V originále
Blazquez-Salcedo et al. [Phys. Rev. Lett. 126, 101102 (2021)] obtained asymptotically flat traversable wormhole solutions in the Einstein-Dirac-Maxwell theory without using phantom matter. The normalizable numerical solutions found therein require a peculiar behavior at the throat: the mirror symmetry relatively the throat leads to the nonsmoothness of gravitational and matter fields. In particular, one must postulate changing of the sign of the fermionic charge density at the throat, requiring coexistence of particle and antiparticles without annihilation and posing a membrane of matter at the throat with specific properties. Apparently this kind of configuration could not exist in nature. We show that there are wormhole solutions, which are asymmetric relative the throat and endowed by smooth gravitational and matter fields, thereby being free from all the above problems. This indicates that such wormhole configurations could also be supported in a realistic scenario.