J 2023

Dendrites and measures with discrete spectrum

FORYŚ-KRAWIEC, Magdalena, Jana HANTÁKOVÁ, Jiří KUPKA, Piotr OPROCHA, Samuel Joshua ROTH et. al.

Basic information

Original name

Dendrites and measures with discrete spectrum

Authors

FORYŚ-KRAWIEC, Magdalena (616 Poland), Jana HANTÁKOVÁ (203 Czech Republic, guarantor, belonging to the institution), Jiří KUPKA (203 Czech Republic), Piotr OPROCHA (616 Poland) and Samuel Joshua ROTH (840 United States of America, belonging to the institution)

Edition

Ergodic Theory and Dynamical Systems, New York, Cambridge University Press, 2023, 0143-3857

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Ergodic Theory and Dynamical Systems

RIV identification code

RIV/47813059:19610/23:A0000132

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1017/etds.2021.157

UT WoS

000735381900001

Keywords in English

dendrite; discrete spectrum; topological entropy; minimal set

Tags

Tags

International impact, Reviewed
Změněno: 8/4/2024 12:38, Mgr. Aleš Ryšavý

Abstract

V originále

We are interested in dendrites for which all invariant measures of zero-entropy mappings have discrete spectrum, and we prove that this holds when the closure of the endpoint set of the dendrites is countable. This solves an open question which has been around for awhile, and almost completes the characterization of dendrites with this property.
Displayed: 26/12/2024 12:45