2022
Extended Tolman III and VII solutions in f (R, T) gravity: Models for neutron stars and supermassive stars
PAPPAS, Thomas, Nelson Camilo POSADA AGUIRRE a Zdeněk STUCHLÍKZákladní údaje
Originální název
Extended Tolman III and VII solutions in f (R, T) gravity: Models for neutron stars and supermassive stars
Autoři
PAPPAS, Thomas (300 Řecko, domácí), Nelson Camilo POSADA AGUIRRE (170 Kolumbie, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)
Vydání
Physical Review D, 2022, 2470-0010
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/22:A0000204
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000901634800001
Klíčová slova anglicky
energy-momentum tensor;dimensionless parameter;numerical solution;isotropic perfect-fluid spheres
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 3. 2023 13:56, Mgr. Pavlína Jalůvková
Anotace
V originále
In the context of linear f(R, T) = R chi T gravity, where R is the Ricci scalar, T is the trace of the energy-momentum tensor, and chi is a dimensionless parameter, we have obtained exact analytical and numerical solutions for isotropic perfect-fluid spheres in hydrostatic equilibrium. Our solutions correspond to two-parametric extensions of the Tolman III (T-III) and Tolman VII (T-VII) models, in terms of the compactness beta and chi. By requiring configurations that exhibit monotonically decreasing radial profiles for both the energy density and pressure, compliance with the energy conditions, as well as subluminal speed of sound, we have constrained the parametric space of our solutions. We have also obtained analytically a parametric deformation of the T-VII solution that continuously interpolates between the T-III and T-VII models for any chi, and in the appropriate limits, provides an analytic approximation for the uniform density configuration in linear f(R, T) gravity. Finally, by integrating numerically the TOV equations, we have obtained a numerical solution for the uniform-density configuration and subsequently, using the mass -radius relations, we have obtained the maximum mass that can be supported by such configurations. We have found that in the appropriate parametric regime our solution is in very good agreement with the observational bounds for the masses and radii of neutron stars.