
Vol.:(0123456789)1 3

Journal of Membrane Computing (2023) 5:117–128
https://doi.org/10.1007/s41965-023-00123-y

RESEARCH PAPER

On evolving environment of 2D P colonies: ant colony simulation

Miroslav Langer1 · Daniel Valenta2

Received: 31 January 2023 / Accepted: 17 June 2023 / Published online: 1 July 2023
© The Author(s) 2023

Abstract
P colonies are very simple membrane systems originally derived from the P systems. The 2D P colonies, as a version of
P colonies with a two-dimensional environment, were introduced as a theoretical model of the multi-agent system for observ-
ing the behavior of a community of very simple agents living in a shared environment. Each agent is equipped with a set of
programs consisting of a small number of simple rules. These programs allow the agent to act and move in the environment.
Although, the 2D P colonies proved to be suitable for the simulations of various (not only) multi-agent systems, and natural
phenomena, like the flash floods, there are phenomena which they are not able to simulate without some additional features
or characteristics. One of the ways the agents can share the information is to use the stigmergy, which means to leave some
special symbols in the environment. In this paper, we follow our previous research on the 2D P colony. We present a model
of the 2D P colony with evolving environment, which allows us to simulate phenomena like the stigmergy, hence to simulate
an ant colony.

Keywords Ant colony simulation · 2D P colony · P systems · Evolving environment · Optimization · Bio-inspired
computation

Mathematics Subject Classification 68Q01 · 68Q07 · 68Q42

1 Introduction

One of the approaches to solving optimization problems
found its inspiration in nature. Those methods use a swarm
intelligence and, hence, are inspired by social behavior of
a pack or a swarm of animals or by a communication based
on chemical substances, pheromones, left in an environment
by the ants (see [1]).

Another approach is using bio-inspired computational
models either for solving the optimization problems directly,
or for simulating above mentioned multi-agent systems.

P systems and their variants are used for both approaches.
A P system is a bio-inspired computational model. It is based
upon the structure of biological cells, abstracting from the
way the chemicals interact and pass through cell membranes
(see [2]).

The field of application of the P systems is very wide.
In [3], Xingqiao Deng et al. used P systems to improve the
efficiency and accuracy of reducer lubrication. Liang Huang
et al. proposed new variant of tissue P system (TPS) in order
to systematically optimize the process with multiple produc-
tive objectives (see [4]). The detection of malicious URLs
is solved with a help of P systems in a paper by Wang Bo
et al. (see [5]). P systems, respectively, Optimization Spik-
ing Neural P System (OSNPS), were also used for solving
combinatorial optimization problems (see [6–9]).

P systems themselves were used to simulate (not only)
ant colonies, as well.

Great piece of work in the field of simulation of P systems
was done by the research group lead by Prof. Catalin Buiu.
Open-source simulators of standard and enzymatic numeri-
cal P systems, and P colonies and P swarms are accessible

 * Miroslav Langer
 miroslav.langer@vsb.cz

 Daniel Valenta
 daniel.valenta@fpf.slu.cz

1 Department of Applied Informatics, Faculty of Economics,
VSB-Technical University of Ostrava, Sokolská tř. 2416,
702 00 Ostrava, Czech Republic

2 Faculty of Philosophy and Science in Opava, Institute
of Computer Science, Silesian University in Opava,
Bezručovo náměstí 1150/13, 746 01 Opava, Czech Republic

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-023-00123-y&domain=pdf

118 M. Langer, D. Valenta

1 3

on the webpage dedicated to the Membrane computing and
robotics (see [10, 11]).

Luo et al. (see [12]) proposed an ant colony P system
ΠACPS . ΠACPS provides a basic computational framework,
and also can maximally perform the parallelism of ant col-
ony algorithms. Ramachandranpillai and Arock introduced
in [13] an optimization method that is based on parallel-
ism to simulate the behavior of foraging ants using spiking
neural P (SN P) systems (see [14]). The proposed method
is designed by collaborating several SN P systems. In [15,
16], authors use P systems to model biological systems com-
posed of many dynamic components.

In this paper, we follow up our previous research on
2D P colonies (see [17]), and their abilities to simulate opti-
mization algorithms inspired by cooperating animals.

P colony (see [18]) is a very simple membrane system
derived from P systems (see [2]). It is composed of a com-
munity of agents living in a shared environment represented
by a multiset of objects. The agent, a membrane, contains
a certain number of objects, from which it can evolve into
other objects, or it can swap them for other objects with the
environment. During research of these simple membrane
systems, a two-dimensional variant was introduced.

The 2D P colony is a theoretical model of the multi-agent
system designed for observing the behavior of a community
of very simple agents living in a shared two-dimensional
environment. Each agent of the 2D P colony is equipped
with a set of programs consisting of a small number of sim-
ple rules. These programs allow the agent to act and move
in the environment.

In our previous research, we equipped the 2D P colony
with a blackboard as a communication device, to simu-
late the gray wolf algorithm (see [19, 20]). The black-
board allows the agents to store and read, hence share data.
Another way the agents can share the information is to use
the stigmergy, which means to leave some special symbols
in the environment.

Although, the 2D P colonies were designed for the pur-
pose of simulating multi-agent systems, some phenomena
cannot be simulated in the scope of the original definition.
The environment can be understood as a matrix of multisets
of objects. The contents of these multisets can be changed
only by the activity of the agents. From this point of view,
the environment is static, thus it does not have its own devel-
oping rules. This characteristic of the 2D P colony limits its
ability to simulate even such a simple zoocoenosis, like the
ant colony, in a more detailed manner.

Let us focus on how the ants hunt for food. The worker
ants leave their nest to search for food. During their search,
they leave behind a trail of pheromones. The pheromones
are chemical scents used for the purpose of communication.
When an ant finds food, it turns around and goes back to the
nest and it spreads more pheromone on the trail, reinforcing

it. On the way back, the ant does not follow exactly the same
path it came on, but it is able to find a direct path to its nest.
When other worker ants come across the pheromone trail,
they may abandon their own random search for food, and
they follow the pheromone trail directly to the food source.

Indeed, some simulations of ant colony using 2D P col-
ony had been already done (see [17]), but there are limits of
this model, which do not allow us to simulate even the basic
properties of pheromones.

To obtain a better result of the simulation of the ant
colony, we need to solve two main issues. First, we need
to ensure the ants orientation in the environment. This can
be done by introducing a set of special objects, containing
the position of each ant within the environment. The other
issue concerns the pheromones. As we already mentioned,
the pheromone is a chemical scent which naturally vanishes
if not reinforced. To simulate this effect, we need to ensure
that the environment can change its contents. Hence, we
introduce the evolution rules of the environment.

2 The evolving environment in terms
of the 2D P colony

In this section, we extend the definition of the 2D P col-
ony. We will add the rules which allow the environment to
evolve. We will not introduce the original definition of the
2D P colony, since the only difference is in a definition of
an environment. The definition of the environment is only
enriched by a set of evolution rules R. The evolving environ-
ment also affects the derivation step. In the definition of the
2D P colony, the changes in the environment can be done
only by the agents using the communication rules.

Definition 1 A 2D P colony with evolving environment,
 2Dev P COL is a construct

where

• V is the alphabet of the colony. The elements of the
alphabet are called objects.

• e ∈ V is the basic environmental object of the 2D P col-
ony,

• Env is a triplet (m × n,wE,R) , where

– m × n,m, n ∈ ℕ is the size of the environment.
– wE is the initial contents of the environment, it is

a matrix of size m × n of multisets of objects over
V ⧵ {e}.

Π =
(
V , e,Env,A1,… ,Ad, f

)
, d ≥ 1,

119On evolving environment of 2D P colonies: ant colony simulation

1 3

– R is a set of evolution rules. Each rule is of the form
S → T , where S is a multisets over the objects over
V ⧵ {e} , and where T is a multisets over the objects
over V. We say, that the multiset S evolves into the
multiset T.

• Ai, 1 ≤ i ≤ d , is an agent. The number d is called
a degree of the colony. Each agent is a construct
Ai =

(
Oi,Pi, [o, p]

)
, 0 ≤ o ≤ m, 0 ≤ p ≤ n , where

– Oi is a multiset over V, it determines the initial state
(contents) of the agent, |Oi| = c, c ∈ ℕ . The number
c is called a capacity of the colony.

– Pi =
{
pi,1,… , pi,li

}
, l ≥ 1, 1 ≤ i ≤ k is a finite set of

programs for each agent, where each program con-
tains exactly h ∈ ℕ rules, h is called a height. Each
rule is in the following form:

∗ a → b, a, b ∈ V is an evolution rule,
∗ a ↔ b, a, b ∈ V is a communication rule,
∗ [aq,r

]

→ s, aq,r ∈ V , 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓} is
a motion rule.

[
aq,r

]
 is a matrix representing the

vicinity of an agent.

– [o, p], 1 ≤ o ≤ m, 1 ≤ p ≤ n, is an initial position of
agent Ai in the 2D environment,

• f ∈ V is the final object of the colony.

A configuration of the 2Dev P COL is given by the state
of the environment—the matrix of type m × n of multisets
of objects over V − {e} , the states of all agents—the mul-
tisets of objects over V, and the coordinates of the agents.
An initial configuration is given by the definition of the
 2Dev P colony.

A computational step of the 2Dev P COL is a transition
between two consecutive configurations. The computational
step consists of four sub-steps. In the first sub-step, a set of
the applicable programs of the agents is determined, accord-
ing to the current configuration of the colony. In the second
sub-step, for each agent, one program from this set is cho-
sen. For the chosen programs, it must hold, that there is
no collision between the communication rules of each two
different programs. In the third sub-step, chosen programs
are executed and the values of the environment are updated.

The fourth sub-step is the evolution of the environment.
Let Ei,j, 0 ≤ i ≤ m, 0 ≤ j ≤ n be a multiset representing the
contents of the environment at the coordinates [i, j]. Let
Ai,j, 0 ≤ i ≤ m, 0 ≤ j ≤ n be a multiset of all the objects
forming right sides of the communication rules of the pro-
grams chosen in the second sub-step for all the agents at the
position [i, j]. Consider multisets S1

i,j
,… S

oi,j

i,j
, oi,j ∈ ℕ such

that ∪oi,j

k=0
Sk
i,j
= Ei,j⧵Ai,j . Then, the evolution of the environ-

ment in this particular derivation step is provided by the
application of the evolution rules Sk

i,j
→ T ∈ R.

Generally speaking, the objects of the environment, which
were not changed by the actions of the agents, are modified
by the evolution rules of the environment. The application
of the rules of the agents has higher priority over evolution
rules of the environment.

A computation is non-deterministic and maximally par-
allel. The non-determinism means that there is a uniform
distribution on all the applicable rules. Hence, if an agent
can apply more rules, or there can be applied more rules of
the environment in one particular derivation step, only one
rule is non-deterministically chosen, but each and every rule
can be applied with the same probability. The computation
ends by halting, when there is no agent that has an applicable
program.

The result of the computation is the number of copies of
the final object placed in the environment at the end of the
computation.

3 The simulation of the ant colony

Since we have defined the 2Dev P COL, we can describe
the idea of simulation of the ant colony, respectively the
hunt for food. As we already mentioned, the food hunt can
be divided into two phases. During the first phase, an ant
randomly searches the environment for a food source. Once
the ant finds some food source, it stops searching and heads
directly to its nest. The path back to the nest does not have
to correspond the one it used to find food. The ant uses the
sun and visual information as well to find the shortest way
back to the nest. On the way back, it also marks this path
with pheromones, so the other ants can follow this path to
the food source. The ants reinforce this path by adding more
pheromone to it as long as the food source is not empty.
Once, all food is moved to the nest, ants do not reinforce
the path anymore, the pheromones vanish, and the path is
destroyed.

To simulate this behavior, we introduce several sets of
rules assigned to each agent. First, let us first define a divi-
sion of the environment into the quadrants. We do not want
to limit a position of the nest in the colony, so we are able,
e.g., to put more colonies into one environment, but the ants
have to be able to use their compass and find their way back
to the nest. We do not want to introduce any additional com-
ponent guiding the agents to the nest either.

The position of the nest divides the environment into
already mentioned quadrants (see Fig. 1). Let the coordi-
nates of the nest are being x, y, then into the quadrant Q1
belong all the cells with coordinates i, j, where i < x, j < y ,
similarly, into the quadrant Q2 belong all the cells with

120 M. Langer, D. Valenta

1 3

coordinates i, j, where i > x, j < y , into the quadrant Q3
belong all the cells with coordinates i, j, where i < x, j > y ,
into the quadrant Q4 belong all the cells with coordinates
i, j, where i > x, j > y . All the cells, where i = x , and/or j = y
have “special status”, while they lay on the axes leading
directly to the nest.

Let us present a general definition of our ant 2D P colony:

where

• V = {ai,j,P0,…P9,F,E,N, e ∶ 0 ≤ i ≤ m, 0 ≤ j ≤ n} is
the alphabet of the colony. The objects ai,j represent the
position of an agent in the environment, the object E rep-
resents information, that the agent does not carry food,
the object F represents food, and the object N represents
the nest.

• Env is a triplet (m × n,wE,R) , where:

– the size m × n , and the initial contents wE of the envi-
ronment are defined for each particular case.

– R contains following rules, which represent vanish-
ing of the pheromones:

∗ {Pi} → {Pi−1} , for 1 ≤ i ≤ 9,
∗ {P0} → {e}.

• The agent is Ai =
(
{ax,y,E, e},Pi, [x, y]

)
 , where [x, y] are

the coordinates of the nest. We discuss the set of pro-
grams Pi in the following part.

Π =
(
V , e,Env,A1,… ,Ad, f

)
,

3.1 Random motion

The first set of programs defines random motion of the agent
in the environment. The object + represents an arbitrary object
from the set V, which can occur in the environment, except
food F and the pheromones P0,… ,P9 . Random motion is
based on a non-deterministic choice of one of the following
programs.

3.2 Found the food

The second set of programs defines behavior next to food, and
on food. The object ∗ represents an arbitrary object from the
set V, which can occur in the environment.

(1)P ∶

�⎡
⎢⎢⎣

+ + +

+ + +

+ + +

⎤
⎥⎥⎦
→ ⇒ ; E → E; ai,j → ai+1,j

�
,

(2)P ∶

�⎡
⎢⎢⎣

+ + +

+ + +

+ + +

⎤
⎥⎥⎦
→ ⇐ ; E → E; ai,j → ai−1,j

�
,

(3)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇓ ; E → E; ai,j → ai,j+1

�
,

(4)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇑ ; E → E; ai,j → ai,j−1

�
.

(5)

P ∶

�⎡
⎢⎢⎣

∗ ∗ (F∕ ∗)

∗ (∗ ∕F) (F∕ ∗)

∗ ∗ (F∕ ∗)

⎤
⎥⎥⎦
→ ⇒ ; E → E; ai,j

→ ai+1,j

�
,

(6)

P ∶

�⎡
⎢⎢⎣

(F∕ ∗) ∗ ∗

(F∕ ∗) (∗ ∕F) ∗

(F∕ ∗) ∗ ∗

⎤
⎥⎥⎦
→ ⇐ ; E → E; ai,j

→ ai−1,j

�
,

Fig. 1 Division of the environment into quadrants

121On evolving environment of 2D P colonies: ant colony simulation

1 3

By the notation (F∕ ∗) , we understand that at mentioned
place is either food or some other symbol, and we consider
also that at least one of the triplets of the symbols (F∕ ∗) in
each rule is F. In contrast, by (∗ ∕F) we understand any sym-
bol except F. Once the agent stands on food, it uses a rule:

3.3 Homecoming

The third set of programs describes how the agent returns to
the nest, and how it creates, or reinforces a pheromone path.
Here, we must consider in which quadrant the agent is. We
define the programs only for the Q1. For the other quadrants,
the programs are similar. Let us recall that in this case are i < x
and j < y , hence the agent moves towards the nest by increas-
ing its both coordinates.

The second part of the rule after the slash can be applied
by the agent only when the first part is not applicable. If the
agent reaches one of the axes, hence i = x , or j = y , then
programs are more simple.

For i = x,

(7)

P ∶

�⎡
⎢⎢⎣

∗ ∗ ∗

∗ (∗ ∕F) ∗

(F∕ ∗) (F∕ ∗) (F∕ ∗)

⎤
⎥⎥⎦
→ ⇓ ; E → E; ai,j

→ ai,j+1

�
,

(8)
P ∶

�⎡
⎢⎢⎣

((F∕ ∗)) (F∕ ∗) (F∕ ∗)

∗ (∗ ∕F) ∗

∗ ∗ ∗

⎤
⎥⎥⎦
→ ⇑ ; E → E; ai,j

→ ai,j−1
�
.

(9)P ∶
⟨
ai,j → ai,j; E ↔ F; e → e

⟩
.

(10)P ∶
⟨
F → F; e → P9; ai,j → ai,j

⟩
,

(11)

P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P P

∗ (∗ ∕P) ∗

⎤
⎥⎥⎦
→ ⇒ ∕

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ ∗ ∗

⎤⎥⎥⎦

→ ⇒ ; ai,j → ai+1,j

�
,

(12)

P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P (∗ ∕P)

∗ P ∗

⎤
⎥⎥⎦
→ ⇓ ∕

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ ∗ ∗

⎤⎥⎥⎦

→ ⇓ ; ai,j → ai,j+1

�
.

For j = y,

Once the agent reaches the nest, it drops the food and follows
the pheromones to food, or, if there are not any pheromones,
it searches for another source of food. Finding the nest and
dropping the food represent following programs.

The agent evolves the F into the f, so the nest could not be
considered as a food source, and we can also consider reach-
ing the nest with food as a result of computational step.

3.4 Found the pheromone trail

Fourth set of programs is for the situation, when the agent
runs into pheromone trail.

(13)P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ ∗ ∗

⎤
⎥⎥⎦
→ ⇓ ; ai,j → ai,j+1

�
.

(14)P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ ∗ ∗

⎤
⎥⎥⎦
→ ⇒ ; ai,j → ai+1,j

�
.

(15)P ∶

�
P9 ↔ e;

⎡
⎢⎢⎣

∗ ∗ ∗

∗ P ∗

∗ N ∗

⎤
⎥⎥⎦
→ ⇓ ; ai,j → ai,j+1

�
,

(16)P ∶

�
P9 ↔ e;

⎡⎢⎢⎣

∗ ∗ ∗

∗ P N

∗ ∗ ∗

⎤⎥⎥⎦
→ ⇒ ; ai,j → ai+1,j

�
,

(17)P ∶
⟨
F → f ; e → E; ax,y → ax,y

⟩

(18)P ∶
⟨
f ↔ e; E → E; ax,y → ax,y

⟩
.

(19)

P ∶

�⎡
⎢⎢⎣

∗ ∗ (P∕ ∗)

∗ (∗ ∕P) (P∕ ∗)

∗ ∗ (P∕ ∗)

⎤
⎥⎥⎦
→ ⇒ ; E → E; ai,j

→ ai+1,j

�
,

(20)

P ∶

�⎡
⎢⎢⎣

(P∕ ∗) ∗ ∗

(P∕ ∗) (∗ ∕P) ∗

(P∕ ∗) ∗ ∗

⎤
⎥⎥⎦
→ ⇐ ; E → E; ai,j

→ ai−1,j

�
,

122 M. Langer, D. Valenta

1 3

By the notation (P∕ ∗) , we understand that at mentioned
place is either one of the pheromone symbols P0,… ,P9
or some other symbol, and we consider also that at least
one of the triplets of the symbols (P∕ ∗) in each rule is the
pheromone symbol. In contrast, by (∗ ∕P) we understand
any symbol except P.

3.5 Following the pheromone trail

The fifth set of programs represents following the phero-
mone trail to food. Again, we present only the programs for
the Q1.

3.6 Final word on motion rules

All mentioned sets of programs form the set of programs
Pi of each agent. The behavior of the agent is guided by its
contents. Agent is aware of its position in the environment
(object ai,j , and it is also able to find the shortest way back to
the nest. This simulates ant’s orientation in the environment
using the sun and visual information. The symbol F inside
the agent represents the fact, that it carries food. It influences
behavior of the agent in the term of its motion in the envi-
ronment. Once the agent carries food, it follows or creates a
pheromone path back to the nest. Otherwise, it searches the
environment for food or pheromone path.

(21)

P ∶

�⎡
⎢⎢⎣

∗ ∗ ∗

∗ (∗ ∕P) ∗

(P∕ ∗) (P∕ ∗) (P∕ ∗)

⎤
⎥⎥⎦
→ ⇓ ; E → E; ai,j

→ ai,j+1

�
,

(22)

P ∶

�⎡
⎢⎢⎣

(P∕ ∗) (P∕ ∗) (P∕ ∗)

∗ (∗ ∕P) ∗

∗ ∗ ∗

⎤
⎥⎥⎦
→ ⇑ ; E → E; ai,j

→ ai,j−1

�
.

(23)P ∶

�
E → E;

⎡⎢⎢⎣

∗ P ∗

∗ P ∗

∗ ∗ ∗

⎤⎥⎥⎦
→ ⇑ ; ai,j → ai,j−1

�
,

(24)P ∶

�
E → E;

⎡⎢⎢⎣

∗ ∗ ∗

P P ∗

∗ ∗ ∗

⎤⎥⎥⎦
→ ⇐ ; ai,j → ai−1,j

�
.

4 Computer simulation

For the purpose of testing and evaluating our proposed
model, we developed Python application simulating the
2D P colony with evolving environment. The application
allows to visualize the computational process of the colony.
In the case of this paper, it allows us to verify our theoreti-
cal model.

The Fig. 2 shows a screenshot of the application. The nest
is represented by the square with red borders, the agents by
the squares filled with blue color. Food is represented by
the square with purple borders. The color of the border of
the pheromone trail varies from black, the strongest trail,
through light green to light blue, which represents the weak-
est pheromone trail. In general, the simulation proceeded
as we expected. The ants were exploring the environment,
when they found food, they were taking it to the nest build-
ing or reinforcing the pheromone trail. The ants which found
the trail were able to follow it to the source of food. Thanks
to the development rules of the environment, no longer used
pheromone trails were gradually disappearing.

Unfortunately, there were also some problems we had
to face. The motion of the agents based on the proposed
rules is too chaotic, what does not correspond to the real
behavior of the ants. Even though the agents were able to
reach the food, the path the agents followed corresponded
more to the Brownian motion, and the time consumption
was enormous. The other undesired, but expected behavior
was that the agents were following the vanishing pheromone
trail back to the nest. The idea of the solution for the first
mentioned problem is very simple. We introduce extended
set of motion rules. The agents will not be allowed to change
the direction of the motion in every step freely, but with a

Fig. 2 Graphical interface

123On evolving environment of 2D P colonies: ant colony simulation

1 3

certain probability. The solution for the second issue requires
changes in the set of rules for joining the pheromone trail.
For each quadrant, the rules will be updated, so the agent
will not be able to join or follow the trail, if there will not be
a connection to the trail leading away from the nest.

4.1 Random move correction

As we mentioned, designed random motion did not fulfill our
expectations, hence we decided to modify the rules of the ran-
dom motion. To ensure, that the motion was not so chaotic, we
considered two possibilities of the modification of the motion
rules. First attitude was to change the direction with some par-
ticular possibility, e.g., with a probability of 60% an ant will
continue in recent direction, and 40% it will change it. The
other approach was to prevent an ant going in the opposite
direction, and again, change the direction with some particu-
lar possibility. To introduce mentioned solutions, we need to
keep the information of the direction an ant moves, and modify
the rules of the random motion. Hence, for each direction we
introduce a pair of new symbols, ER,Er for right, EL,El for left,
EU ,Eu for up, ED,Ed for down. The ER,EL,EU ,ED instruct the
ant which direction to move, and the Er,El,Eu,Ed provides
the information, the motion in given direction was done. The
motion rules mentioned in 3.1 are replaced by the following
rules.

First set of rules is an initial choice of a direction. It is used
at the very first step of an agent or when it drops a food in the
nest.

Second set of rules executes the move itself. An agent moves
in the desired direction and “remembers” it for next action.
Let us recall that the object + represents an arbitrary object
from the set V, which can occur in the environment, except
food F and the pheromones P0,… ,P9.

(25)
P ∶

⟨
E → z; ax,y → ax,y; e → e

⟩
, where z

∈ {ER,EL,EU ,ED}.

(26)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇒ ; ER → Er; ai,j → ai+1,j

�
,

(27)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇐ ; EL → El; ai,j → ai−1,j

�
,

(28)P ∶

�⎡⎢⎢⎣

+ + +

+ + +

+ + +

⎤⎥⎥⎦
→ ⇓ ; ED → Ed; ai,j → ai,j+1

�
,

Final set of rules represents modified behavior, the probabil-
ity of keeping the direction, changing it, respectively. This
set of rules represents mentioned variant, where the agent
is forbidden to turn back. Hence, if it was moving right, the
only allowed directions are right, for following the direction,
up or down. The agent cannot move left.

Heading right:

Heading left:

Heading up:

Heading down:

Let us discuss how the probability of keeping and changing
direction is ensured. Let us consider the first set of rules,
the situation the agent moved right. The agent contains
three symbols, Er , e, and the information about its posi-
tion ax,y . There does not exist any other rule for such state
of the agent, hence mentioned rules can only be applied.
Desired probability is achieved by ratio between the numbers
of rules 30, 31, and 32. If we consider, that there is no any

(29)P ∶

�⎡
⎢⎢⎣

+ + +

+ + +

+ + +

⎤
⎥⎥⎦
→ ⇑ ; EU → Eu; ai,j → ai,j−1

�
.

(30)P ∶
⟨
Er → ER; ax,y → ax,y; e → e

⟩
,

(31)P ∶
⟨
Er → EU; ax,y → ax,y; e → e

⟩
,

(32)P ∶
⟨
Er → ED; ax,y → ax,y; e → e

⟩
.

(33)P ∶
⟨
El → EL; ax,y → ax,y; e → e

⟩
,

(34)P ∶
⟨
El → EU; ax,y → ax,y; e → e

⟩
,

(35)P ∶
⟨
El → ED; ax,y → ax,y; e → e

⟩
.

(36)P ∶
⟨
Eu → EU; ax,y → ax,y; e → e

⟩
,

(37)P ∶
⟨
Eu → EL; ax,y → ax,y; e → e

⟩
,

(38)P ∶
⟨
Eu → ER; ax,y → ax,y; e → e

⟩
.

(39)P ∶
⟨
Ed → ED; ax,y → ax,y; e → e

⟩
,

(40)P ∶
⟨
Ed → EL; ax,y → ax,y; e → e

⟩
,

(41)P ∶
⟨
Ed → ER; ax,y → ax,y; e → e

⟩
.

124 M. Langer, D. Valenta

1 3

priority on the rules, hence there is the same probability of
choosing any of those three rules that can be chosen in a par-
ticular configuration, then the probability can be set by intro-
ducing particular count of each rule. If each mentioned rule
is in the set of rules introduced only once, the probability of
continuing in the same direction, right, is one third, as well
as the probability of turning up or down. Mentioned prob-
ability of 60% can be achieved by introducing the rule 30
three times, the rules 31, and 32 once in the set of rules.

The other considered solution that is the variant without
forbidden turning back can be implemented in two ways. The
first solution is to add one more rule allowing turning back
into sets mentioned above, e.g., adding the rule

into the set for heading right.
The other option is a bit simpler. First and second sets

remain the same, we change only the “keeping and changing
direction” parts. First rule of each of this part remains the
same, but the second ones evolve the symbols Er , El , Eu , Ed ,
respectively, into the symbol E, hence the first set, “initial
choice of a direction” can be used. Let us introduce only the
rules for heading right. The other directions are obvious.

Heading right:

As well as in the previous variant, the probability is con-
trolled by the ratio between the counts of the rules 43 and 44.

5 On patterns of behavior

The main objective of this paper is to introduce a new model
able to simulate common phenomena of a natural environ-
ment and to provide a computer simulation of this model.
Our intention is not to provide great changes to the 2D P
colony concluding in the design of a powerful model capable
to easily simulate any behavior or phenomena, but rather
keep the model as simple and as close to the original one as
possible, and show that even such a simple model is able to
provide the results.

After the corrections of some undesirable behavior, we
obtained the results we were expecting. 2Dev P COL pro-
vides an enhanced communication channel tin terms of 2D
P colonies. Of course, the agents are able to leave a message
on the environment of the 2D P colonies as well. However,
it has to be collected by another (or the same) agent, or it
would remain in the environment until the end of the com-
putation. The evolving environment, vanishing messages,

(42)P ∶
⟨
Ed → EL; ax,y → ax,y; e → e

⟩

(43)P ∶
⟨
Er → ER; ax,y → ax,y; e → e

⟩
,

(44)P ∶
⟨
Er → E; ax,y → ax,y; e → e

⟩
.

allows us to control the behavior of the agents in a restricted
area and for a limited period of time.

Further extension of the evolution rules is possible as
well. Allowing the context evolution rules would enable to
spread the pheromones into the near vicinity.

The behavior of an agent is strictly controlled be the con-
tents of the environment in his vicinity. The priority of the
action, the pattern of its behavior, is coded in its rules. An
agent is allowed to freely explore the environment only if
there is no food or pheromone in its range. In the case, that
there is food or the pheromone, it has no option, but go in the
direction of the pheromone or food. In case of reaching the
food, again, it must pick it up and head back to the ants nest.

Introducing other sets of rules and particular pheromones
would allow us to define roles of the ants. An ant producing
particular pheromone and releasing it into the environment
would be able to force the other ants to follow it. An ant
warrior can be immune to the pheromones, but it would not
be allowed to leave the nest, hence guard the borders of the
nest. A forager can be defined as the agent who has no rules
for following the pheromone path; hence, it would search for
food and set new pheromone paths to the sources of a food.
It can ignore of course the sources already found, if they are
marked by a certain pheromone.

6 Implementation

In this section, we discuss the implementation and visualiza-
tion of our model. We focus on the specifics of the imple-
mentation using the programming language Python 3.9. One
of the benefits of the Python language is the wide range of
modules that extend its functionality and facilitate a pro-
grammer’s work. For graphical visualization of the simula-
tion, we have chosen the following modules:

• Matplotlib ([21])—a comprehensive library for creating
static, animated, and interactive visualizations in Python.

• Random ([22])—a pseudo-random number generator for
various distributions.

The Matplotlib module provides the basis for our work. It
provides a real-time view of the simulation data on the user’s
screen. Thanks to this module, a user can see the current
configuration of the model (positions of the agents, food, and
pheromone trails in the environment), analyze the behavior
of the theoretical model, and evaluate the conclusions.

The next crucial module is Random, which we use to
implement a random movement of agents. The following
subsections describe the specifics of the implementation of
each object and function.

125On evolving environment of 2D P colonies: ant colony simulation

1 3

6.1 Environment

The environment is represented by a matrix of size m × n ,
where m, n > 0 are user-defined variables. Another editable
parameter is a position of a nest. The nest represents also
the starting positions of all the agents at the point of an
initialization.

For each position on the environment can be assigned a
multiset of symbols. By default, each position in the envi-
ronment contains the symbol e, except the positions of the
food. However, the environment can contain an arbitrary
multiset of symbols upon the alphabet. For example, the
symbol p indicates a pheromone trail. Such a symbol can be
injected into the environment using a communication rule
of an agent.

6.2 Agent

The agent is implemented as a class that is defined by the
following attributes:

• x, y—the position of the agent in the environment.
• obj1, obj2, obj3—the internal objects of an agent.

The attributes x and y define the position of an agent in the
environment, so their values must be within a range cor-
responding to the size of the environment. When an agent
is initialized (each of them), the position of the nest is set
as its default x and y values. Attributes obj1, obj2 and obj3
can have any value defined in the model alphabet. The initial

value of the object is given by the definition of the model.
The internal objects of an agent can be changed by evolution
and communication rules.

Agents are generated when the program is launched and
placed right in the environment. The number of agents is
user-defined and the default setting is 100. The rules are the
same for every agent and are defined for different quadrants
of the environment.

6.3 Running the simulation

In the initialization phase, the environment is loaded and
the required number of agents is created and placed in the
environment. The initial position of all agents is the same
as the nest. Then, food positions are identified (or randomly
generated) and labeled with the f symbol in the environ-
ment. As this is an iterative algorithm and the number of
iterations defines the termination criterion, it is necessary
to set this parameter first. The default number of iterations
is 500. Each agent is allowed to apply only one program in
each iteration of the algorithm. The agent that has already
applied the program was set the “done” state and waited for
the next iteration of the algorithm, hence it was not allowed
to apply other programs. In each iteration of the algorithm,
the programs are applied by each agent as follows:

1. For a given agent configuration, find a list of all applica-
ble programs (rules) for the quadrant in which the agent
is currently located,

2. If there exists an applicable program, randomly select
one and apply it,

Fig. 3 Significant configurations captured during the simulation

126 M. Langer, D. Valenta

1 3

3. Switch the agent to the “done” state, in which it waits
for the next iteration of the algorithm.

When all the agents are in the state “done”, update the envi-
ronment according the evolution rules.

6.4 Graphical interface

The graphical interface can be seen in the Fig. 2, and a
graphical visualization of some of the significant situations
captured during the simulation can be seen in Fig. 3.

It contains several elements. In the top middle, the user
is informed about the current status and the iteration of the
algorithm. The largest element located in the middle of the
window is a canvas for rendering the simulation using the
Matplotlib module. At the bottom, the Matplotlib toolbar
is accessible for scaling, zooming in or out, or saving a
screenshot. The canvas is redrawn at the end of each itera-
tion of the algorithm. At this time, all the changes of the
environment are updated. The user can monitor any changes
in the environment in real time. In other words, they have
an overview of the current configuration of the model. The
rendering speed can be set by editing the variable “anima-
tion_delay”. By default, it is rendered every 0.015 s.

The first rendering is right after the Initialization. First,
the environment and the nest area are rendered, then the
positions of the agents and the food. As the algorithm
iterates, agents may find food and also pheromones may
appear in the environment. Each object in the environment
is marked with a specific color:

• the nest is red,
• the Agents are blue,

• food is in shades of purple, the more food occurs at the
position, the darker the color is.

• The pheromones are in black if their intensity is greater
than 5, if it is less, it gradually changes into shades of
green, yellow and then light blue.

Let us note that both the pheromones and food are marked
with different shades, which allows us to monitor their
gradual vanishing from the environment (see Fig. 4).

The simulation can be terminated at any time by press-
ing the “c” button. Otherwise, the simulation runs until
the termination criterion is met, which in our case defines
the maximum number of iterations of the algorithm. When
the last iteration of the algorithm is finished, the “End
of simulation” information is displayed at the top of the
window and the last visited agent positions remain on the
canvas until the program is ended by pressing the mouse
in the canvas area.

7 Conclusion

P systems and their variants are used for solving optimiza-
tion problems. In general, there are two basic approaches.
The first one is the use of a P system or its variant to solve
an optimization problem directly. The other one is to use a
P system to simulate some of the optimization algorithm,
the approach we followed in this paper.

The P colonies, as well as their 2D variant are already
well-established computational models. Especially, the 2D
P colonies were used for modeling various multi-agent
systems or natural phenomena. Yet, some systems could
not be simulated properly, while some properties of those
systems cannot be simulated in the terms of recent defi-
nition. One of such systems is also an ant colony. The
vanishing of the pheromone trail could not be satisfiable
simulated using current model. The newly introduced
version 2Dev P COL allows us to simulate these kinds of
phenomena. In this paper, we designed a 2Dev P COL suc-
cessfully simulating the behavior of the ant colony. We
identified some problems, which occurred during a com-
puter simulation, and we proposed the solutions.

One of the approaches to identify the solution given by
ACO is the strength of a pheromone trail. The stronger
the trail, the better the solution. Since the primary goal of
recent research was to simulate an ant colony, we did not
implement any tool for recording or storing found value of
the source of food, or the strength of the pheromone trails.
But, thanks to the color shades of the pheromone trail and
the food, we are able to follow and evaluate the behavior
of the colony.

As we stated, the result of the ACO can be defined by
the strongest pheromone trail. We plan to focus on this

Fig. 4 Gradually disappearing (vanishing) pheromone trail

127On evolving environment of 2D P colonies: ant colony simulation

1 3

aspect and guide our further research this way. Inspired by
the Gray wolf optimization algorithm, where the wolves
are able to search the vicinity of considered solution, we
plan to modify the behavior of the agents, and enable them
to search the surroundings to find a source of food. The
source of a food may represent searched extremes of a
function, and in a near vicinity other extreme, hence better
solution may occur.

Other direction of further research can be focused on
simulation itself. We plan to insert the obstacles into the
environment, and push the simulation further. Monitor the
behavior of agents in the environment, where direct path
to the nest does not have to be available.

Acknowledgements Research was supported by the SGS/8/2022 Pro-
ject of the Silesian University in Opava. Research was also supported
by the Project of VSB - Technical University in Ostrava, SP2022/74,
Computational Intelligence in the Prediction of Economic Quantities,
Data Mining and Economic Process Modeling.

Author contributions ML wrote the main manuscript text and DV pre-
pared all the figures and he is also author of the software. Both authors
reviewed the manuscript.

Funding Open access publishing supported by the National Technical
Library in Prague.

Data availability Not applicable.

Declarations

 Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed opti-
mization by ant colonies. In: European Conference on Artificial
Life; str 134–142.

 2. Păun, G. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61, 108–143.

 3. Deng, X., Dong, J., Wang, S., Luo, B., Feng, H., & Zhang, G.
(2022). Reducer lubrication optimization with an optimization
spiking neural P system. Information Sciences, 604, 28–44.
https:// doi. org/ 10. 1016/j. ins. 2022. 05. 016. ISSN 0020-0255.

 4. Huang, L., Sun, L., Wang, N., & Jin, X. (2007). Multiobjective
optimization of simulated moving bed by tissue P system. Chinese

Journal of Chemical Engineering, 15(5), 683–690. https:// doi. org/
10. 1016/ S1004- 9541(07) 60146-3. ISSN 1004-9541.

 5. Bo, W., Fang, Z. B., Wei, L. I., Cheng, Z. F., & Hua, Z. X.
(2021). Malicious URLs detection based on a novel optimiza-
tion algorithm. IEICE Transactions on Information and Systems,
104(4), 513–516. https:// doi. org/ 10. 1587/ trans inf. 2020E DL8147.
Released on J-STAGE April 01,. (2021). Online ISSN 1745–1361.
Print ISSN, 0916–8532.

 6. Dong, J., Zhang, G., Luo, B., Yang, Q., Guo, D., Rong, H., Zhu,
M., & Zhou, K. (2022). A distributed adaptive optimization spik-
ing neural P system for approximately solving combinatorial opti-
mization problems. Information Sciences, 596, 1–14. https:// doi.
org/ 10. 1016/j. ins. 2022. 03. 007. ISSN 0020-0255.

 7. Dong, J., Zhang, G., Luo, B., et al. (2022). Multi-learning rate
optimization spiking neural P systems for solving the discrete
optimization problems. Journal of Membrane Computing, 4,
209–221. https:// doi. org/ 10. 1007/ s41965- 022- 00105-6

 8. Zhang, G., Rong, H., Neri, F., & Pérez-jiménez, M. J. (2014). An
optimization spiking neural P system for approximately solving
combinatorial optimization problems. International Journal of
Neural Systems. https:// doi. org/ 10. 1142/ S0129 06571 44000 61

 9. Zhu, M., Yang, Q., Dong, J., Zhang, G., Gou, X., Rong, H., Paul,
P., & Neri, F. (2021). An adaptive optimization spiking neural
P system for binary problems. International Journal of Neural
Systems. https:// doi. org/ 10. 1142/ S0129 06572 05005 49

 10. Buiu, C., et al. http:// membr aneco mputi ng. net/. Accessed 1 June
2023.

 11. Florea, A. G., & Buiu, C. (2016). Development of a software
simulator for P colonies. Applications in robotics. International
Journal of Unconventional Computing, 12(2–3), 189–205.

 12. Luo, Y., Guo, P., & Zhang, M. (2019). A framework of ant colony
P system. IEEE Access, 7, 157655–157666. https:// doi. org/ 10.
1109/ ACCESS. 2019. 29499 52

 13. Ramachandranpillai, R., & Arock, M. (2020). Spiking neural P
ant optimisation: A novel approach for ant colony optimisation.
Electronics Letters, 56, 1320–1322. https:// doi. org/ 10. 1049/ el.
2020. 2144

 14. Ionescu, M., Pǎun, G., & Yokomori, T. (2006). Spiking neural P
systems. Fundamenta Informaticae, 71(2–3), 279–308.

 15. Gheorghe, M., Stamatopoulou, I., Holcombe, M., & Kefalas, P.
(2004). Modelling dynamically organised colonies of bio-entities.
In J. P. Banâtre, P. Fradet, J. L. Giavitto, & O. Michel (Eds.),
Unconventional programming paradigms. UPP. Lecture Notes in
Computer Science. (Vol. 3566). Springer. https:// doi. org/ 10. 1007/
11527 800_ 17

 16. Kefalas, P., Stamatopoulou, I., Eleftherakis, G., & Gheorghe, M.
(2008). Transforming state-based models to P systems models in
practice. In D. W. Corne, P. Frisco, G. Păun, G. Rozenberg, & A.
Salomaa (Eds.), Membrane computing. WMC. Lecture Notes in
Computer Science. (Vol. 5391). Springer. https:// doi. org/ 10. 1007/
978-3- 540- 95885-7_ 19

 17. Cienciala, L., Ciencialová, L., & Perdek, M. (2012). 2D P colo-
nies. In E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salo-
maa, & Gy. Vaszil (Eds.), Membrane computing. CMC 2012.
Lecture Notes in Computer Science (Vol. 7762, pp. 161–172).
Berlin: Springer. https:// doi. org/ 10. 1007/ 978-3- 642- 36751-9_ 12

 18. Kelemen, J., Kelemenová, A., & Păun, G. (2004). Preview of P
colonies: A biochemically inspired computing model. In: Work-
shop and Tutorial Proceedings. In: Ninth International Conference
on the Simulation and Synthesis of Living Systems (Alife IX). pp.
82–86. Boston, Massachusetts, USA (September 12–15 2004)

 19. Valenta, D., Langer, M., Ciencialová, L., & Cienciala, L. (2021).
On Numerical 2D P colonies with the blackboard and the gray
wolf algorithm. In R. Freund, T. O. Ishdorj, G. Rozenberg, A.
Salomaa, & C. Zandron (Eds.), Membrane computing. CMC

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ins.2022.05.016
https://doi.org/10.1016/S1004-9541(07)60146-3
https://doi.org/10.1016/S1004-9541(07)60146-3
https://doi.org/10.1587/transinf.2020EDL8147
https://doi.org/10.1016/j.ins.2022.03.007
https://doi.org/10.1016/j.ins.2022.03.007
https://doi.org/10.1007/s41965-022-00105-6
https://doi.org/10.1142/S0129065714400061
https://doi.org/10.1142/S0129065720500549
http://membranecomputing.net/
https://doi.org/10.1109/ACCESS.2019.2949952
https://doi.org/10.1109/ACCESS.2019.2949952
https://doi.org/10.1049/el.2020.2144
https://doi.org/10.1049/el.2020.2144
https://doi.org/10.1007/11527800_17
https://doi.org/10.1007/11527800_17
https://doi.org/10.1007/978-3-540-95885-7_19
https://doi.org/10.1007/978-3-540-95885-7_19
https://doi.org/10.1007/978-3-642-36751-9_12

128 M. Langer, D. Valenta

1 3

2020. Lecture Notes in Computer Science. (Vol. 12687). Springer.
https:// doi. org/ 10. 1007/ 978-3- 030- 77102-7_ 10

 20. Valenta, D., & Langer, M. (2021). On Numerical 2D P colonies
modelling the grey wolf optimization algorithm. Processes., 9(2),
330. https:// doi. org/ 10. 3390/ pr902 0330

 21. Hunter, J. D. (2007). Matplotlib: “A 2D Graphics Environment”.
Computing in Science and Engineering, 9(3), 90–95. https:// doi.
org/ 10. 1109/ MCSE. 2007. 55

 22. Rossum, G., & Drake, F. L. Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace. https:// docs. python. org/3/ libra ry/ ran-
dom. html. Accessed 1 June 2023.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Miroslav Langer is Assistant Pro-
fessor at the Department of
Applied Informatics, Faculty of
Economics, VSB – Technical
University in Ostrava. He teaches
subjects related to programming,
design and development of infor-
mation systems, and artificial
intelligence. His scientific inter-
ests include, but are not limited
to formal grammars and lan-
guages, their application, bio-
logically inspired computation,
artificial intelligence and natural
language processing.

Daniel Valenta is Assistant Pro-
fessor at the Institute of com-
puter science at Silesian Univer-
sity specializing in membrane
systems and optimization prob-
lem-solving systems. With a
keen interest in programming, he
also teaches courses on data-
bases and information systems.

https://doi.org/10.1007/978-3-030-77102-7_10
https://doi.org/10.3390/pr9020330
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html

	On evolving environment of 2D P colonies: ant colony simulation
	Abstract
	1 Introduction
	2 The evolving environment in terms of the 2D P colony
	3 The simulation of the ant colony
	3.1 Random motion
	3.2 Found the food
	3.3 Homecoming
	3.4 Found the pheromone trail
	3.5 Following the pheromone trail
	3.6 Final word on motion rules

	4 Computer simulation
	4.1 Random move correction

	5 On patterns of behavior
	6 Implementation
	6.1 Environment
	6.2 Agent
	6.3 Running the simulation
	6.4 Graphical interface

	7 Conclusion
	Acknowledgements
	References

