, 8, 16,. . . sectors per cluster).

9.3.1 Older Windows File Systems

FAT stands for File Allocation Table, the system is based on the �le and directory location of the table

at the beginning of the partition. First we look at the structure of the simpler variant (FAT16) and

then we'll show what also works in the newer FAT32.

✎✎ FAT16. Typically, the cluster length for very small partitions is 2 sectors (1 KB), with the

capacity increasing, this value is signi�cantly higher, determined by partition size. The FAT16 �le

system partition structure is as follows:

� boot sektor

� FAT (File Allocation Table)

� the second FAT (copy), if the primary FAT is not correct

� root (main directory of the partition)

� clusters of the remaining directories, numbered from 1, each cluster has its own small entry in

the FAT table

✎✎ Contents of the FAT table. Individual data area clusters are numbered, FAT contains one 2B

record per cluster (hence FAT 16, 2B = 16 bit, but not all possible values are used for cluster numbers,

some are reserved and represent special codes for example for a failed cluster).

The contents of the table entries determine what we �nd in the respective cluster. If the cluster

is free, there is a 0x0000, a defective � the number 0xFFF7 (this number is written here by disk surface

inspection programs).

Chapter 9 Storage Media 148

If a part of a �le or directory is stored in the cluster, the corresponding table entry identi�es the

next cluster (i.e., concatenation for the cluster in which the �le continues). If this is the last cluster of

a �le or directory (and therefore no cluster does not follow), there is a number 0xFFFF in the FAT entry.

M Example

The �le begins at the cluster 0x0021, follows at the clusters 0x0027, 0x0025, 0x0026, 0x0029. The cluster

0x0022 is damaged, the remaining clusters up to 0x002A are free. The FAT table from the entry 0x21

till 0x2A has the following contents:

Index 0021 0022 0023 0024 0025 0026 0027 0028 0029 002A

Contents 0027 FFF7 0000 0000 0026 0029 0025 0000 FFFF 0000

���@
@I

�
���

�
���

Table 9.2: Example of the FAT table contents

M

To load a particular �le (or directory), �rst of all we need to know the cluster number on which it

starts. In the FAT table entry for this cluster, we �nd out on which cluster it continues, in its entry we

�nd the next cluster number, etc.

Chaining clusters can be an advantage (the organization doesn't take up too much space on the

partition), but also a disadvantage (damaging one FAT entry results in losing the rest of the �le).

✎✎ Data area. Under this term we will understand everything that is behind FAT tables, i.e. root

and clusters. Root contains links to directories, directories can contain links to other directories or links

to �les by tree, root can also contain �les. Root can also contain an item of type label, which represents

the partition name.

While a regular �le contains any data, a directory consists of 32B directory entries describing the

�les and subdirectories for that directory, the following information being recorded in the entries:

� �le or subfolder name (8 B),

� �le extension (3 B),

if the entry is for the partition label, this name occupies all the previous 11 bytes,

� attributes (1 B), the particular bits are xxADLSHR where

x no used,

A for archiving,

D directory,

L label,

S system �le or directory,

H hidden,

R read-only.

� creation time and date and last access date (3+2+2 B),

� the number of the �rst cluster of this �le or directory (2 B) the label entry has this value set to 0,

� last change time and date � writing to �le or changing the directory structure (2+2 B),

� length of the �le (number of bytes), not used for labels and directories (set to 0).

Chapter 9 Storage Media 149

If the �rst byte of a directory entry is set to 0, it means the end of this directory (similar to NULL in

dynamic data structures), this entry does not represent any �le/subdirectory.

✎✎ VFAT VFAT is an abbreviation of Virtual FAT and is a FAT16 add-on that adds long �le name

support to the properties of this �le system (also applies to longer �le extensions such as .html) and the

ability to use some other characters (such as national characters) in names, or spaces. It is a virtual

driver through which communication with the FAT16 system goes. This term is also referred to as the

FAT32 system, which has similar characteristics, but internally, without the need for a superstructure.

The name of the �le or directory in VFAT up to 255 characters, some sources indicate that this

length is including the �le path. A limitation is necessary because the �le name (more or less often

including the �le path) is used as a parameter of many programming functions, it must �t in the

storage space de�ned by the data type. Long name support itself is implemented in such a way that

the following entry in the directory is used for a longer name.

✎✎ There are four types of directory entries:

� �les,

� subdirectories (subfolders),

� volume label,

� entry for the extended name of a �le or directory.

The entry for the extended name of a �le or directory has a speci�c form. Length is the same as for

others (32 B) but it contains some additional parameters and 13 Unicode symbols (i.e. each in 2 B) for

the extended name. As with �les, these entries are concatenated (in the FAT table), the next entry in

the string contains an additional 13 characters, . . .

In the original �le or directory entry, the �le name in the 8.3 form is derived from the long conver-

sion name (deleting spaces and others in DOS, or replacing them, the end is cut o� and replaced by

identi�cation �les or directories with the same abbreviated name.

� Remark

In the newer Windows �le systems including NTFS, the short name form 8.3 is sometimes very useful.

If the �le entry is corrupted or created in another operating system (MacOS), no operation with the

full name is allowed, but the short name access is often possible. For example, if we want to delete this

corrupted �le, we can display the short name:

dir /x

(it is in the column before the last one), and the short name can be used e.g. as the parameter of the

del command.
�

✎✎ FAT32 takes all VFAT properties, including long �le name support. We can de�ne di�erent

cluster sizes according to the Windows version:

✎✎ Thus, the FAT table contains cluster entries as 32-bit numbers. When it comes to the records that

determine which cluster the �le or directory continues, in fact they are stored in 28 bits of this number,

the rest is again reserved for special codes. For example:

� 0x00000000, 0x10000000, 0xF0000000 mean that the cluster is free (lower 28 bits are set to 0),

� 0x0FFFFFF7 damaged cluster,

� 0xFFFFFFFF the last cluster of �le or directory.

Chapter 9 Storage Media 150

Volume length Smallest cluster length

512 MB � 8 GB 4 KB

8 GB � 16 GB 8 KB

16 GB � 32 GB 16 KB

32 GB � 2 TB 32 KB = 16 sectors

Table 9.3: The smallest cluster length for FAT32

✎✎ The structure of directory entries is similar to FAT16, except for one thing � the number of the

�rst cluster of a �le or directory is stored here, and for the backward compatibility, it is in the same

place as in FAT16, but the �eld is only 16 bits long, which is little. Therefore, an additional 16-bit �eld

is added a few bytes further, so we have 32 bits in total, but in two di�erent places. The top 16 bits

are in the same place as in FAT16 at o�set 0x14, the bottom 16 bits at o�set 0x1a.

� Remark

What happens when we delete a �le in FAT32? In the entry for this �le, the character 0xE5 is written

in place of the �rst character of the �le name (or 0x05: 0xE5 is commonly used in character sets used

in Japan), and the �eld holding the 16 upper bits of the number of the �rst cluster is zeroed (the �eld

for the lower 16 bits remains). The following �le cluster numbers in the FAT table remain until they

are needed to store new �les.

Figure 9.3: First few

bytes of each PNG �le

When we want to recover a deleted �le, we will �nd all the directory

entries where the �rst byte of the �le name �eld is 0xE5. The lower 16

bits of the �rst cluster �le number are present in the found entry, but the

upper 16 bits must be estimated. The recovery algorithms are based on a

�le extension that speci�es the format, browsing the contents of all clusters

with the corresponding lower 16 bits, and trying to select a cluster that could

be the �rst cluster of that �le. For example, .png images have the string

�PNG� in their contents from the second till the fourth byte.

Because the �rst character of the �le name was overwritten with 0xE5, it is not possible to restore

the �rst letter of the short �le name (but can usually be found from an entry for a long name, if any).
�

� Additional information

� https://www.win.tue.nl/ aeb/linux/fs/fat/fat-1.html

� https://www.cnwrecovery.com/html/fat32.html
�

9.3.2 NTFS

✎✎ NTFS (New Technology File System) is a journaling �le system developed for Windows NT series.

The main requirement in its development was to ensure greater data security, especially the ability to

de�ne access rights for users.

In the NTFS �le system, we have the ability to control �le and folder access by de�ning access

https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html
https://www.cnwrecovery.com/html/fat32.html

Chapter 9 Storage Media 151

rights for di�erent users and groups. Each �le or folder has its Access Control List (ACL) with a list

of users and groups and their access privileges.

✎✎ Properties. NTFS was much inspired by UNIX �le systems and took over much of their

properties. For example:

� everything is a �le, including metadata structures,

� access permissions for users and groups, but di�erent from those in UNIX systems,

� names of �les are in UNICODE (the UTF-8 set),

� using a journal,

� support for hardlinks and softlinks,

� sparse �les � �les with empty areas with no information, e.g. databases, disk images where much

bytes are zero; only the parts of the �le that carry the information occupy disk space.

The hardlinks can be created by the fsutil hardlink create command in the Command line (with

higher access privileges), or in code by the CreateHardLink system call, and there is a counter of

hardlinks for each �le, increasing by this command or system call. They can lead to common �les, not

to directories.

✎✎ Structure. The length of clusters, as in FAT systems, is derived from the volume size (up to 64

KB, i.e. 32 sectors).

Size of volume Size of cluster

512 MB nebo mén¥ 512 B

512 MB � 1 GB 1 KB

1 GB � 2 GB 2 KB

2 GB nebo více 4 KB

Table 9.4: Cluster size for NTFS

Several metadata structures are used inside the NTFS volume, the main important structures are

the following:

$BOOT the boot record for this volume.

$MFT (Master File Table) � records for all �les (including the �les with metadata), each record is

usually about 1 KiB long (can be longer). For each �le, there is a list of �le names (for all

hard links leading to this �le), a timestamp of �le creation, last modi�cation, last access and

last modi�cation of the $MFT record, attributes, security settings (the security descriptor), �le

position in the disk, etc.

$MFTMIRR � the mirror of $MFT, only its �rst four records.

$LOGFILE � the journal �le for the transaction information.

$BITMAP � the array of bits, each cluster has one bit in this array. If the cluster is free (not used),

the corresponding bit is 0, if the cluster is used, the bit is set to 1.

$BADCLUS � the similar array as $BITMAP, but determining the bad (damaged) clusters.

$QUOTA � information about user quotas.

These special �les are invisible in common �le managers.

Chapter 9 Storage Media 152

NTFS prevents fragmentation by searching for the best �tting sequence of clusters (similar to the

BestFit algorithm for memory), so that fragmentation occurs only when it is there too little free space

on the partition (there is no �appropriately large� sequence of clusters) or when a �le is extended and

the number of needed clusters is growing. The main problem would be fragmentation of $MFT; NTFS

solves it by leaving some clusters free around the $MFT, reserving them to the $MFT.

NTFS, in its default form, reduces system throughput. It doesn't matter on faster computers, but

otherwise there are ways to speed up its work. NTFS even updates the last access date and time while

browsing the directory structure. This can be turned o� by �nding the value NtfsDisableLastAccessUpdate

in the registry database and changing it to 1. This adjustment is also very suitable for SSDs.

✎✎ Alternate Data Streams. In the NTFS �le system, we can associate a stream of data (or

multiple streams) with each �le (and folder). Physically, each �le contains at least one (main) stream

that is named by the �le name. Other streams are named only by an additional string and are accessible

through the colon, they are called the alternate data streams (ADS).

We can create an alternate stream either in process, or by redirecting (for example, we can redirect

the output of the echo command).

M Example

We will create a text �le whose main stream will remain empty, and store two other streams.

echo Hello > d:\file.txt:firststring the �rst string is created,

echo Bye > d:\file.txt:secondstring the second string is created,

more < file.txt:firststring the �rst ADS is displayed,

more < file.txt:secondstring the second ADS is displayed,

type file.txt the regular contents of the �le is written, but the main stream is empty � so, this

output is empty too,

dir file.txt information about our �le, its length is 0,

dir /r file.txt the option /r can display all streams, including ADS.

If the �le is copied to another volume and another �le system (FAT32, etc.), the alternate streams are

not copied.
M

9.3.3 exFAT

✎✎ exFAT (Extended FAT) is somewhat di�erent from other Microsoft �le systems. It is optimized for

USB �ash drives and SD cards. It can be said that its properties are somewhere between FAT32 and

NTFS.

It is signi�cantly simpler than NTFS (also faster) and writes fewer metadata to the media, thus

less wears on the �ash chip (we know that �ash memory has a limited lifetime in terms of maximum

write count).

Compared to FAT32, exFAT is able to store larger �les, the size of a volume (partition) may be

larger, also the cluster size (which is related). The speci�cation also includes ACL support, but does

not apply to all supported operating systems. While it supports transactions (journaling), it is only

when this feature is implemented by the device manufacturer.

Chapter 9 Storage Media 153

As with FAT32, there are also FAT tables (in similar terms � clusters chaining), but there are

additional structures. Like NTFS, there is also a structure that records free clusters (it is not in

FAT32).

It is a proprietary �le system. This results in limited support in some operating systems. In general,

exFAT is supported in Windows from Vista SP1 and later. MacOS supports exFAT since version 10.6.5.

There is a FUSE driver for Linux as well.

9.3.4 Protection

Access is permited or denied depending on the applicant and the requested operation (read, write, exe-

cute, append, delete,. . .). The permissions are usually stored as ACLs (Access Control List) specifying

the user or group name and the corresponding privileges (access rights).

In Windows, each �le and directory (folder) has its security descriptor. Users and groups are iden-

ti�ed by their SID (Security ID), and the security descriptor holds SIDs and the relevant permissions,

as we can see in Figure 9.4.

Security descriptor

Owner SID

Assigned group SID

DACL lists

(SID1 ; list-of-permissions-for-SID1)

(SID2 ; list-of-permissions-for-SID2)
...

SACL lists
...

Figure 9.4: Simpli�ed structure of a security descriptor

The permissions are either full access (F), or reading (R), writing (W), changing (C), none (N),

or special privileges for special types of items (for example, listing the contents of a folder for folders).

DACL lists are used to determine access privileges, SACL lists are used to determine accounting (access

logging, etc.).

✎✎ In addition, for folders, we can specify which nested objects will inherit the set permissions (current

folder, subfolders, �les). Rights inheritance is determined as a combination of options

� (OI) � this folder and �les inside

� (CI) � this folder and subfolders inside

� (IO) � exclude this folder (used in combination with the previous strings)

Possible combinations of the previous inheritance settings are in Table 9.5.

The privileges are set either in the graphical environment, or using the cacls command.

✄✄ The CACLS command displays and sets access privileges for the NTFS �le system.

cacls file displays privileges (access lists) for the given �le

cacls * for all �les and directories in the current folder

cacls file /g patrick:r assigns the �read� privilege to the given �le for the user patrick (all previ-

ously set privileges are rewritten!)

Chapter 9 Storage Media 154

String Meaning

empty string only this folder, no inheritance

(OI) this folder and �les inside

(CI) this folder and subfolders inside

(OI)(CI) this folder, �les and subfolders inside (full inheritance)

(OI)(CI)(IO) �les and subfolders inside, but not the folder

(OI)(IO) �les inside, not the folder, not subfolders

(CI)(IO) subfolders inside, not the folder, not �les inside

Table 9.5: Inheritance of privileges in ACLs

cacls file /e /g patrick:w similar, but the previously set privileges remain

cacls *.docx /t /e /g patrick:w the given user will have the write privilege to all .docx �les in the

current folder and its subfolders, recursively, the previous privileges remain

cacls abc.docx /r patrick removes all privileges to the given �le for the given user, the user can

have some privileges as a member of some group if any privileges are de�ned for that group

cacls abc.doc /d patrick sets the privilege �none�, access for this user to the given �le is disabled

M Example

We will play with access privileges. We move to the disk on which we have write rights and create two

nested directories. We will also create a new user and add or remove access permissions.

md example the �rst directory created

cd example move into the directory

md insidedir create the subdirectory

cd.. move one level up (all previous commands can be performed by one command: md example\insidedir)

net user newuser somepassword /add create new user

net user newuser display properties of the new user, including its groups

cacls example display privileges of the new directory, there is an entry for �everyone� (F = full)

cacls example /e /d newuser the new user is not able to use this directory anyway

cacls example /e /g newuser:r we will set the read privilege

cacls example display the privileges

cacls example\inside is the recursion used?

cacls example /e /r newuser we removed the entry with the user entry from the ACL of the security

descriptor

cacls example what is the result?

cacls example /t /e /d newuser similar, but with recursion (/t)

cacls example /t /e /g newuser:r recursively add the read privilege

cacls example what is the result?

cacls example /d newuser ups, we forgot /e, all the privileges (ACLs) are rewritten, we can verity

it by the cacls example command

Chapter 9 Storage Media 155

cd example the message �Access denied� is possibly displayed, no privileges are de�ned

cacls example /e /g everyone:f mistake repaired (access for setting privileges is allowed)

rd /s example clean folders, recursively (/s)

net user newuser /delete clean users list

M

� The newer versions of Windows allow to use the command icacls, originally intended for servers.

Some of the parameters are similar to cacls (e.g. we use /t for recursion), but in general it has

a di�erent syntax.

M Example

The following command

icacls directory /grant:r newUser:r /t

adds read permissions to the user newUser (�r� after /grantmeans adding permissions without overriding

the ones already de�ned, only the second �r� after the user is a read permission), the last parameter

means recursive inheritance.

In addition to regular permissions, we can also work with special permissions:

icacls someFile /grant *S-1-1-0:(d,wdac)

The Everyone group (by default has SID S-1-1-0) is assigned special delete permissions (D, delete) and

the ability to write to lists specifying access permissions to the speci�ed object (�le) � WDAC.

We can also determine inheritance in detail:

icacls someDirectory /grant:r someUser:(OI)(CI)r /T

(We have speci�ed full inheritance, we can use any combination of 9.5. The string (OI)(CI) means that

no inheritance is to be used (do not propagate inherit).
M

✄✄ In PowerShell we can use cmdlets get-acl and set-acl.

M Example

ACLs can be listed as follows:

get-acl c:\windows\system32 | fl

get-acl ~ | fl
M

9.3.5 Handling Partitions and File Systems

✄✄ DISKPART is a program to work with partitions for Windows since Vista and Server 2008. It is an

interactive text console and can be used in both interactive and non-interactive modes.

This command allows us to work with disks and their partitions at an advanced level, including

dynamic volumes and dynamic partitions. Typical tasks are to �nd disk or partition information, create

or delete a partition, create or extend a dynamic volume, work with RAID (mirror), mount, or unmount

a partition.

Some commands are designed to work with a speci�c disk or partition. Before using such commands,

we must �rst select the disk or partition with the select command, the selected disk is called �focused�.

Chapter 9 Storage Media 156

M Example

We will show the basic usage of diskpart.

diskpart we started the program, we are in interactive mode, then we enter the commands for this

program (the prompt is now in the form diskpart>)

list disk the output is the list of all disks (including removable media) with information, each disk

has its identi�cation number (from 0)

select disk 1 the disk #1 is selected, this disk is �focused�

list partition list of all partitions of the focused disk

select partition 3 the partition #3 is selected, focused

delete partition the focused partition is deleted

create partition primary size=18000 a new primary partition is created, with the size 18 000 MB

assign letter=e the letter is assigned, it is possible to mount the created partition into a directory

similarly as in Linux, the command is assign mount=...)

detail disk detailed information about the focused disk

exit

If we don't work in interactive mode, we use a slightly di�erent syntax. Internal commands are

entered using program parameters, for example

diskpart /delete \Device\HardDisk0\Partition1 the disk #0 is selected and the partition #1 is

deleted

diskpart /add \Device\HardDisk0 15000 a new partition is created

diskpart /delete F: the partition with the assigned letter F: is deleted
M

� Additional information

http://support.microsoft.com/kb/300415
�

✄✄ FSUTIL is intended to manage volumes with the NTFS �le system, but it is able to handle FAT32

and exFAT too. It is necessary to have higher privileges to use this program. This command has several

subcommands (key words):

fsutil fsinfo

writes information about disk volumes and �le system:

fsutil fsinfo drives list of mounted volumes, including removable media

fsutil fsinfo drivetype d: information (drive type) about volume with the assigned letter

D:

fsinfo volumeinfo d: more detailed information (name, serial number, �le system, etc.)

fsutil fsinfo ntfsinfo d: if the NTFS �le system is inside, detailed information about this

�le system is displayed (number of sectors, number of clusters, addresses of some metadata,

etc.)

fsutil fsinfo statistics d: statistical information about the volume (assuming the NTFS

�le system) such as the number of reads, the number of writes, etc.

http://support.microsoft.com/kb/300415

Chapter 9 Storage Media 157

fsutil file

working with particular �les (create, �nd, etc.)

fsutil file createnew d:\somefile.txt 10000 the new �le is created, its length is 10 000 B

fsutil file findbysid smith d:\somedir searching a �le with the owner smith, in the direc-

tory d:\somedir (this command can be used if the user quotas are set)

fsutil volume

basic management of a volume � free space detection and disconnection for the selected volume

fsutil volume diskfree d: free space detection

fsutil volume dismount d: disconnection of the volume

fsutil behavior

display or change �le system behavior (ony for NTFS)

fsutil behavior query disablelastaccess we will see if timestamp is enabled or disabled for

each access (whether the last access time entry changes each time a �le is accessed, including

read-only access)

fsutil behavior set disablelastaccess 1 setting the timestamp for each access is disabled

(it is important especially for SSDs)

There are more items that can be detected or set up in this way. The command always contains

either the expression query or set.

fsutil dirty

works with the dirty �ag

fsutil dirty query d: is the dirty �ag set?

fsutil dirty set d: sets the dirty �ag, this volume will be checked during the next system

boot

fsutil hardlink

working with hard links

fsutil hardlink create d:\somedir\newfile.dat c:\someoldpath\oldfile.dat creates a hard

link newfile.dat leading to the �le oldfile.dat

fsutil quota

working with quotas

Quotas set each user a limit on the amount of space they can use for their own �les. Usually there

is a certain threshold that can cause an �alarm�, however, the user may still just a little exceed

fsutil quota query d: displays setting of created quotas

fsutil quota violations displays breaking of set quotas

fsutil quota track d: allows following the quotas

fsutil quota enforce d: allows enforcing the quotas

fsutil quota disable d: disables quotas

fsutil quota modify d: 1024 10000000 smith creates a new quota or changes the existing

one for the given user, the �rst number is threshold, the second parameter is allowed space

for the stated user

Chapter 9 Storage Media 158

Other useful commands working with storage media, for easier access to partitions:

✄✄ subst creates virtual volumes (we specify a letter that will be a substitution for a long name of

a folder)

subst G: Z:\dir1\dir2\dir3 creates a virtual volume with the G: letter assigned, pointing at the

given directory

copy somefile.xxx G: this letter can be used as other volume letters, including the tasks in GUI

subst G: /d deletes the binding between the letter and the directory

After restart, this binding is deleted as well.

✄✄ mountvol creates or distroys a mount point or an assigned letter for a volume

mountvol displays information about volumes (the both mounted and unmounted), the letter or

mount point is displayed for the mounted volumes

mountvol c:\media\firstvolume /L �nds out what is attached to the speci�ed directory (if it is

a mount point for volumes)

mountvol c: /L the same for volumes with an assigned letter

mountvol c:\media\firstvolume \\volumeGUID mounting of volume to the given mount point (direc-

tory), the directory must exist

mountvol c:\media\firstvolume /D the binding is deleted

The volumes we want to mount are labeled as follows:

\\?\Volume{disk_GUID}\

where GUID (Global Unique Identi�er) is the device identi�er, e.g.

\\?\Volume{865f1ff0-a863-11d9-9f02-806d6172696f}\

The mountvol command works close to kernel than the subst command. As a result, we need higher

permissions, the drive labeling is not intuitive, and mountvol does not �see� the virtual volumes created

by subst.

9.3.6 Comparison of Windows File Systems

For the volume size and the maximum possible �le size, see Table 9.6.

Max. volume Number Max. objects Max. �le Max. number
size of clusters in root length of �les

FAT16 2 (4 v NT) GB max. 216 512 4 GB bez 1 B 216

FAT32 512 MB � 2 TB min. 216 65 534 232 B minus 1 B nearly 232

(XP: up to 32 GB)

NTFS 256 TB minus 64 KB 264 − 1 not def. 264 B minus 1 KB 232 − 1

(for 64KB cluster) (XP: 232 − 1) (XP: 244 B

16 TB minus 4 KB minus 64 KB)

(for 4KB cluster)

exFAT 128 PB cca 232 not def. 16 EB not def.

Table 9.6: Comparison of Windows �le systems

�� http://www.ntfs.com/ntfs_vs_fat.htm

http://www.ntfs.com/ntfs_vs_fat.htm

Chapter 9 Storage Media 159

9.4 Linux File Systems

9.4.1 VFS

✎✎ Linux works with virtual �le system (VFS) (Virtual File System), through which all �real� �lesys-

tems are accessible. It is a kernel module through which all disk service calls go, covering �le systems

on all volumes (including removable media) and, if necessary, passing requirements to the particular

�lesystem being worked on. Through VFS, a user also uniquely accesses all devices, and everything is

included in a single root directory structure.

✄✄ If we want to use a volume, we must mount it to VFS either in the graphical interface or in the

console with the command mount. The system partition is already connected at system startup, so

we don't have to worry about it, other volumes on hard disks usually also be connected automatically

(depending on distribution). Removable media is needed to mount, in GUI it is usually resolved

automatically.

✎✎ The most used �le system for common volumes in Linux is ext4fs, but we can meet various �le

systems:

� ReiserFS was popular in the German distros (Open SUSE, etc.), now we can meet it rarely

� XFS, JFS,. . . �le systems for servers

� SquashFS �le system for removable media with Linux installed (Live distributions)

� vfat for FAT32 (most USB �ash disks) or FAT16 with VFAT

� ntfs compatible with NTFS, usually the ntfs-3g driver or similar

� iso9660 for CDs, the same as CDFS for Windows

� UDF for DVDs

� procfs, sysfs, tmpfs, ramfs, devfs, udev virtual �le systems for various purposes, connected to

VFS

� FUSE module for �le systems in user space

� NFS network �le system

� swap �le system for the swap partition

� Remark

At UNIX systems, we say that �everything is a �le�, so directories, devices, sockets, etc. are handled

as �les.
�

9.4.2 File Database Structure

All UNIX/Linux native �le systems use the same type of the �le database structure, originating from

the �rst UNIX �le system.

Each volume with this �le systems is divided into blocks (the same as clusters in Windows) whose

size can be predetermined (usually 4096 B).

✎✎ i-node. Each �le has its information structure called i-node, and its number, unique in the �le

system (volume), called i-node number.

Chapter 9 Storage Media 160

The i-node contains important �le information (owner ID, associated group ID, ACLs, �le length,

number of hard links, create time, last write time, last access time,. . .), and 15 links to blocks. From

these links

� 12 blocks store �le data (level 1),

� 13th block may contain links to blocks that store �le data (level 2),

� 14th block may contain links to blocks containing links to blocks that store �le data (level 3),

� 15th block may contain links to blocks containing links to blocks containing links to blocks that

store �le data (level 4).

The �le uses blocks only till the level that is su�cient. Figure 9.5 shows a shortened structure of links

in an i-node.

. . .

info

i-node

�

�
�
�
���

data

data

Data

inside level 1

. . .

�

data

data

B
B
B
BN

B
BN

Data

inside level 2

. . .

B
B
B
BBN

. . .

�����������1

data

data

����������*

���������:

Data

inside level 3

. . .

��������:

data

data

@
@
@

@R

HHHHj
Data

inside level 3

. . .

C
C
C
C
C
CCW

. . .

Z
Z
Z
Z
Z
ZZ~

. . .

Z
Z
Z
Z
Z
ZZ~

data

data

Z
Z

Z
Z

Z
ZZ~

HHHHHHj

Data

inside level 4

. . .

HHHHHHj

. . .

HHHHHHj

Figure 9.5: i-node structure

M Example

Suppose that address length is 32 bits (4 B), the block length is 1024 B (1 KiB) for simplicity. Let us

look to the possible limits.

� level 1 is su�cient for �les up to 12 288 B (12*1024 B), i.e. 12 KiB, only 1�12 blocks are allocated,

� level 2 is su�cient for �les up to 12 KiB + 256*1024 B = 268 KiB,

� level 3 is su�cient for �les up to 268 KiB + 256*256*1024 B = 65 804 KB = 64 MB + 268 KB,

Chapter 9 Storage Media 161

� level 4 is su�cient for �les up to 65 804 KiB + 256*256*256*1024 B = 16 GB + 64 MB + 268 KB.

This example is only illustrative, in fact, this structure is a bit more complicated and of course it can

be (and probably will be) a larger block size than 1024 B.
M

✎✎ Volume structure. Each volume is divided into blocks. The �rst of these blocks, the bootblock,

contains a boot loader for the system volume.

Other blocks are in groups of blocks. Each group contains a special block, called superblock, with

information about the �le system as a whole (for example, the size of the �le system, the number

of i-nodes � see below, number of blocks,. . .), the group description block follows, then the other

management blocks with the usage of blocks and i-nodes, i-node table, and then data blocks.

The fact that important system information is present in each group, and thus actually backed up,

not only makes the system work more e�cient, but also makes it safer.

Table 9.7 shows a simple structure with the block length 1024 B.

Begin Number of Comment

(block #) blocks

0 1 boot block

group of blocks 0

1 1 superblock

2 1 group description

3 1 the bitmap of the used blocks of the group (1 bit for each block; free

blocks have = 0

4 1 the bitmap of the used i-nodes of the group, the bit of a particular
i-node can be found by its index in the i-node table

5 214 i-node table; the i-node structures are placed here, and each i-node is
uniquely identi�ed by index in this table

219 7974 blocks wit data

group of blocks 1

8193 1 superblock � backup

8194 1 group description

8195 1 the bitmap of the used blocks of the group

8196 1 the bitmap of the used i-nodes of the group

8197 214 i-node table

8408 7974 blocks wit data

group of blocks 2

16385 1 superblock � backup

16386 1 group description

. . .

Table 9.7: Volume structure

As can be seen, some parts of a group of blocks are optional (including the �bitmaps�, they only

fasten searching). Whether a part is present in a group and at where can be found for a volume, it can

Chapter 9 Storage Media 162

be found in the description of the group of blocks (after the super block), and the position of all groups

can be found in the superblock.

The Free space is recorded in a chain list whose structure is similar to i-nodes. In one of the blocks

of a block group, there is an array whose elements refer to free blocks; if the number of these blocks is

above the array's capacity, then one record of that array points to a block that contains links to free

blocks, . . .

✎✎ Directory structure. Every directory can contain �les or other directories. Directories are �les

that contain a list of records. Each record contains an i-node number, record length, �le name, and �le

length. The records are of variable length to use long �le names � if we had a �xed length of record,

there would be a lot of free space in the memory. Directories, like any other structure on a volume,

are also seen as a �le, so they have their own i-nodes and can be spread across multiple blocks just like

other �les.

9.4.3 Hard Links and Soft Links

All common UNIX �le systems allow use of hard links and symbolic (soft) links.

For a hard link, several �le names can be associated with a single i-node and thus all lead to the

same physical �le. In each i-node, there is information about the number of hard links, and this number

is decremented when the �le is deleted in one of the positions (thus, one hard link is destroyed); the

�le is physically deleted only when this number drops to 0, i.e. when all links are already deleted. All

hard links leading to one �le are of equal importance, none of them is the main one.

Hard links have some limitations, which are primarily intended to ensure that a cycle does not

occur in the directory structure graph: a hard link must not point to a directory other than itself and

the parent directory (that is, the allowed links to directories are . and ..), it must also not point to

objects that are in another �le system (such as other volumes).

Soft links contain location of a �le to which they refer. The advantage is the removal of limits

imposed on hard links, the soft link can point to any node in the directory structure, including nodes

inside other �le systems.

Their disadvantage is that when the source of the soft link is deleted, using the corresponding soft

link will throw an error.

✄✄ The both types of links can be created in GUI, and there is one command for the text mode to

work with them:

ln sourcefile [targetfile | target_directory]

creates a hard link, this link increases the number of hard links in the i-node structure of the �le

ln /dir1/dir2/file.pdf . creates a hard link in the current working directory (but the �dot�

is not necessary; when no target directory is set, the current directory is used as the target)

ln first.txt second.txt third.txt /home/someuser three hard links are created inside the

home directory of the stated user

ln first.txt second.txt third.txt ~ the created hard links are in the home directory of the

writing user

ln -s sourcefile [target]

creates a soft link

Chapter 9 Storage Media 163

ln -s /etc/X11/xinit/xinitrc.xfce ~/.xinitrc it changes the desktop environment (GUI)

automatically started after the X Window start, to XFce environment (the script .xinitrc

in the home directory of a user determines the desktop environment for this user, and the

�le xinitrc.xfce is the start �le for XFce)

M Example

We will create a new �le test.xxx in the home directory and then a hard link and a soft link to this

�le.

sarka@sarka-Vostro �$ touch test.xxx

sarka@sarka-Vostro �$ ln test.xxx testhard.xxx

sarka@sarka-Vostro �$ ln -s test.xxx testsym.xxx

The i-node numbers are displayed when using the -i option:

sarka@sarka-Vostro �$ ls -li test*.*

1841021 -rw-r--r-- 2 sarka sarka 0 Apr 15 13:15 testhard.xxx

1843248 lrwxrwxrwx 1 sarka sarka 8 Apr 15 13:16 testsym.xxx -> test.xxx

1841021 -rw-r--r-- 2 sarka sarka 0 Apr 15 13:15 test.xxx

The �rst column is the i-node number. As we can see, the hard link has the same i-node number

as the original �le, the soft link has di�erent i-node number. The length of the hard link is the same

as original (the touch command creates an empty �le), but the soft link has the length 8 Bytes.

The second column begins with one symbol determining the type of �le. For common �les, the

symbol is �-�, for soft links, the symbol is �l�.

The third column holds number of hard links, the testhard.xxx �le has the same value as the

original �le, because this number is stored in the i-node (and the both �les have the same i-node).

The names of these �les are di�erent (may be the same if they are in di�erent directories), because

this information is not in the i-node, it is in the directory record (di�erent for various paths to �le =

hard links).
M

9.4.4 File Systems of the Type extx fs

✎✎ ext2fs All that was written above applies to ext2fs. This �le system is reported to be usable for

partitions of up to 4 TiB. It supports long �le names (up to 255 characters, but this limit can be moved

further if needed). However, this �le system is practically no longer in use today, using its successors

ext3fs, ext4fs.

It only makes sense where speed is more important than maintaining data consistency when it

changes, because it is a bit faster than ext3fs (that is, for directories whose content is changed rarely

but often accessed or accessed for a long time interval, such as the /boot partition). The reason for the

greater speed is that no journal �le is used.

✎✎ ext3fs is an ext2fs enhancement, it is 32-bit �le system. It is backward compatible (more precisely:

compatible in both directions), preserves all ext2 structures, but is also a journaling �le system. If we

have an ext2 �le system on the volume, just create a journaling �le and when rebooting the system, we

Chapter 9 Storage Media 164

can mount the partition as ext3, and vice versa, if we have a volume de�ned as ext3, we can mount it

as ext2 at the next system boot.

✎✎ ext4fs is the newer version, it is 64-bit �le system. It is also backward compatible with certain

limitations. Among other things, ext3 has the following features:

� the limits valid for ext3fs are increased for 64-bit addresses (thus, for 64-bit operating systems),

� the time stamps in the journal �le are more accurate (1 ns),

� is more friendly to �ash memory (including SSDs),

� it is possible to use extents � extent is a collection of multiple consecutive blocks; instead of

a pointer to a data block, a pointer to extent can be used (resulting in the ability to store larger

�les with less fragmentation).

The ext4fs can be mounted as ext3fs, if no extents are used.

9.4.5 Other Journaling File Systems

✎✎ ReiserFS is a journalizing �le system based on the ballanced tree, which speeds up work with

a large number of �les in a directory. Another great feature is that it is possible to store a few small �les

(or the rests of large �les that do not �t in whole blocks) into one block, so there are no unreachable

holes in this �le system. The disadvantage of this property is the ability to reduce system performance,

which partially improves the �le system with various techniques used in database systems. However, it

is a good choice for a system where we work primarily with very small �les.

✎✎ XFS is a journalizing �le system where only metadata are journaling. This increases the �le

system throughput, but it is also the reason that this �le system is unsuitable for deployment on

machines with frequently modi�ed data. XFS is very suitable for those servers where data is mainly

read and not often modi�ed.

It is a 64-bit �le system, optimized for working with large �les, while working with small �les is

not optimal.

It has many interesting features, one of them is the �realtime subvolume�, which allows processes

to reserve an access band at a certain width (Bytes per second) to a �le. This is very practical, for

example, when working with multimedia, where we need constant and fast access to a �le (such as

video).

✎✎ BtrFS (B-tree File System) is one of the latest �le systems by Oracle, designed especially for

servers running on Linux. While it is still in development, it is already part of the Linux kernel of some

distributions.

Compared to ordinary Linux �lesystems, the support for features that are valued mainly on servers

is added � management without unmounting (including defragmentation, balancing � this also suggests

a name, quotas, etc.), creating a snapshot image without unmounting (using redundant �le creation

capability), which can be used to create backups, native RAID 0, 1 and 10 support, use of checksums,

transparent compression, etc. Other features are planned, including encryption. The I/O operation is

optimized using a B-tree, after which it is also named.

BtrFS is considered an alternative to ZFS from Sun (ZFS is distributed under the CDFS license,

which is incompatible with the GNU GPL, so ZFS support cannot be implemented directly into the

Linux kernel).

Chapter 9 Storage Media 165

✎✎ SquashFS is a compressed read-only �le system, it compresses all � the �les, directories, i-nodes

with keeping good access times. It is used mainly for Live Linux distributions installed at removable

media (Live distros run from removable media, not from a harddisk volume), or it is also intended for

disks with backups.

9.4.6 Comparison of Linux File Systems

It cannot be said which of these �lesystems is better or worse, each has its advantages and disadvantages.

Journaling may be an advantage, but it may not (or might) reduce system performance.

In the following table, there is a comparison of the systems according to various criteria:

ext2fs ext3fs ext4fs ReiserFS XFS

Maximum volume size 4 TiB 4 TiB 1 EiB 16 TiB *) 18∗210 PiB

Block size 1�4 KiB 1�4 KiB 4 KiB up to 64 KiB 512 B � 64 KiB

Maximum �le size 2 GiB 2 GiB 16 TiB up to 210 PiB *) 9∗210 PiB

*) Depending the �le system version.

Table 9.8: Comparison of some Linux �le systems

9.4.7 Virtual File Systems

In Linux, as well as in other UNIX systems, virtual (pseudo-) �le systems are also used. Besides the

VFS �le system, we can meet the following virtual �le systems:

✎✎ procfs makes system and process runtime information available (used in Linux). Some �les can

be written to change system behavior at runtime. It does not match any physical data medium, it

is mounted to the /proc directory. Its subdirectories whose names are PIDs of all running processes

provide runtime information about processes with the PID in the directory name. E.g. these pseudo-

�les and directories can be found inside subdirectories for processes:

� exe the soft link leading to the executable �le � the image of the process,

� cmdline each string of command line of the process, including options and parameters,

� status the �le with detailed information about a process (state, memory usage, number of threads,

a�nity � allowed processes, etc.),

� net directory with information about communication of the process through network.

In the case of the whole system (i.e. directly in the /proc directory), we also �nd the �le cmdline, which

contains the command that started the system (including parameters) and also the subdirectory net

with network information. There are other interesting items in the system part of the �lesystem, such

as:

� cpuinfo the processor information,

� meminfo memory usage information,

� modules the list of modules loaded in kernel (drivers, antivirus, network protocols, codecs, etc.),

� version the Linux kernel version and the distro version,

� ioports, iomem, dma, interrupts information about low-level hardware communication, �rmware

addresses for devices, DMA channels, interrupts, etc.

Chapter 9 Storage Media 166

� Remark

Do not attempt to open �les from the /proc directory in a text editor. Although they seem as text �les

(not all, for example, exe is a soft link), note that they are not physical �les � they are only interfaces.

Text editors have a habit of locking the �le open, but it is not possible in the proc �le system. So you

only get an error message. However, in text mode, it is not a problem to use the command command

e.g. cat /proc/cpuinfo.
�

✎✎ sysfs is based on a similar principle to procfs, used to make device information available (in

Linux), it contains a device run-time information. It accesses data in the /sys directory.

✎✎ devfs and udev are virtual �le systems that manage special device �les stored in the /dev.

The Linux kernel uses the udev module, and in the later versions, this module also manages the sysfs

subsystem drivers. The older static devfs is still used in MacOS.

These two virtual �le systems maintain the device special �les structure inside the /dev directory.

Each device (including virtual devices) is identi�ed by its special �le in the user space, and by the

vector of two numbers � the major nad minor number. The kernel works with the numbers only, users

work with special �les.

M Example

The following command lists all the information:

ls -l /dev

drwxr-xr-x 2 root root 420 Apr 15 17:07 block

lrwxrwxrwx 1 root root 3 Apr 15 17:07 dvd -> sr0

crw-rw-rw- 1 root root 1, 3 Apr 15 17:07 null

crw-rw-rw- 1 root root 1, 8 Apr 15 17:07 random

brw-rw---- 1 root disk 8, 0 Apr 15 17:07 sda

brw-rw---- 1 root disk 8, 1 Apr 15 17:07 sda1

brw-rw---- 1 root disk 8, 2 Apr 15 17:07 sda2

brw-rw---- 1 root disk 8, 16 Apr 15 17:07 sdb

brw-rw---- 1 root cdrom 11, 0 Apr 15 17:07 sr0

crw-rw-rw- 1 root tty 5, 0 Apr 15 17:07 tty

crw--w---- 1 root tty 4, 0 Apr 15 17:07 tty0

crw--w---- 1 root tty 4, 1 Apr 15 17:07 tty1

crw-rw-rw- 1 root root 1, 5 Apr 15 17:07 zero

(the output is shortened). The �rst letter in each row is the �le type. The letter �d� indicates a directory,

the letter �l� indicates the soft link. These rows have only one number inside the 5th column (420 and

3). This number is the �le length in Bytes.

The letters �b� and �c� mean block and character devices. These rows have two numbers inside

the 5th column, e.g. the null device has 1, 3 here. These two numbers represent the major and minor

number of the device.

As we can see, all listed virtual devices (null, random, zero) have the same major number, because

the number 1 represents the class of virtual devices. The block devices being disks and partitions (sda,

sdb, sda1,. . .) have the major number 8, and various minor numbers.

When listing the contents of the block directory, we �nd that it contains soft links to special �les

of all block devices named with the device numbers (major_number:minor_number).

Chapter 9 Storage Media 167

ls -l /dev/block

lrwxrwxrwx 1 root root 6 Apr 15 17:07 11:0 -> ../sr0

...

lrwxrwxrwx 1 root root 6 Apr 15 17:07 8:0 -> ../sda

lrwxrwxrwx 1 root root 7 Apr 15 17:07 8:1 -> ../sda1

lrwxrwxrwx 1 root root 6 Apr 15 17:07 8:16 -> ../sdb

...

Similar output can be obtained using the command lsblk (listing information about all block devices).

M

✎✎ ramfs, tmpfs: the ramfs �le system is used to implement RAMdisk (i.e. part of the memory will

be used in the same way as a partition; the advantage is great speed, the disadvantage is that content

is not preserved after shutdown or reboot). The tmpfs is something similar � it creates a simulated

temporary data partition in memory (the advantage is that for temporary data does not matter when

it is lost after shutting down or rebooting).

The tmpfs is also used to implement the /run system. This directory is used during the system

start, when no partitions are mounted (even the main partitions), and the system or processes need to

write data somewhere.

9.4.8 The fstab File

✎✎ The /etc/fstab �le (�le systems table) contains the list of the mountable �le systems � belonging

to volumes, mainly mounted during the booting process, and possibly those that can be mounted later

(e.g. removable media or the volumes of another operating systems). If the item in this �le is tagged

for automatic mounting, the volume is mounted automatically during the system boot process.

✎✎ The /etc/mtab �le (mounted �le systems table) contains the list of the currently mounted �le

systems. It is much longer, because all virtual �le systems and the removable media are present in this

�le.

First, we look at the syntax of entries in the /etc/fstab �le. Each row corresponds to one volume

(or removable media), the syntax is the following:

✄✄ volume mount_point file_system parameters dump FS_check

A row consists of:

1. volume: determines the device to mount. It can be a special �le, or the UUID number (Universally

Unique ID, a type of GUID).

2. mount_point: the directory speci�ed as the mount point. the system partition (where Linux is

installed) has its mount point named �/�, another important directories may be in their own

volume and so they have the own row in this �le. The removable media usually use a directory

inside /media or /mnt.

The directory listed here must exist.

3. file_system: determines the �le system of the volume, e.g. ext4fs, udf, vfat,. . . , for the swap

partition there is a value swap here.

If th value auto is here, it means that the �le system is automatically recognized during mounting.

It is common for removable media.

Chapter 9 Storage Media 168

4. Parameters. Each �le system has its own parameters, some of them are in all common �le systems.

The most important are:

� ro (read-only), rw (writing is allowed),

� user (mounting is allowed to each user, but unmounting can be performed only by the same

user), users (mounting by everybody, unmounting by everybody),

� noauto (this volume is not mounted automatically during booting process, but the mounting

process must be carried out manually),

� exec (permission to run a program on this volume), noexec (prohibition to run a program

on this volume, highly recommended for data volumes),

� nodev (no �les will be handled as special �les of devices; for security reasons, it is recom-

mended for all partitions where there no special �les supposed here),

� sync (this volume is immediately synchronized, without cache),

� acl,user_xattr (ACLs are used for this volume),

� noatime (the last access time stamp is not updated, it can speed up work with the volume

and it is better for SSDs).

Several parameters are intended only for selected �le systems. Details can be found in manual

pages � man fstab, man mount.

5. dump. If there is the digit 1, this volume is backed up.

6. check. If 1 or 2 is here, this volume is checked at system startup by the fsck program. The value

1 means higher priority, it is used for the system volume.

The columns in /etc/mtab are similar, only partitions (volumes) are represented by special �les, not

UUIDs, and tab is not used as separator, but space, and the default options and parameters are added.

M Example

The /etc/fstab �le may look like this (using tabs to align it into columns):

/dev/sda6 swap swap defaults 0 0

/dev/sda7 / ext3 acl,user_xattr 1 1

/dev/sda8 /home ext3 acl,user_xattr 1 2

/dev/sda9 /usr ext3 acl,user_xattr 1 2

/dev/sda2 /mnt/winC ntfs-3g users,gid=users,fmask=133,dmask=022 0 0

/dev/sda5 /mnt/winD ntfs-3g users,gid=users,fmask=133,dmask=022 0 0

proc /proc proc defaults 0 0

sysfs /sys sysfs noauto 0 0

debugfs /sys/kernel/debug degubfs noauto 0 0

usbfs /proc/bus/usb usbfs noauto 0 0

devpts /dev/pts devpts mode=0620,gid=5 0 0

In newer distributions, we are more likely to see the UUID instead of the device �le (the �rst column).

The following contents is in /etc/mtab, corresponding to the above stated /etc/fstab:

/dev/sda7 / ext3 rw,acl,user_xattr 0 0

/proc /proc proc rw 0 0

sysfs /sys sysfs rw 0 0

debugfs /sys/kernel/debug debugfs rw 0 0

udev /dev tmpfs rw 0 0

devpts /dev/pts devpts rw,mode=0620,gid=5 0 0

/dev/sda8 /home ext3 rw,acl,user_xattr 0 0

/dev/sda9 /usr ext3 rw,acl,user_xattr 0 0

/dev/sda2 /mnt/winC fuseblk rw,noexec,nosuid,nodev,allow_other,default_permissions,blksize=4096 0 0

/dev/sda5 /mnt/winD fuseblk rw,noexec,nosuid,nodev,allow_other,default_permissions,blksize=4096 0 0

Chapter 9 Storage Media 169

fusectl /sys/fs/fuse/connections fusectl rw 0 0

securityfs /sys/kernel/security securityfs rw 0 0

none /proc/sys/fs/binfmt_misc binfmt_misc rw 0 0

/dev/sdb1 /media/disk vfat rw,nosuid,nodev,noatime,flush,uid=1000,utf8,shortname=lower 0 0

The last row is for the currently connected removable media (USB �ash disk vit the FAT32/VFAT �le

system).
M

✄✄ We use the mount and umount commands to mount and unmount a partition or removable media

(which is usually a single partition).

M Example

Examples of mounting and umounting �lesystems (partitions):

mount (with no options) lists all mounted volumes, similar as cat /etc/mtab

mount /mnt/winD if this mount point is in /etc/fstab, the mount point name is enough to mount

this volume

mount -o ro /mnt/winD the same, but the volume is mounted for read-only access

mount -l -t fstype lists all volumes with the given �le system type

mount -t vfat /dev/sdb2 /media/flash we mount the USB �ash disk with the VFAT �le system

(FAT32), we enter the both the special �le and the mount point

umount /mnt/winD umounting the volume with the given mount point

mount -t ntfs-3g /dev/sda1 /mnt/winC the mount point is not in /etc/fstab, and it is a Windows

partition with the NTFS �le system, we use the ntfs-3g driver

ntfs-3g /dev/sda1 /mnt/winC the same result, we use the control program pro the given driver
M

M Example

Let us return to the UUIDs used to mark partitions instead of special �les. If we are not sure which

special �le UUID belongs to, we can display the relationships with the command blkid. Its output is

similar to the following:

...

/dev/sda4: UUID="d4f25949-0d2..." TYPE="ext4"

/dev/sda5: LABEL="DATA" UUID="1F0801CAA09..." TYPE="ntfs"

...

/dev/sdb1: LABEL="TRANSCEND" UUID="B49B-633..." TYPE="vfat"

M

In ordinary Linux distributions, we do not have to worry about connecting removable media, they

are connected automatically. Other operating system partitions (such as Windows) are usually not

automatically connected, but there is a di�erent problem: Windows 10 usually uses a �fast startup�

mode, ie the kernel only hibernates when shutting down (so you must really restart it for updates).

However, the hibernation system makes its partitions inaccessible to any other system, so it cannot be

mounted in Linux.

✎✎ Mounting disk images. We do not only need to mount (physical) media, we can also mount

disk images, such as iso, dd or img. Then they can be accessed in the same way as any other media.

Chapter 9 Storage Media 170

M Example

A disk image (more exactly a partition image) can be mounted by creating a loop to the given media:

mkdir /media/MyMountDir . creating a mount point

mount -o loop somefile.iso /media/MyMountDir creating a loop

And now, this media can be accessed in the same way as another (real) partitions:

ls /media/MyMountDir

cd /media/MyMountDir
M

9.4.9 Handling Partitions and File Systems

✄✄ Partitions can be managed either in GUI, or using fdisk (for MBR disks), gdisk (for GPT disks)

or similar program. These two programs are interactive (various keys of keyboard have some meaning),

sfdisk and sgdisk are fully command-line tools (using parameters of commands), cfdisk and cgdisk

run in the pseudographic mode with menus.

M Example

The fdisk command needs higher access privileges. It can list information about disks, or go to the

interactive mode.

fdisk -l /dev/sda lists info about the given disk (its partitions, including �le systems)

fdisk -l lists info about all available disks

fdisk /dev/sda going over to the interactive mode, we want to con�gure the disk speci�ed in the

parameter

In the interactive mode, we use the �letter commands� listed in Table 9.9.

Key Meaning

M help

P lists the disk partitions

N creates a new partition

D deletes the selected partition

Table 9.9: Keyboard commands for the interactive mode of fdisk

The M key is the most important: if we don't know what to do, we simply press the M key.
M

✄✄ The df command (Disk Free) lists free space on individual volumes. Using options, we can determine

in more detail what and how to list.

df basic information

df -T also the �le system type (if FUSE is used, we get only the information �fuseblk�)

df -Th in addition, the free space is displayed in the human readable format (kB, MB, GB, etc.)

df -i number of i-nodes instead �common� units (corresponding to the number of �les and directo-

ries)

df -a all mounted �le systems, including most virtual �le systems

Chapter 9 Storage Media 171

M Example

The df -ah command has the following output (laptop with dualboot Windows 7 and SUSE Linux, old

installation):

Filesystem Size Used Avail Use% Mounded on

/dev/sda7 20G 3.8G 16G 20% /

/proc 0 0 0 - /proc

sysfs 0 0 0 - /sys

debugfs 0 0 0 - /sys/kernel/debug

udev 2.0G 192K 2.0G 1% /dev

devpts 0 0 0 - /dev/pts

/dev/sda8 40G 188M 38G 1% /home

/dev/sda9 60G 5.1G 51G 10% /usr

/dev/sda2 117G 30G 87G 26% /mnt/winC

/dev/sda5 168G 256M 168G 1% /mnt/winD

fusectl 0 0 0 - /sys/fs/fuse/connections

securityfs 0 0 0 - /sys/kernel/security

none 0 0 0 - /proc/sys/fs/binfmt_misc

M

✄✄ The du command (Disk Usage) lists the occupied space for a particular �le/directory, recursively.

du lists only directories in the current directory, recursively, occupied space is in the number of blocks

du -a similar, but including �les

du -h somefile.pdf occupied space for the given �le, in the human readable unit

du -h \ls *.txt \ for all text �les in the current directory (du is not able to work with �lters)

✄✄ the lsof command (LiSt Open Files) lists open �les, and processes working with these �les.

lsof all open �les, this output is very long

lsof > ~/listofopenfiles.txt redirection to the given �le

lsof | grep "\.so[0-9\.]$" > ~/used-libraries.txt list of all used libraries (the .so �les are for

Linux the same as .dll for Windows)

lsof ~ list of processes working with our home directory

lsof -u someuser list of �les used by processes of the given user (the user can be entered by its UID

or its name)

lsof | grep pipe list of all processes communicating through an anonymous pipe

lsof | grep socket the same for anonymous sockets

Bibliography

[Silberschatz2013] SILBERSCHATZ, Abraham, Peter B. GALVIN and Greg GAGNE. Operating sys-

tem concepts. Ninth edition. Hoboken, NJ: Wiley, [2013]. ISBN 978-1-118-06333-0.

WWW: http://iips.icci.edu.iq/images/exam/Abraham-Silberschatz-Operating-System-Concepts�9th20

12.12.pdf

[Tanenbaum2006] TANENBAUM, Andrew S. and Albert S. WOODHULL. Operating systems: design

and implementation. 3rd ed. Upper Saddle River, N.J.: Pearson/Prentice Hall, c2006. ISBN 978-

0-13-142938-3.

WWW: https://mcdtu.�les.wordpress.com/2017/03/tanenbaum_woodhull_operating-systems-design-

implementation-3rd-edition.pdf

[Deitel2004] DEITEL, H.M., P.J. DEITEL and D.R. CHOFFNES. Operating Systems. Third Edition.

Upper Saddle River, NJ: Pearson, Prentice Hall, 2004. ISBN 0-13-124696-8.

WWW: http://202.74.245.22:8080/xmlui/bitstream/handle/123456789/629/Operating%20systems%20

%28Deitel%29%20%283rd%20edition%29%281%29.pdf

[Fox2015] FOX, Richard. LINUX with operating system concepts. Boca Raton: CRC Press, [2015].

ISBN 978-1-4822-3589-0.

Most pages on: https://books.google.cz/books?id=VG8LBAAAQBAJ&printsec=frontcover

[Bovet2006] BOVET, Daniel P. and Marco CESATI. Understanding the Linux ker-

nel. 3rd ed. Sebastopol, CA: O'Reilly, c2006. ISBN 978-0-596-00565-8. WWW:

https://books.google.cz/books?id=h0lltXyJ8aIC&printsec=frontcover

[ProcLib] Process Library [online]. [2019-01-25]. WWW: https://www.processlibrary.com

[TLDP] The Linux Documentation Project [online]. [2019-01-25]. WWW: http://www.tldp.org

[Kernel.org] The Linux Kernel Archives [online]. [2019-01-25]. WWW: https://www.kernel.org/

[WinDocs] Windows Documentation: Microsoft Docs [online]. [2019-02-07].

WWW: https://docs.microsoft.com/en-us/windows/

[AVTest] AV-TEST: Antivirus and Security Software and Antimalware Reviews [online]. [2019-01-25].

WWW: https://www.av-test.org/

172

http://iips.icci.edu.iq/images/exam/Abraham-Silberschatz-Operating-System-Concepts---9th2012.12.pdf
http://iips.icci.edu.iq/images/exam/Abraham-Silberschatz-Operating-System-Concepts---9th2012.12.pdf
https://mcdtu.files.wordpress.com/2017/03/tanenbaum_woodhull_operating-systems-design-implementation-3rd-edition.pdf
https://mcdtu.files.wordpress.com/2017/03/tanenbaum_woodhull_operating-systems-design-implementation-3rd-edition.pdf
http://202.74.245.22:8080/xmlui/bitstream/handle/123456789/629/Operating
http://202.74.245.22:8080/xmlui/bitstream/handle/123456789/629/Operating
https://books.google.cz/books?id=VG8LBAAAQBAJ&printsec=frontcover
https://books.google.cz/books?id=h0lltXyJ8aIC&printsec=frontcover
https://www.processlibrary.com
http://www.tldp.org
https://www.kernel.org/
https://docs.microsoft.com/en-us/windows/
https://www.av-test.org/

Chapter 9 Storage Media 173

[AVComparatives] AV-Comparatives: Independent Tests of Anti-virus Software [online]. [2019-01-25].

WWW: https://www.av-comparatives.org/

[Sysinternals] Windows Sysinternals [online]. [2019-01-25]. WWW: https://sysinternals.com

[Holmes2013] HOLMES, Lee. Windows PowerShell cookbook: the complete guide to scripting Mi-

crosoft's command shell. 3rd ed. Farnham: O'Reilly, 2013. ISBN 14-493-2068-6.

WWW: http://rsmt.it.fmi.uni-so�a.bg/books/windows_powershell_cookbook_3rd_edition.pdf

[Negus2015] NEGUS, Chris. Linux bible. Ninth edition. Indianapolis, Indiana: John Wiley, 2015. ISBN

978-111-8999-875.

Most pages on: https://books.google.cz/books?id=c-zGBwAAQBAJ&printsec=frontcover

[McHoes2011] MCHOES, Ann McIver a Ida M. FLYNN. Understanding operating systems. 8th edition.

Clifton Park, NY: Cengage Learning, 2011. ISBN 978-1-4390-7920-1.

WWW: http://160592857366.free.fr/joe/ebooks/ShareData/Understanding%20Operating%20Systems

%206e%20By%20Ann%20McIver%20McHoes%20and%20Ida%20M.%20Flynn.pdf

[Panek2017] PANEK, William. Mcsa: windows 10 complete study guide. Indianapolis, IN: John Wiley,

2017. ISBN 978-1-119-38496-0.

Most pages on: https://books.google.cz/books?id=U80yDAAAQBAJ&printsec=frontcover

[Sarwar2016] SARWAR, Syed Mansoor and Robert KORETSKY. UNIX: the textbook. Third edition.

Boca Raton: Taylor, 2016. ISBN 978-1-4822-33-582.

Most pages on: https://books.google.cz/books?id=NzuLDQAAQBAJ&printsec=frontcover

https://www.av-comparatives.org/
https://sysinternals.com
http://rsmt.it.fmi.uni-sofia.bg/books/windows_powershell_cookbook_3rd_edition.pdf
https://books.google.cz/books?id=c-zGBwAAQBAJ&printsec=frontcover
http://160592857366.free.fr/joe/ebooks/ShareData/Understanding
http://160592857366.free.fr/joe/ebooks/ShareData/Understanding
https://books.google.cz/books?id=U80yDAAAQBAJ&printsec=frontcover
https://books.google.cz/books?id=NzuLDQAAQBAJ&printsec=frontcover

	 Preface
	1 Introduction to Operating Systems
	1.1 What the Operating System Is
	1.2 Operating System Functions
	1.3 Types of Operating Systems
	1.3.1 Basic Categorisation
	1.3.2 Realtime Operating Systems
	1.3.3 Distributed Operating Systems

	2 Operating Systems Structure
	2.1 Basic Types of Architectures
	2.2 Layered Structure of Operating Systems
	2.3 MS Windows
	2.3.1 Older Windows – XP
	2.3.2 Windows Vista/7/8/10/11

	2.4 UNIX and UNIX-like Systems
	2.4.1 UNIX Standards
	2.4.2 Architecture of UNIX Systems
	2.4.3 Linux Kernel

	3 Memory Management
	3.1 Memory Management Basics
	3.1.1 Memory Strategies
	3.1.2 Allocated Memory Space
	3.1.3 Garbage Collection

	3.2 Complex Memory Separation Models
	3.2.1 Virtual Memory and Addresses
	3.2.2 Paging
	3.2.3 Segmentation
	3.2.4 Paging with Segmentation

	3.3 Virtual Memory Concepts
	3.3.1 Page Replacement Algorithms
	3.3.2 NUMA

	3.4 Memory Management in Windows
	3.5 Memory Management in Linux

	4 Processes
	4.1 Multiple CPU Cores
	4.2 Obtaining Process Information
	4.2.1 Processes in Windows
	4.2.2 Processes in Linux

	4.3 Process Concept
	4.3.1 Program, Process, Thread
	4.3.2 Process States
	4.3.3 Process Control Block

	4.4 Operations on Processes
	4.4.1 Process Input and Output
	4.4.2 Process Creation and Termination
	4.4.3 Priorities

	4.5 Multitasking
	4.5.1 Context Switching
	4.5.2 Types of Multitasking

	4.6 Multithreading
	4.7 Interprocess Communication
	4.7.1 IPC concept
	4.7.2 IPC in Windows
	4.7.3 IPC in Linux
	4.7.4 Jobs in UNIX

	4.8 CPU Scheduling
	4.8.1 Basic Concepts
	4.8.2 Scheduling Algorithms
	4.8.3 Scheduling in Windows
	4.8.4 Scheduling in Linux

	5 File Access and Permissions
	5.1 File Access Permissions in Linux
	5.1.1 Owner and Associated Group
	5.1.2 Setting File Access Permissions
	5.1.3 Special Permissions

	5.2 Working under Different User Account in UNIX systems
	5.2.1 The su Command
	5.2.2 The sudo Command

	5.3 Advanced Access Control Mechanisms in Linux
	5.3.1 Attributes
	5.3.2 POSIX ACLs
	5.3.3 PAM

	5.4 Security Policy Settings in Windows

	6 Synchronization
	6.1 Why Synchronize
	6.2 Petri Nets
	6.3 Basic Synchronization Tasks
	6.3.1 Critical Section
	6.3.2 Producer-Consumer Problem

	6.4 Synchronization Tools
	6.4.1 Waiting
	6.4.2 Mutexes and Semaphores
	6.4.3 Messages
	6.4.4 Monitors

	6.5 Additional Synchronization Problems
	6.6 Synchronization in Operating Systems
	6.6.1 Possibilities of Synchronization in Windows
	6.6.2 Possibilities of Synchronization in Linux

	7 Deadlock
	7.1 Deadlock Characterization
	7.1.1 Model
	7.1.2 Resource-Allocation Graph
	7.1.3 Deadlock Conditions

	7.2 Deadlock Treating
	7.3 Prevention
	7.4 Avoidance
	7.4.1 Safe State
	7.4.2 Resource-Allocation Graph Algorithm
	7.4.3 Banker's Algorithm

	7.5 Detection
	7.5.1 Wait-for Graph
	7.5.2 Banker's Detection Algorithm

	7.6 Recovery from Deadlock

	8 I/O Management
	8.1 I/O Devices
	8.1.1 Types of I/O Devices
	8.1.2 I/O System
	8.1.3 I/O Buffering

	8.2 Device Drivers
	8.2.1 Drivers in Windows
	8.2.2 Drivers in Linux

	8.3 Interrupts and Exceptions
	8.3.1 Mechanism of Interrupts and Exceptions
	8.3.2 Interrupt Handling
	8.3.3 Managing Interrupts in Various Systems

	8.4 Running Non-Native Applications
	8.4.1 Virtual Machine
	8.4.2 Operating System Emulators and Subsystems
	8.4.3 Server and Desktop Virtualization

	9 Storage Media
	9.1 Disks
	9.1.1 Disk Format
	9.1.2 Addressing
	9.1.3 Scheduling

	9.2 File Systems
	9.2.1 File organization and Access mechanism
	9.2.2 Directories
	9.2.3 File Sharing
	9.2.4 Journaling File Systems

	9.3 Windows File Systems
	9.3.1 Older Windows File Systems
	9.3.2 NTFS
	9.3.3 exFAT
	9.3.4 Protection
	9.3.5 Handling Partitions and File Systems
	9.3.6 Comparison of Windows File Systems

	9.4 Linux File Systems
	9.4.1 VFS
	9.4.2 File Database Structure
	9.4.3 Hard Links and Soft Links
	9.4.4 File Systems of the Type extxfs
	9.4.5 Other Journaling File Systems
	9.4.6 Comparison of Linux File Systems
	9.4.7 Virtual File Systems
	9.4.8 The fstab File
	9.4.9 Handling Partitions and File Systems

	Bibliography

