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Abstract
P colonies are very simple membrane systems originally derived from the P systems. The 2D P colonies, as a version of 
P colonies with a two-dimensional environment, were introduced as a theoretical model of the multi-agent system for observ-
ing the behavior of a community of very simple agents living in a shared environment. Each agent is equipped with a set of 
programs consisting of a small number of simple rules. These programs allow the agent to act and move in the environment. 
Although, the 2D P colonies proved to be suitable for the simulations of various (not only) multi-agent systems, and natural 
phenomena, like the flash floods, there are phenomena which they are not able to simulate without some additional features 
or characteristics. One of the ways the agents can share the information is to use the stigmergy, which means to leave some 
special symbols in the environment. In this paper, we follow our previous research on the 2D P colony. We present a model 
of the 2D P colony with evolving environment, which allows us to simulate phenomena like the stigmergy, hence to simulate 
an ant colony.

Keywords Ant colony simulation · 2D P colony · P systems · Evolving environment · Optimization · Bio-inspired 
computation

Mathematics Subject Classification 68Q01 · 68Q07 · 68Q42

1 Introduction

One of the approaches to solving optimization problems 
found its inspiration in nature. Those methods use a swarm 
intelligence and, hence, are inspired by social behavior of 
a pack or a swarm of animals or by a communication based 
on chemical substances, pheromones, left in an environment 
by the ants (see [1]).

Another approach is using bio-inspired computational 
models either for solving the optimization problems directly, 
or for simulating above mentioned multi-agent systems.

P systems and their variants are used for both approaches. 
A P system is a bio-inspired computational model. It is based 
upon the structure of biological cells, abstracting from the 
way the chemicals interact and pass through cell membranes 
(see [2]).

The field of application of the P systems is very wide. 
In [3], Xingqiao Deng et al. used P systems to improve the 
efficiency and accuracy of reducer lubrication. Liang Huang 
et al. proposed new variant of tissue P system (TPS) in order 
to systematically optimize the process with multiple produc-
tive objectives (see [4]). The detection of malicious URLs 
is solved with a help of P systems in a paper by Wang Bo 
et al. (see [5]). P systems, respectively, Optimization Spik-
ing Neural P System (OSNPS), were also used for solving 
combinatorial optimization problems (see [6–9]).

P systems themselves were used to simulate (not only) 
ant colonies, as well.

Great piece of work in the field of simulation of P systems 
was done by the research group lead by Prof. Catalin Buiu. 
Open-source simulators of standard and enzymatic numeri-
cal P systems, and P colonies and P swarms are accessible 
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on the webpage dedicated to the Membrane computing and 
robotics (see [10, 11]).

Luo et al. (see [12]) proposed an ant colony P system 
ΠACPS . ΠACPS provides a basic computational framework, 
and also can maximally perform the parallelism of ant col-
ony algorithms. Ramachandranpillai and Arock introduced 
in [13] an optimization method that is based on parallel-
ism to simulate the behavior of foraging ants using spiking 
neural P (SN P) systems (see [14]). The proposed method 
is designed by collaborating several SN P systems. In [15, 
16], authors use P systems to model biological systems com-
posed of many dynamic components.

In this paper, we follow up our previous research on 
2D P colonies (see [17]), and their abilities to simulate opti-
mization algorithms inspired by cooperating animals.

P colony (see [18]) is a very simple membrane system 
derived from P systems (see [2]). It is composed of a com-
munity of agents living in a shared environment represented 
by a multiset of objects. The agent, a membrane, contains 
a certain number of objects, from which it can evolve into 
other objects, or it can swap them for other objects with the 
environment. During research of these simple membrane 
systems, a two-dimensional variant was introduced.

The 2D P colony is a theoretical model of the multi-agent 
system designed for observing the behavior of a community 
of very simple agents living in a shared two-dimensional 
environment. Each agent of the 2D P colony is equipped 
with a set of programs consisting of a small number of sim-
ple rules. These programs allow the agent to act and move 
in the environment.

In our previous research, we equipped the 2D P colony 
with a blackboard as a communication device, to simu-
late the gray wolf algorithm (see [19, 20]). The black-
board allows the agents to store and read, hence share data. 
Another way the agents can share the information is to use 
the stigmergy, which means to leave some special symbols 
in the environment.

Although, the 2D P colonies were designed for the pur-
pose of simulating multi-agent systems, some phenomena 
cannot be simulated in the scope of the original definition. 
The environment can be understood as a matrix of multisets 
of objects. The contents of these multisets can be changed 
only by the activity of the agents. From this point of view, 
the environment is static, thus it does not have its own devel-
oping rules. This characteristic of the 2D P colony limits its 
ability to simulate even such a simple zoocoenosis, like the 
ant colony, in a more detailed manner.

Let us focus on how the ants hunt for food. The worker 
ants leave their nest to search for food. During their search, 
they leave behind a trail of pheromones. The pheromones 
are chemical scents used for the purpose of communication. 
When an ant finds food, it turns around and goes back to the 
nest and it spreads more pheromone on the trail, reinforcing 

it. On the way back, the ant does not follow exactly the same 
path it came on, but it is able to find a direct path to its nest. 
When other worker ants come across the pheromone trail, 
they may abandon their own random search for food, and 
they follow the pheromone trail directly to the food source.

Indeed, some simulations of ant colony using 2D P col-
ony had been already done (see [17]), but there are limits of 
this model, which do not allow us to simulate even the basic 
properties of pheromones.

To obtain a better result of the simulation of the ant 
colony, we need to solve two main issues. First, we need 
to ensure the ants orientation in the environment. This can 
be done by introducing a set of special objects, containing 
the position of each ant within the environment. The other 
issue concerns the pheromones. As we already mentioned, 
the pheromone is a chemical scent which naturally vanishes 
if not reinforced. To simulate this effect, we need to ensure 
that the environment can change its contents. Hence, we 
introduce the evolution rules of the environment.

2  The evolving environment in terms 
of the 2D P colony

In this section, we extend the definition of the 2D P col-
ony. We will add the rules which allow the environment to 
evolve. We will not introduce the original definition of the 
2D P colony, since the only difference is in a definition of 
an environment. The definition of the environment is only 
enriched by a set of evolution rules R. The evolving environ-
ment also affects the derivation step. In the definition of the 
2D P colony, the changes in the environment can be done 
only by the agents using the communication rules.

Definition 1 A 2D P colony with evolving environment, 
 2Dev P COL is a construct

where

• V is the alphabet of the colony. The elements of the 
alphabet are called objects.

• e ∈ V  is the basic environmental object of the 2D P col-
ony,

• Env is a triplet (m × n,wE,R) , where

– m × n,m, n ∈ ℕ is the size of the environment.
– wE is the initial contents of the environment, it is 

a matrix of size m × n of multisets of objects over 
V ⧵ {e}.

Π =
(
V , e,Env,A1,… ,Ad, f

)
, d ≥ 1,
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– R is a set of evolution rules. Each rule is of the form 
S → T  , where S is a multisets over the objects over 
V ⧵ {e} , and where T is a multisets over the objects 
over V. We say, that the multiset S evolves into the 
multiset T.

• Ai, 1 ≤ i ≤ d , is an agent. The number d is called 
a degree of the colony. Each agent is a construct 
Ai =

(
Oi,Pi, [o, p]

)
, 0 ≤ o ≤ m, 0 ≤ p ≤ n , where

– Oi is a multiset over V, it determines the initial state 
(contents) of the agent, |Oi| = c, c ∈ ℕ . The number 
c is called a capacity of the colony.

– Pi =
{
pi,1,… , pi,li

}
, l ≥ 1, 1 ≤ i ≤ k is a finite set of 

programs for each agent, where each program con-
tains exactly h ∈ ℕ rules, h is called a height. Each 
rule is in the following form:

∗ a → b, a, b ∈ V  is an evolution rule,
∗ a ↔ b, a, b ∈ V  is a communication rule,
∗ [aq,r

]

→ s, aq,r ∈ V , 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓} is 
a motion rule. 

[
aq,r

]
 is a matrix representing the 

vicinity of an agent.

– [o, p], 1 ≤ o ≤ m, 1 ≤ p ≤ n, is an initial position of 
agent Ai in the 2D environment,

• f ∈ V  is the final object of the colony.

A configuration of the  2Dev P COL is given by the state 
of the environment—the matrix of type m × n of multisets 
of objects over V − {e} , the states of all agents—the mul-
tisets of objects over V, and the coordinates of the agents. 
An initial configuration is given by the definition of the 
 2Dev P colony.

A computational step of the  2Dev P COL is a transition 
between two consecutive configurations. The computational 
step consists of four sub-steps. In the first sub-step, a set of 
the applicable programs of the agents is determined, accord-
ing to the current configuration of the colony. In the second 
sub-step, for each agent, one program from this set is cho-
sen. For the chosen programs, it must hold, that there is 
no collision between the communication rules of each two 
different programs. In the third sub-step, chosen programs 
are executed and the values of the environment are updated.

The fourth sub-step is the evolution of the environment. 
Let Ei,j, 0 ≤ i ≤ m, 0 ≤ j ≤ n be a multiset representing the 
contents of the environment at the coordinates [i, j]. Let 
Ai,j, 0 ≤ i ≤ m, 0 ≤ j ≤ n be a multiset of all the objects 
forming right sides of the communication rules of the pro-
grams chosen in the second sub-step for all the agents at the 
position [i, j]. Consider multisets S1

i,j
,… S

oi,j

i,j
, oi,j ∈ ℕ such 

that ∪oi,j

k=0
Sk
i,j
= Ei,j⧵Ai,j . Then, the evolution of the environ-

ment in this particular derivation step is provided by the 
application of the evolution rules Sk

i,j
→ T ∈ R.

Generally speaking, the objects of the environment, which 
were not changed by the actions of the agents, are modified 
by the evolution rules of the environment. The application 
of the rules of the agents has higher priority over evolution 
rules of the environment.

A computation is non-deterministic and maximally par-
allel. The non-determinism means that there is a uniform 
distribution on all the applicable rules. Hence, if an agent 
can apply more rules, or there can be applied more rules of 
the environment in one particular derivation step, only one 
rule is non-deterministically chosen, but each and every rule 
can be applied with the same probability. The computation 
ends by halting, when there is no agent that has an applicable 
program.

The result of the computation is the number of copies of 
the final object placed in the environment at the end of the 
computation.

3  The simulation of the ant colony

Since we have defined the  2Dev P COL, we can describe 
the idea of simulation of the ant colony, respectively the 
hunt for food. As we already mentioned, the food hunt can 
be divided into two phases. During the first phase, an ant 
randomly searches the environment for a food source. Once 
the ant finds some food source, it stops searching and heads 
directly to its nest. The path back to the nest does not have 
to correspond the one it used to find food. The ant uses the 
sun and visual information as well to find the shortest way 
back to the nest. On the way back, it also marks this path 
with pheromones, so the other ants can follow this path to 
the food source. The ants reinforce this path by adding more 
pheromone to it as long as the food source is not empty. 
Once, all food is moved to the nest, ants do not reinforce 
the path anymore, the pheromones vanish, and the path is 
destroyed.

To simulate this behavior, we introduce several sets of 
rules assigned to each agent. First, let us first define a divi-
sion of the environment into the quadrants. We do not want 
to limit a position of the nest in the colony, so we are able, 
e.g., to put more colonies into one environment, but the ants 
have to be able to use their compass and find their way back 
to the nest. We do not want to introduce any additional com-
ponent guiding the agents to the nest either.

The position of the nest divides the environment into 
already mentioned quadrants (see Fig. 1). Let the coordi-
nates of the nest are being x, y, then into the quadrant Q1 
belong all the cells with coordinates i, j, where i < x, j < y , 
similarly, into the quadrant Q2 belong all the cells with 
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coordinates i,  j, where i > x, j < y , into the quadrant Q3 
belong all the cells with coordinates i, j, where i < x, j > y , 
into the quadrant Q4 belong all the cells with coordinates 
i, j, where i > x, j > y . All the cells, where i = x , and/or j = y 
have “special status”, while they lay on the axes leading 
directly to the nest.

Let us present a general definition of our ant 2D P colony:

where

• V = {ai,j,P0,…P9,F,E,N, e ∶ 0 ≤ i ≤ m, 0 ≤ j ≤ n} is 
the alphabet of the colony. The objects ai,j represent the 
position of an agent in the environment, the object E rep-
resents information, that the agent does not carry food, 
the object F represents food, and the object N represents 
the nest.

• Env is a triplet (m × n,wE,R) , where:

– the size m × n , and the initial contents wE of the envi-
ronment are defined for each particular case.

– R contains following rules, which represent vanish-
ing of the pheromones:

∗ {Pi} → {Pi−1} , for 1 ≤ i ≤ 9,
∗ {P0} → {e}.

• The agent is Ai =
(
{ax,y,E, e},Pi, [x, y]

)
 , where [x, y] are 

the coordinates of the nest. We discuss the set of pro-
grams Pi in the following part.

Π =
(
V , e,Env,A1,… ,Ad, f

)
,

3.1  Random motion

The first set of programs defines random motion of the agent 
in the environment. The object + represents an arbitrary object 
from the set V, which can occur in the environment, except 
food F and the pheromones P0,… ,P9 . Random motion is 
based on a non-deterministic choice of one of the following 
programs.

3.2  Found the food

The second set of programs defines behavior next to food, and 
on food. The object ∗ represents an arbitrary object from the 
set V, which can occur in the environment.

(1)P ∶

�⎡
⎢⎢⎣

+ + +

+ + +

+ + +

⎤
⎥⎥⎦
→ ⇒ ; E → E; ai,j → ai+1,j

�
,

(2)P ∶

�⎡
⎢⎢⎣

+ + +

+ + +

+ + +

⎤
⎥⎥⎦
→ ⇐ ; E → E; ai,j → ai−1,j

�
,

(3)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇓ ; E → E; ai,j → ai,j+1

�
,

(4)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇑ ; E → E; ai,j → ai,j−1

�
.

(5)

P ∶

�⎡
⎢⎢⎣

∗ ∗ (F∕ ∗)

∗ (∗ ∕F) (F∕ ∗)

∗ ∗ (F∕ ∗)

⎤
⎥⎥⎦
→ ⇒ ; E → E; ai,j

→ ai+1,j

�
,

(6)

P ∶

�⎡
⎢⎢⎣

(F∕ ∗) ∗ ∗

(F∕ ∗) (∗ ∕F) ∗

(F∕ ∗) ∗ ∗

⎤
⎥⎥⎦
→ ⇐ ; E → E; ai,j

→ ai−1,j

�
,

Fig. 1  Division of the environment into quadrants
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By the notation (F∕ ∗) , we understand that at mentioned 
place is either food or some other symbol, and we consider 
also that at least one of the triplets of the symbols (F∕ ∗) in 
each rule is F. In contrast, by (∗ ∕F) we understand any sym-
bol except F. Once the agent stands on food, it uses a rule:

3.3  Homecoming

The third set of programs describes how the agent returns to 
the nest, and how it creates, or reinforces a pheromone path. 
Here, we must consider in which quadrant the agent is. We 
define the programs only for the Q1. For the other quadrants, 
the programs are similar. Let us recall that in this case are i < x 
and j < y , hence the agent moves towards the nest by increas-
ing its both coordinates.

The second part of the rule after the slash can be applied 
by the agent only when the first part is not applicable. If the 
agent reaches one of the axes, hence i = x , or j = y , then 
programs are more simple.

For i = x,

(7)

P ∶

�⎡
⎢⎢⎣

∗ ∗ ∗

∗ (∗ ∕F) ∗

(F∕ ∗) (F∕ ∗) (F∕ ∗)

⎤
⎥⎥⎦
→ ⇓ ; E → E; ai,j

→ ai,j+1

�
,

(8)
P ∶

�⎡
⎢⎢⎣

((F∕ ∗)) (F∕ ∗) (F∕ ∗)

∗ (∗ ∕F) ∗

∗ ∗ ∗

⎤
⎥⎥⎦
→ ⇑ ; E → E; ai,j

→ ai,j−1
�
.

(9)P ∶
⟨
ai,j → ai,j; E ↔ F; e → e

⟩
.

(10)P ∶
⟨
F → F; e → P9; ai,j → ai,j

⟩
,

(11)

P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P P

∗ (∗ ∕P) ∗

⎤
⎥⎥⎦
→ ⇒ ∕

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ ∗ ∗

⎤⎥⎥⎦

→ ⇒ ; ai,j → ai+1,j

�
,

(12)

P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P (∗ ∕P)

∗ P ∗

⎤
⎥⎥⎦
→ ⇓ ∕

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ ∗ ∗

⎤⎥⎥⎦

→ ⇓ ; ai,j → ai,j+1

�
.

For j = y,

Once the agent reaches the nest, it drops the food and follows 
the pheromones to food, or, if there are not any pheromones, 
it searches for another source of food. Finding the nest and 
dropping the food represent following programs.

The agent evolves the F into the f, so the nest could not be 
considered as a food source, and we can also consider reach-
ing the nest with food as a result of computational step.

3.4  Found the pheromone trail

Fourth set of programs is for the situation, when the agent 
runs into pheromone trail.

(13)P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ ∗ ∗

⎤
⎥⎥⎦
→ ⇓ ; ai,j → ai,j+1

�
.

(14)P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ ∗ ∗

⎤
⎥⎥⎦
→ ⇒ ; ai,j → ai+1,j

�
.

(15)P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ N ∗

⎤
⎥⎥⎦
→ ⇓ ; ai,j → ai,j+1

�
,

(16)P ∶

�
P9 ↔ e;

⎡⎢⎢⎣

∗ ∗ ∗

∗ P N

∗ ∗ ∗

⎤⎥⎥⎦
→ ⇒ ; ai,j → ai+1,j

�
,

(17)P ∶
⟨
F → f ; e → E; ax,y → ax,y

⟩

(18)P ∶
⟨
f ↔ e; E → E; ax,y → ax,y

⟩
.

(19)

P ∶

�⎡
⎢⎢⎣

∗ ∗ (P∕ ∗)

∗ (∗ ∕P) (P∕ ∗)

∗ ∗ (P∕ ∗)

⎤
⎥⎥⎦
→ ⇒ ; E → E; ai,j

→ ai+1,j

�
,

(20)

P ∶

�⎡
⎢⎢⎣

(P∕ ∗) ∗ ∗

(P∕ ∗) (∗ ∕P) ∗

(P∕ ∗) ∗ ∗

⎤
⎥⎥⎦
→ ⇐ ; E → E; ai,j

→ ai−1,j

�
,
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By the notation (P∕ ∗) , we understand that at mentioned 
place is either one of the pheromone symbols P0,… ,P9 
or some other symbol, and we consider also that at least 
one of the triplets of the symbols (P∕ ∗) in each rule is the 
pheromone symbol. In contrast, by (∗ ∕P) we understand 
any symbol except P.

3.5  Following the pheromone trail

The fifth set of programs represents following the phero-
mone trail to food. Again, we present only the programs for 
the Q1.

3.6  Final word on motion rules

All mentioned sets of programs form the set of programs 
Pi of each agent. The behavior of the agent is guided by its 
contents. Agent is aware of its position in the environment 
(object ai,j , and it is also able to find the shortest way back to 
the nest. This simulates ant’s orientation in the environment 
using the sun and visual information. The symbol F inside 
the agent represents the fact, that it carries food. It influences 
behavior of the agent in the term of its motion in the envi-
ronment. Once the agent carries food, it follows or creates a 
pheromone path back to the nest. Otherwise, it searches the 
environment for food or pheromone path.

(21)

P ∶

�⎡
⎢⎢⎣

∗ ∗ ∗

∗ (∗ ∕P) ∗

(P∕ ∗) (P∕ ∗) (P∕ ∗)

⎤
⎥⎥⎦
→ ⇓ ; E → E; ai,j

→ ai,j+1

�
,

(22)

P ∶

�⎡
⎢⎢⎣

(P∕ ∗) (P∕ ∗) (P∕ ∗)

∗ (∗ ∕P) ∗

∗ ∗ ∗

⎤
⎥⎥⎦
→ ⇑ ; E → E; ai,j

→ ai,j−1

�
.

(23)P ∶

�
E → E;

⎡⎢⎢⎣

∗ P ∗

∗ P ∗

∗ ∗ ∗

⎤⎥⎥⎦
→ ⇑ ; ai,j → ai,j−1

�
,

(24)P ∶

�
E → E;

⎡⎢⎢⎣

∗ ∗ ∗

P P ∗

∗ ∗ ∗

⎤⎥⎥⎦
→ ⇐ ; ai,j → ai−1,j

�
.

4  Computer simulation

For the purpose of testing and evaluating our proposed 
model, we developed Python application simulating the 
2D P colony with evolving environment. The application 
allows to visualize the computational process of the colony. 
In the case of this paper, it allows us to verify our theoreti-
cal model.

The Fig. 2 shows a screenshot of the application. The nest 
is represented by the square with red borders, the agents by 
the squares filled with blue color. Food is represented by 
the square with purple borders. The color of the border of 
the pheromone trail varies from black, the strongest trail, 
through light green to light blue, which represents the weak-
est pheromone trail. In general, the simulation proceeded 
as we expected. The ants were exploring the environment, 
when they found food, they were taking it to the nest build-
ing or reinforcing the pheromone trail. The ants which found 
the trail were able to follow it to the source of food. Thanks 
to the development rules of the environment, no longer used 
pheromone trails were gradually disappearing.

Unfortunately, there were also some problems we had 
to face. The motion of the agents based on the proposed 
rules is too chaotic, what does not correspond to the real 
behavior of the ants. Even though the agents were able to 
reach the food, the path the agents followed corresponded 
more to the Brownian motion, and the time consumption 
was enormous. The other undesired, but expected behavior 
was that the agents were following the vanishing pheromone 
trail back to the nest. The idea of the solution for the first 
mentioned problem is very simple. We introduce extended 
set of motion rules. The agents will not be allowed to change 
the direction of the motion in every step freely, but with a 

Fig. 2  Graphical interface
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certain probability. The solution for the second issue requires 
changes in the set of rules for joining the pheromone trail. 
For each quadrant, the rules will be updated, so the agent 
will not be able to join or follow the trail, if there will not be 
a connection to the trail leading away from the nest.

4.1  Random move correction

As we mentioned, designed random motion did not fulfill our 
expectations, hence we decided to modify the rules of the ran-
dom motion. To ensure, that the motion was not so chaotic, we 
considered two possibilities of the modification of the motion 
rules. First attitude was to change the direction with some par-
ticular possibility, e.g., with a probability of 60% an ant will 
continue in recent direction, and 40% it will change it. The 
other approach was to prevent an ant going in the opposite 
direction, and again, change the direction with some particu-
lar possibility. To introduce mentioned solutions, we need to 
keep the information of the direction an ant moves, and modify 
the rules of the random motion. Hence, for each direction we 
introduce a pair of new symbols, ER,Er for right, EL,El for left, 
EU ,Eu for up, ED,Ed for down. The ER,EL,EU ,ED instruct the 
ant which direction to move, and the Er,El,Eu,Ed provides 
the information, the motion in given direction was done. The 
motion rules mentioned in 3.1 are replaced by the following 
rules.

First set of rules is an initial choice of a direction. It is used 
at the very first step of an agent or when it drops a food in the 
nest.

Second set of rules executes the move itself. An agent moves 
in the desired direction and “remembers” it for next action. 
Let us recall that the object + represents an arbitrary object 
from the set V, which can occur in the environment, except 
food F and the pheromones P0,… ,P9.

(25)
P ∶

⟨
E → z; ax,y → ax,y; e → e

⟩
, where z

∈ {ER,EL,EU ,ED}.

(26)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇒ ; ER → Er; ai,j → ai+1,j

�
,

(27)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇐ ; EL → El; ai,j → ai−1,j

�
,

(28)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇓ ; ED → Ed; ai,j → ai,j+1

�
,

Final set of rules represents modified behavior, the probabil-
ity of keeping the direction, changing it, respectively. This 
set of rules represents mentioned variant, where the agent 
is forbidden to turn back. Hence, if it was moving right, the 
only allowed directions are right, for following the direction, 
up or down. The agent cannot move left.

Heading right:

Heading left:

Heading up:

Heading down:

Let us discuss how the probability of keeping and changing 
direction is ensured. Let us consider the first set of rules, 
the situation the agent moved right. The agent contains 
three symbols, Er , e, and the information about its posi-
tion ax,y . There does not exist any other rule for such state 
of the agent, hence mentioned rules can only be applied. 
Desired probability is achieved by ratio between the numbers 
of rules 30, 31, and 32. If we consider, that there is no any 

(29)P ∶

�⎡
⎢⎢⎣

+ + +

+ + +

+ + +

⎤
⎥⎥⎦
→ ⇑ ; EU → Eu; ai,j → ai,j−1

�
.

(30)P ∶
⟨
Er → ER; ax,y → ax,y; e → e

⟩
,

(31)P ∶
⟨
Er → EU; ax,y → ax,y; e → e

⟩
,

(32)P ∶
⟨
Er → ED; ax,y → ax,y; e → e

⟩
.

(33)P ∶
⟨
El → EL; ax,y → ax,y; e → e

⟩
,

(34)P ∶
⟨
El → EU; ax,y → ax,y; e → e

⟩
,

(35)P ∶
⟨
El → ED; ax,y → ax,y; e → e

⟩
.

(36)P ∶
⟨
Eu → EU; ax,y → ax,y; e → e

⟩
,

(37)P ∶
⟨
Eu → EL; ax,y → ax,y; e → e

⟩
,

(38)P ∶
⟨
Eu → ER; ax,y → ax,y; e → e

⟩
.

(39)P ∶
⟨
Ed → ED; ax,y → ax,y; e → e

⟩
,

(40)P ∶
⟨
Ed → EL; ax,y → ax,y; e → e

⟩
,

(41)P ∶
⟨
Ed → ER; ax,y → ax,y; e → e

⟩
.
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priority on the rules, hence there is the same probability of 
choosing any of those three rules that can be chosen in a par-
ticular configuration, then the probability can be set by intro-
ducing particular count of each rule. If each mentioned rule 
is in the set of rules introduced only once, the probability of 
continuing in the same direction, right, is one third, as well 
as the probability of turning up or down. Mentioned prob-
ability of 60% can be achieved by introducing the rule 30 
three times, the rules 31, and 32 once in the set of rules.

The other considered solution that is the variant without 
forbidden turning back can be implemented in two ways. The 
first solution is to add one more rule allowing turning back 
into sets mentioned above, e.g., adding the rule

into the set for heading right.
The other option is a bit simpler. First and second sets 

remain the same, we change only the “keeping and changing 
direction” parts. First rule of each of this part remains the 
same, but the second ones evolve the symbols Er , El , Eu , Ed , 
respectively, into the symbol E, hence the first set, “initial 
choice of a direction” can be used. Let us introduce only the 
rules for heading right. The other directions are obvious.

Heading right:

As well as in the previous variant, the probability is con-
trolled by the ratio between the counts of the rules 43 and 44.

5  On patterns of behavior

The main objective of this paper is to introduce a new model 
able to simulate common phenomena of a natural environ-
ment and to provide a computer simulation of this model. 
Our intention is not to provide great changes to the 2D P 
colony concluding in the design of a powerful model capable 
to easily simulate any behavior or phenomena, but rather 
keep the model as simple and as close to the original one as 
possible, and show that even such a simple model is able to 
provide the results.

After the corrections of some undesirable behavior, we 
obtained the results we were expecting.  2Dev P COL pro-
vides an enhanced communication channel tin terms of 2D 
P colonies. Of course, the agents are able to leave a message 
on the environment of the 2D P colonies as well. However, 
it has to be collected by another (or the same) agent, or it 
would remain in the environment until the end of the com-
putation. The evolving environment, vanishing messages, 

(42)P ∶
⟨
Ed → EL; ax,y → ax,y; e → e

⟩

(43)P ∶
⟨
Er → ER; ax,y → ax,y; e → e

⟩
,

(44)P ∶
⟨
Er → E; ax,y → ax,y; e → e

⟩
.

allows us to control the behavior of the agents in a restricted 
area and for a limited period of time.

Further extension of the evolution rules is possible as 
well. Allowing the context evolution rules would enable to 
spread the pheromones into the near vicinity.

The behavior of an agent is strictly controlled be the con-
tents of the environment in his vicinity. The priority of the 
action, the pattern of its behavior, is coded in its rules. An 
agent is allowed to freely explore the environment only if 
there is no food or pheromone in its range. In the case, that 
there is food or the pheromone, it has no option, but go in the 
direction of the pheromone or food. In case of reaching the 
food, again, it must pick it up and head back to the ants nest.

Introducing other sets of rules and particular pheromones 
would allow us to define roles of the ants. An ant producing 
particular pheromone and releasing it into the environment 
would be able to force the other ants to follow it. An ant 
warrior can be immune to the pheromones, but it would not 
be allowed to leave the nest, hence guard the borders of the 
nest. A forager can be defined as the agent who has no rules 
for following the pheromone path; hence, it would search for 
food and set new pheromone paths to the sources of a food. 
It can ignore of course the sources already found, if they are 
marked by a certain pheromone.

6  Implementation

In this section, we discuss the implementation and visualiza-
tion of our model. We focus on the specifics of the imple-
mentation using the programming language Python 3.9. One 
of the benefits of the Python language is the wide range of 
modules that extend its functionality and facilitate a pro-
grammer’s work. For graphical visualization of the simula-
tion, we have chosen the following modules:

• Matplotlib ([21])—a comprehensive library for creating 
static, animated, and interactive visualizations in Python.

• Random ([22])—a pseudo-random number generator for 
various distributions.

The Matplotlib module provides the basis for our work. It 
provides a real-time view of the simulation data on the user’s 
screen. Thanks to this module, a user can see the current 
configuration of the model (positions of the agents, food, and 
pheromone trails in the environment), analyze the behavior 
of the theoretical model, and evaluate the conclusions.

The next crucial module is Random, which we use to 
implement a random movement of agents. The following 
subsections describe the specifics of the implementation of 
each object and function.
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6.1  Environment

The environment is represented by a matrix of size m × n , 
where m, n > 0 are user-defined variables. Another editable 
parameter is a position of a nest. The nest represents also 
the starting positions of all the agents at the point of an 
initialization.

For each position on the environment can be assigned a 
multiset of symbols. By default, each position in the envi-
ronment contains the symbol e, except the positions of the 
food. However, the environment can contain an arbitrary 
multiset of symbols upon the alphabet. For example, the 
symbol p indicates a pheromone trail. Such a symbol can be 
injected into the environment using a communication rule 
of an agent.

6.2  Agent

The agent is implemented as a class that is defined by the 
following attributes:

• x, y—the position of the agent in the environment.
• obj1, obj2, obj3—the internal objects of an agent.

The attributes x and y define the position of an agent in the 
environment, so their values must be within a range cor-
responding to the size of the environment. When an agent 
is initialized (each of them), the position of the nest is set 
as its default x and y values. Attributes obj1, obj2 and obj3 
can have any value defined in the model alphabet. The initial 

value of the object is given by the definition of the model. 
The internal objects of an agent can be changed by evolution 
and communication rules.

Agents are generated when the program is launched and 
placed right in the environment. The number of agents is 
user-defined and the default setting is 100. The rules are the 
same for every agent and are defined for different quadrants 
of the environment.

6.3  Running the simulation

In the initialization phase, the environment is loaded and 
the required number of agents is created and placed in the 
environment. The initial position of all agents is the same 
as the nest. Then, food positions are identified (or randomly 
generated) and labeled with the f symbol in the environ-
ment. As this is an iterative algorithm and the number of 
iterations defines the termination criterion, it is necessary 
to set this parameter first. The default number of iterations 
is 500. Each agent is allowed to apply only one program in 
each iteration of the algorithm. The agent that has already 
applied the program was set the “done” state and waited for 
the next iteration of the algorithm, hence it was not allowed 
to apply other programs. In each iteration of the algorithm, 
the programs are applied by each agent as follows: 

1. For a given agent configuration, find a list of all applica-
ble programs (rules) for the quadrant in which the agent 
is currently located,

2. If there exists an applicable program, randomly select 
one and apply it,

Fig. 3  Significant configurations captured during the simulation
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3. Switch the agent to the “done” state, in which it waits 
for the next iteration of the algorithm.

When all the agents are in the state “done”, update the envi-
ronment according the evolution rules.

6.4  Graphical interface

The graphical interface can be seen in the Fig.  2, and a 
graphical visualization of some of the significant situations 
captured during the simulation can be seen in Fig. 3.

It contains several elements. In the top middle, the user 
is informed about the current status and the iteration of the 
algorithm. The largest element located in the middle of the 
window is a canvas for rendering the simulation using the 
Matplotlib module. At the bottom, the Matplotlib toolbar 
is accessible for scaling, zooming in or out, or saving a 
screenshot. The canvas is redrawn at the end of each itera-
tion of the algorithm. At this time, all the changes of the 
environment are updated. The user can monitor any changes 
in the environment in real time. In other words, they have 
an overview of the current configuration of the model. The 
rendering speed can be set by editing the variable “anima-
tion_delay”. By default, it is rendered every 0.015 s.

The first rendering is right after the Initialization. First, 
the environment and the nest area are rendered, then the 
positions of the agents and the food. As the algorithm 
iterates, agents may find food and also pheromones may 
appear in the environment. Each object in the environment 
is marked with a specific color:

• the nest is red,
• the Agents are blue,

• food is in shades of purple, the more food occurs at the 
position, the darker the color is.

• The pheromones are in black if their intensity is greater 
than 5, if it is less, it gradually changes into shades of 
green, yellow and then light blue.

Let us note that both the pheromones and food are marked 
with different shades, which allows us to monitor their 
gradual vanishing from the environment (see Fig. 4).

The simulation can be terminated at any time by press-
ing the “c” button. Otherwise, the simulation runs until 
the termination criterion is met, which in our case defines 
the maximum number of iterations of the algorithm. When 
the last iteration of the algorithm is finished, the “End 
of simulation” information is displayed at the top of the 
window and the last visited agent positions remain on the 
canvas until the program is ended by pressing the mouse 
in the canvas area.

7  Conclusion

P systems and their variants are used for solving optimiza-
tion problems. In general, there are two basic approaches. 
The first one is the use of a P system or its variant to solve 
an optimization problem directly. The other one is to use a 
P system to simulate some of the optimization algorithm, 
the approach we followed in this paper.

The P colonies, as well as their 2D variant are already 
well-established computational models. Especially, the 2D 
P colonies were used for modeling various multi-agent 
systems or natural phenomena. Yet, some systems could 
not be simulated properly, while some properties of those 
systems cannot be simulated in the terms of recent defi-
nition. One of such systems is also an ant colony. The 
vanishing of the pheromone trail could not be satisfiable 
simulated using current model. The newly introduced 
version  2Dev P COL allows us to simulate these kinds of 
phenomena. In this paper, we designed a  2Dev P COL suc-
cessfully simulating the behavior of the ant colony. We 
identified some problems, which occurred during a com-
puter simulation, and we proposed the solutions.

One of the approaches to identify the solution given by 
ACO is the strength of a pheromone trail. The stronger 
the trail, the better the solution. Since the primary goal of 
recent research was to simulate an ant colony, we did not 
implement any tool for recording or storing found value of 
the source of food, or the strength of the pheromone trails. 
But, thanks to the color shades of the pheromone trail and 
the food, we are able to follow and evaluate the behavior 
of the colony.

As we stated, the result of the ACO can be defined by 
the strongest pheromone trail. We plan to focus on this 

Fig. 4  Gradually disappearing (vanishing) pheromone trail
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aspect and guide our further research this way. Inspired by 
the Gray wolf optimization algorithm, where the wolves 
are able to search the vicinity of considered solution, we 
plan to modify the behavior of the agents, and enable them 
to search the surroundings to find a source of food. The 
source of a food may represent searched extremes of a 
function, and in a near vicinity other extreme, hence better 
solution may occur.

Other direction of further research can be focused on 
simulation itself. We plan to insert the obstacles into the 
environment, and push the simulation further. Monitor the 
behavior of agents in the environment, where direct path 
to the nest does not have to be available.
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