J 2022

Quasinormal ringing of general spherically symmetric parametrized black holes

KONOPLYA, Roman and A. ZHIDENKO

Basic information

Original name

Quasinormal ringing of general spherically symmetric parametrized black holes

Authors

KONOPLYA, Roman (804 Ukraine, belonging to the institution) and A. ZHIDENKO

Edition

Physical Review D, 2022, 2470-0010

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

URL

RIV identification code

RIV/47813059:19630/22:A0000185

Organization unit

Institute of physics in Opava

DOI

http://dx.doi.org/10.1103/PhysRevD.105.104032

UT WoS

000809432200008

Keywords in English

black hole;quasinormal modes;

Tags

, RIV23

Tags

International impact, Reviewed

Links

GA19-03950S, research and development project.
Změněno: 6/2/2023 12:55, Mgr. Pavlína Jalůvková

Abstract

V originále

The general parametrization of spherically symmetric and asymptotically flat black hole spacetimes in arbitrary metric theories of gravity was suggested in Rezzolla and Zhidenko [Phys. Rev. D 90, 084009 (2014)]. The parametrization is based on the continued fraction expansion in terms of the compact radial coordinate and has superior convergence and a strict hierarchy of parameters. It is known that some observable quantities, related to particle motion around the black hole, such as the eikonal-quasinormal modes, radius of the shadow, frequency at the innermost stable circular orbit, and others, depend mostly on only a few of the lowest coefficients of the parametrization. Here we continue this approach by studying the dominant (low-lying) quasinormal modes for such generally parametrized black holes. We show that, due to the hierarchy of parameters, the dominant quasinormal frequencies are also well determined by only the first few coefficients of the expansion for the so-called moderate black hole geometries. The latter are characterized by a relatively slow change of the metric functions in the radiation zone near the black hole. The nonmoderate metrics, which change strongly between the event horizon and the innermost stable circular orbit, are usually characterized by echoes or by the distinctive (from the Einstein case) quasinormal ringing which does not match the current observational data. Therefore, the compact description of a black hole spacetime in terms of the truncated general parametrization is an effective formalism for testing strong gravity and imposing constraints on allowed black hole geometries.
Displayed: 28/12/2024 06:33