2022
Unmanned aerial systems for modelling air pollution removal by urban greenery
KASPAR, Vit, Miloš ZAPLETAL, Pavel SAMEC, Jan KOMAREK, Jiri BILEK et. al.Základní údaje
Originální název
Unmanned aerial systems for modelling air pollution removal by urban greenery
Autoři
KASPAR, Vit, Miloš ZAPLETAL (203 Česká republika, domácí), Pavel SAMEC, Jan KOMAREK, Jiri BILEK a Stanislav JURAN
Vydání
URBAN FORESTRY & URBAN GREENING, 2022, 1618-8667
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10511 Environmental sciences
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/22:A0000221
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000880161100006
Klíčová slova anglicky
Dry deposition; Ground-level ozone; Leaf area index; Particulate matter; Structure from motion; Unmanned aerial systems
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 1. 2. 2023 09:14, Mgr. Pavlína Jalůvková
Anotace
V originále
Urban greenery plays an important role in reducing air pollution, being one of the often-used, nature-based measures in sustainable and climate-resilient urban development. However, when modelling its effect on air pollution removal by dry deposition, coarse and time-limited data on vegetation properties are often included, disregarding the high spatial and temporal heterogeneity in urban forest canopies. Here, we present a detailed, physics-based approach for modelling particulate matter (PM10) and tropospheric ozone (O-3) removal by urban greenery on a small scale that eliminates these constraints. Our procedure combines a dense network of low-cost optical and electrochemical air pollution sensors, and a remote sensing method for greenery structure monitoring derived from Unmanned aerial systems (UAS) imagery processed by the Structure from Motion (SfM) algorithm. This approach enabled the quantification of species- and individual-specific air pollution removal rates by woody plants throughout the growing season, exploring the high spatial and temporal variability of modelled removal rates within an urban forest. The total PM10 and O-3 removal rates ranged from 7.6 g m(-2) (PM10) and 12.6 g m(-2) (O-3) for mature trees of Acer pseudoplatanus to 0.1 g m(-2) and 0.1 g m(-2) for newly planted tree saplings of Salix daphnoides. The present study demonstrates that UAS-SfM can detect differences in structures among and within canopies and by involving these characteristics, they can shift the modelling of air pollution removal towards a level of individual woody plants and beyond, enabling more realistic and accurate quantification of air pollution removal. Moreover, this approach can be similarly applied when modelling other ecosystem services provided by urban greenery.