2022
Machine learning aided noise filtration and signal classification for CREDO experiment
BIBRZYCKI, Łukasz, Olaf BAR, Marcin PIEKARCZYK, Michał NIEDŹWIECKI, Krzysztof RZECKI et. al.Základní údaje
Originální název
Machine learning aided noise filtration and signal classification for CREDO experiment
Autoři
BIBRZYCKI, Łukasz, Olaf BAR, Marcin PIEKARCZYK, Michał NIEDŹWIECKI, Krzysztof RZECKI, Sławomir STUGLIK, Piotr HOMOLA, David ALVAREZ-CASTILLO, Dariusz GORA, Péter KOVÁCS, Jaroslaw STASIELAK, Oleksandr SUSHCHOV a Arman TURSUNOV (860 Uzbekistán, domácí)
Vydání
Itálie, Proceedings of Science, od s. "227-1"-"227-9", 9 s. 2022
Nakladatel
Sissa Medialab Srl
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10308 Astronomy
Stát vydavatele
Itálie
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/47813059:19630/22:A0000245
Organizační jednotka
Fyzikální ústav v Opavě
ISSN
Klíčová slova anglicky
CREDO;Cosmology;Daubechies wavelet transformed images;Luminance;Cosmic rays
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2023 15:37, Mgr. Pavlína Jalůvková
Anotace
V originále
The wealth of smartphone data collected by the Cosmic Ray Extremely Distributed Observatory (CREDO) greatly surpasses the capabilities of manual analysis. So, efficient means of rejecting the non-cosmic-ray noise and identification of signals attributable to extensive air showers are necessary. To address these problems we discuss a Convolutional Neural Network-based method of artefact rejection and complementary method of particle identification based on common statistical classifiers as well as their ensemble extensions. These approaches are based on supervised learning, so we need to provide a representative subset of the CREDO dataset for training and validation. According to this approach over 2300 images were chosen and manually labeled by 5 judges. The images were split into spot, track, worm (collectively named signals) and artefact classes. Then the preprocessing consisting of luminance summation of RGB channels (grayscaling) and background removal by adaptive thresholding was performed. For purposes of artefact rejection the binary CNN-based classifier was proposed which is able to distinguish between artefacts and signals. The classifier was fed with input data in the form of Daubechies wavelet transformed images. In the case of cosmic ray signal classification, the well-known feature-based classifiers were considered. As feature descriptors, we used Zernike moments with additional feature related to total image luminance. For the problem of artefact rejection, we obtained an accuracy of 99%. For the 4-class signal classification, the best performing classifiers achieved a recognition rate of 88%.