J 2022

Unmanned aerial systems for modelling air pollution removal by urban greenery

KASPAR, Vit, Miloš ZAPLETAL, Pavel SAMEC, Jan KOMAREK, Jiri BILEK et. al.

Základní údaje

Originální název

Unmanned aerial systems for modelling air pollution removal by urban greenery

Autoři

KASPAR, Vit, Miloš ZAPLETAL (203 Česká republika, domácí), Pavel SAMEC, Jan KOMAREK, Jiri BILEK a Stanislav JURAN

Vydání

URBAN FORESTRY & URBAN GREENING, 2022, 1618-8667

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10511 Environmental sciences

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/22:A0000221

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000880161100006

Klíčová slova anglicky

Dry deposition; Ground-level ozone; Leaf area index; Particulate matter; Structure from motion; Unmanned aerial systems

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 1. 2. 2023 09:14, Mgr. Pavlína Jalůvková

Anotace

V originále

Urban greenery plays an important role in reducing air pollution, being one of the often-used, nature-based measures in sustainable and climate-resilient urban development. However, when modelling its effect on air pollution removal by dry deposition, coarse and time-limited data on vegetation properties are often included, disregarding the high spatial and temporal heterogeneity in urban forest canopies. Here, we present a detailed, physics-based approach for modelling particulate matter (PM10) and tropospheric ozone (O-3) removal by urban greenery on a small scale that eliminates these constraints. Our procedure combines a dense network of low-cost optical and electrochemical air pollution sensors, and a remote sensing method for greenery structure monitoring derived from Unmanned aerial systems (UAS) imagery processed by the Structure from Motion (SfM) algorithm. This approach enabled the quantification of species- and individual-specific air pollution removal rates by woody plants throughout the growing season, exploring the high spatial and temporal variability of modelled removal rates within an urban forest. The total PM10 and O-3 removal rates ranged from 7.6 g m(-2) (PM10) and 12.6 g m(-2) (O-3) for mature trees of Acer pseudoplatanus to 0.1 g m(-2) and 0.1 g m(-2) for newly planted tree saplings of Salix daphnoides. The present study demonstrates that UAS-SfM can detect differences in structures among and within canopies and by involving these characteristics, they can shift the modelling of air pollution removal towards a level of individual woody plants and beyond, enabling more realistic and accurate quantification of air pollution removal. Moreover, this approach can be similarly applied when modelling other ecosystem services provided by urban greenery.