D 2022

Machine learning aided noise filtration and signal classification for CREDO experiment

BIBRZYCKI, Łukasz, Olaf BAR, Marcin PIEKARCZYK, Michał NIEDŹWIECKI, Krzysztof RZECKI et. al.

Základní údaje

Originální název

Machine learning aided noise filtration and signal classification for CREDO experiment

Autoři

BIBRZYCKI, Łukasz, Olaf BAR, Marcin PIEKARCZYK, Michał NIEDŹWIECKI, Krzysztof RZECKI, Sławomir STUGLIK, Piotr HOMOLA, David ALVAREZ-CASTILLO, Dariusz GORA, Péter KOVÁCS, Jaroslaw STASIELAK, Oleksandr SUSHCHOV a Arman TURSUNOV (860 Uzbekistán, domácí)

Vydání

Itálie, Proceedings of Science, od s. "227-1"-"227-9", 9 s. 2022

Nakladatel

Sissa Medialab Srl

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10308 Astronomy

Stát vydavatele

Itálie

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

URL

Kód RIV

RIV/47813059:19630/22:A0000245

Organizační jednotka

Fyzikální ústav v Opavě

ISSN

DOI

http://dx.doi.org/10.22323/1.395.0227

Klíčová slova anglicky

CREDO;Cosmology;Daubechies wavelet transformed images;Luminance;Cosmic rays

Štítky

, RIV23

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2023 15:37, Mgr. Pavlína Jalůvková

Anotace

V originále

The wealth of smartphone data collected by the Cosmic Ray Extremely Distributed Observatory (CREDO) greatly surpasses the capabilities of manual analysis. So, efficient means of rejecting the non-cosmic-ray noise and identification of signals attributable to extensive air showers are necessary. To address these problems we discuss a Convolutional Neural Network-based method of artefact rejection and complementary method of particle identification based on common statistical classifiers as well as their ensemble extensions. These approaches are based on supervised learning, so we need to provide a representative subset of the CREDO dataset for training and validation. According to this approach over 2300 images were chosen and manually labeled by 5 judges. The images were split into spot, track, worm (collectively named signals) and artefact classes. Then the preprocessing consisting of luminance summation of RGB channels (grayscaling) and background removal by adaptive thresholding was performed. For purposes of artefact rejection the binary CNN-based classifier was proposed which is able to distinguish between artefacts and signals. The classifier was fed with input data in the form of Daubechies wavelet transformed images. In the case of cosmic ray signal classification, the well-known feature-based classifiers were considered. As feature descriptors, we used Zernike moments with additional feature related to total image luminance. For the problem of artefact rejection, we obtained an accuracy of 99%. For the 4-class signal classification, the best performing classifiers achieved a recognition rate of 88%.
Zobrazeno: 16. 11. 2024 04:13