Detailed Information on Publication Record
2022
Acceleration of ultra-high-energy cosmic rays by local supermassive black hole candidates
TURSUNOV, Arman, David E. ALVAREZ CASTILLO, Alok C. GUPTA, Bohdan HNATYK, Piotr HOMOLA et. al.Basic information
Original name
Acceleration of ultra-high-energy cosmic rays by local supermassive black hole candidates
Authors
TURSUNOV, Arman (860 Uzbekistan, belonging to the institution), David E. ALVAREZ CASTILLO, Alok C. GUPTA, Bohdan HNATYK, Piotr HOMOLA, Marcin KASZTELAN, Martin KOLOŠ (203 Czech Republic, belonging to the institution), Peter KOVACS, Bartosz ŁOZOWSKI, Mikhail V. MEDVEDEV, Alona MOZGOVA, Michał NIEDŹWIECKI, Matías ROSAS, Krzysztof RZECKI, Katarzyna SMELCERZ, Karel SMOLEK, Jarosław STASIELAK, Zdeněk STUCHLÍK (203 Czech Republic, belonging to the institution), Oleksandr SUSHCHOV, Tadeusz WIBIG and Jilberto ZAMORA-SAA
Edition
Itálie, Proceedings of Science, p. " 471-1"-" 471-9", 9 pp. 2022
Publisher
Sissa Medialab Srl
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10308 Astronomy
Country of publisher
Italy
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
References:
RIV identification code
RIV/47813059:19630/22:A0000246
Organization unit
Institute of physics in Opava
ISSN
Keywords in English
Black holes; Cosmology; Gravitation; Ionization; Neutrons; Stars; High energy neutrinos; Lower energies; Neutral particles; Origin mechanism; Supermassive black holes; Ultra high-energy cosmic rays;CREDO
Tags
International impact, Reviewed
Změněno: 15/2/2023 15:31, Mgr. Pavlína Jalůvková
Abstract
V originále
The origin and acceleration mechanism of ultra-high-energy cosmic rays (UHECR) with energy exceeding the GZK-cutoff limit remain unknown. It is often speculated that supermassive black holes (SMBHs) located at the centers of many galaxies can serve as possible sources of UHECR. This is also supported by recent observations of high-energy neutrinos from blazar, as neutrinos are the tracers of UHECR. In this contribution, we explore the capabilities of nearby SMBHs (located within 100Mpc distance) to accelerate UHECR of certain energy and composition by the novel, ultra-efficient regime of the magnetic Penrose process, in which protons and ions are energized near SMBH by the ionization or decay of low-energy neutral particles, such as e.g. a hydrogen ionization or neutron beta-decay. Extreme conditions around SMBHs increase chances for engagement of the accelerated UHECR in the production of the cosmic ray ensembles (CRE), i.e. a group of correlated two or more cosmic ray particles, including photons with the same parent particle or a common primary interaction vertex. We discuss the unique signatures of UHECR and CRE produced around SMBHs and potentially observable with a global network of detectors, as proposed by the Cosmic-Ray Extremely Distributed Observatory - CREDO.