J 2022

Extended Tolman III and VII solutions in f (R, T) gravity: Models for neutron stars and supermassive stars

PAPPAS, Thomas, Nelson Camilo POSADA AGUIRRE a Zdeněk STUCHLÍK

Základní údaje

Originální název

Extended Tolman III and VII solutions in f (R, T) gravity: Models for neutron stars and supermassive stars

Autoři

PAPPAS, Thomas (300 Řecko, domácí), Nelson Camilo POSADA AGUIRRE (170 Kolumbie, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)

Vydání

Physical Review D, 2022, 2470-0010

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/22:A0000204

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000901634800001

Klíčová slova anglicky

energy-momentum tensor;dimensionless parameter;numerical solution;isotropic perfect-fluid spheres

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 7. 3. 2023 13:56, Mgr. Pavlína Jalůvková

Anotace

V originále

In the context of linear f(R, T) = R chi T gravity, where R is the Ricci scalar, T is the trace of the energy-momentum tensor, and chi is a dimensionless parameter, we have obtained exact analytical and numerical solutions for isotropic perfect-fluid spheres in hydrostatic equilibrium. Our solutions correspond to two-parametric extensions of the Tolman III (T-III) and Tolman VII (T-VII) models, in terms of the compactness beta and chi. By requiring configurations that exhibit monotonically decreasing radial profiles for both the energy density and pressure, compliance with the energy conditions, as well as subluminal speed of sound, we have constrained the parametric space of our solutions. We have also obtained analytically a parametric deformation of the T-VII solution that continuously interpolates between the T-III and T-VII models for any chi, and in the appropriate limits, provides an analytic approximation for the uniform density configuration in linear f(R, T) gravity. Finally, by integrating numerically the TOV equations, we have obtained a numerical solution for the uniform-density configuration and subsequently, using the mass -radius relations, we have obtained the maximum mass that can be supported by such configurations. We have found that in the appropriate parametric regime our solution is in very good agreement with the observational bounds for the masses and radii of neutron stars.