Detailed Information on Publication Record
2022
Machine learning aided noise filtration and signal classification for CREDO experiment
BIBRZYCKI, Łukasz, Olaf BAR, Marcin PIEKARCZYK, Michał NIEDŹWIECKI, Krzysztof RZECKI et. al.Basic information
Original name
Machine learning aided noise filtration and signal classification for CREDO experiment
Authors
BIBRZYCKI, Łukasz, Olaf BAR, Marcin PIEKARCZYK, Michał NIEDŹWIECKI, Krzysztof RZECKI, Sławomir STUGLIK, Piotr HOMOLA, David ALVAREZ-CASTILLO, Dariusz GORA, Péter KOVÁCS, Jaroslaw STASIELAK, Oleksandr SUSHCHOV and Arman TURSUNOV (860 Uzbekistan, belonging to the institution)
Edition
Itálie, Proceedings of Science, p. "227-1"-"227-9", 9 pp. 2022
Publisher
Sissa Medialab Srl
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10308 Astronomy
Country of publisher
Italy
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
References:
RIV identification code
RIV/47813059:19630/22:A0000245
Organization unit
Institute of physics in Opava
ISSN
Keywords in English
CREDO;Cosmology;Daubechies wavelet transformed images;Luminance;Cosmic rays
Tags
International impact, Reviewed
Změněno: 15/2/2023 15:37, Mgr. Pavlína Jalůvková
Abstract
V originále
The wealth of smartphone data collected by the Cosmic Ray Extremely Distributed Observatory (CREDO) greatly surpasses the capabilities of manual analysis. So, efficient means of rejecting the non-cosmic-ray noise and identification of signals attributable to extensive air showers are necessary. To address these problems we discuss a Convolutional Neural Network-based method of artefact rejection and complementary method of particle identification based on common statistical classifiers as well as their ensemble extensions. These approaches are based on supervised learning, so we need to provide a representative subset of the CREDO dataset for training and validation. According to this approach over 2300 images were chosen and manually labeled by 5 judges. The images were split into spot, track, worm (collectively named signals) and artefact classes. Then the preprocessing consisting of luminance summation of RGB channels (grayscaling) and background removal by adaptive thresholding was performed. For purposes of artefact rejection the binary CNN-based classifier was proposed which is able to distinguish between artefacts and signals. The classifier was fed with input data in the form of Daubechies wavelet transformed images. In the case of cosmic ray signal classification, the well-known feature-based classifiers were considered. As feature descriptors, we used Zernike moments with additional feature related to total image luminance. For the problem of artefact rejection, we obtained an accuracy of 99%. For the 4-class signal classification, the best performing classifiers achieved a recognition rate of 88%.