J 2022

GRMHD Evolution of Interacting Double Accretion Tori Orbiting a Central Black Hole

BARDIEV, Dilshodbek, Martin KOLOŠ, Daniela PUGLIESE and Zdeněk STUCHLÍK

Basic information

Original name

GRMHD Evolution of Interacting Double Accretion Tori Orbiting a Central Black Hole

Authors

BARDIEV, Dilshodbek (860 Uzbekistan, belonging to the institution), Martin KOLOŠ (203 Czech Republic, belonging to the institution), Daniela PUGLIESE (380 Italy, belonging to the institution) and Zdeněk STUCHLÍK (203 Czech Republic, belonging to the institution)

Edition

Astrophysical Journal, GB - Spojené království Velké Británie a, 2022, 0004-637X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/47813059:19630/22:A0000202

Organization unit

Institute of physics in Opava

UT WoS

000901548100001

Keywords in English

misaligned accreation;tidal disruptions;disks;field

Tags

International impact, Reviewed
Změněno: 3/2/2023 09:44, Mgr. Pavlína Jalůvková

Abstract

V originále

The matter orbiting black holes (BHs) in microquasars or active galactic nuclei forms toroidal accretion disk structures, and multiple torus structures have been recently described as ringed accretion disks (RADs) in a full general relativistic approach. Here we realize full general relativistic magnetohydrodynamic (GRMHD) numerical simulations related to double toroidal structure immersed in the equatorial plane of the gravitomagnetic field of a central Schwarzschild BH in an asymptotically uniform magnetic field. We study the merging dynamics of an initial RAD structure constructed by two corotating or counterrotating tori, where accretion of matter from the outer torus is assumed onto the inner torus, using the 2.5D GRMHD simulation schemes with the HARM numerical code. We study the dynamics of the system assuming various initial conditions, and we have demonstrated that the initial matter density is the relevant factor governing the system evolution.