J 2022

Symmetry nonintegrability for extended K(m, n, p) equation

VAŠÍČEK, Jakub

Basic information

Original name

Symmetry nonintegrability for extended K(m, n, p) equation

Authors

VAŠÍČEK, Jakub (203 Czech Republic, guarantor, belonging to the institution)

Edition

Journal of Mathematical Chemistry, New York, Springer, 2022, 0259-9791

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Journal of Mathematical Chemistry

RIV identification code

RIV/47813059:19610/22:A0000116

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1007/s10910-021-01312-9

UT WoS

000737740400001

Keywords in English

Generalized symmetries; Integrable systems; Nonlinear PDEs; Evolution equations

Tags

, SGS-6-2017

Tags

International impact, Reviewed
Změněno: 4/3/2023 10:35, Mgr. Aleš Ryšavý

Abstract

V originále

In the present paper we study symmetries of extended K(m, n, p) equations and prove that the equations from this class have no generalized symmetries of order greater than five and hence are not symmetry integrable.
Displayed: 4/1/2025 08:15