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Comparison Matrices in Group Decision-Making 
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Abstract.  The Analytic Hierarchy Process (AHP) is a method proposed to solve com-
plex multi-criteria decision-making problems.  Pairwise comparison methods are of-
ten used in AHP to derive the priorities of the successors of an element in the hierar-
chy.  In this paper, we are concerned with group decision-making; that is, given � ob-
jects, such as criteria and/or variants, let � decision makers evaluate the � objects 
(pairwise) with respect to a criterion.  The task is then to find a consensual priority 
vector of  the � given � × � reciprocal pairwise comparison matrices.  Recalling sev-
eral desirable properties of the priority vector – consistency, intensity, and coher-
ence – we consider the weakest one of the three, i.e. coherence, in the rest of the paper.  
In other words, given � coherent priority vectors, each provided by a decision maker 
of the group, the purpose is to find a single consensual priority vector of the group.  
To cope with this task, we propose a grade to measure the consensuality of a priority 
vector.  We thus obtain an optimization problem, whose solution yields an optimal 
consensual ranking of the � given objects. 
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1 Introduction 

The Analytic Hierarchy Process (AHP) is a popular and powerful tool to solve multi-criteria decision-making 
problems [9].  We consider the following main subproblem of the AHP, which is to be solved in every internal 
node of the hierarchy; that is, a node having some subnodes.  Let � denote the number of these subnodes, which 
correspond to � objects ��, ��, … , �	, i.e. criteria, subcriteria, and/or alternatives (variants).  Notice that the internal 
node corresponds to some criterion, subcriterion, and/or the goal of the hierarchy.  Henceforth, we shall use the 
single term criterion for simplicity.  Given the information on the relative importance of the two items in each pair 
of the objects with respect to the given criterion (subcriterion, and/or the goal) in the form of an � × � pairwise 
comparison matrix 
, the purpose is to calculate the priority vector, which is a vector of � weights ��, ��, … , �	 
assigned to the � objects ��, ��, … , �	, respectively.  The prominent methods to calculate the priority vector include 
Saaty’s Eigenvector Method (EVM) and the Geometric Mean Method (GMM), see [9] and [8].  The priority vector 
provided by these methods, however, usually do not satisfy desirable properties – consistency, intensity, and/or 
coherence, in particular – see [10], [5], and [1]. 

For �, 
 = 1, 2, … , �, let ���  be a value (i.e. quantity or number) that represents the decision maker’s opinion how 
many times object �� is more important or better than object �� with respect to the given criterion.  We thus obtain 
a (crisp) pairwise comparison matrix 
 = �����.  This is a special case of the fuzzy case studied in [2], where the 
authors have proposed a new algorithm for computing priority vectors, satisfying desirable properties, of a fuzzy 
pairwise comparison matrix.  In [3], the authors have improved and extended their new algorithm to the case when 
there are � decision makers (evaluators), and each of them assesses the relative importance of the two items in 
each pair of the objects with respect to the given criterion.  In other words, given � × � pairwise comparison 
matrices 
�, 
�, … , 
� such that the element ����  of the �-th matrix represents the �-th decision maker’s opinion 
how many times �� is more important or better than �� with respect to the given criterion for �, 
 = 1, 2, … , � and 
for � = 1, 2, … , �, the extended algorithm provides a joint priority vector, satisfying the desirable properties, of 
the � pairwise comparison matrices 
�, 
�, … , 
�.  In this paper, it is our purpose to provide an algorithm to 
compute a consensual priority vector, satisfying the desirable property of coherence only. 
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2 Abelian linearly ordered groups 

In order to unify and generalize various approaches known from the literature, we use the elements of an Abelian 
linearly ordered group to evaluate the relative importance of the two items in each pair of the objects with respect 
to the given criterion, see [4] and [7].  Recall that an Abelian group is a pair ��, ⊙� where � is a non-empty set 
and ⊙ is a commutative and associative binary operation on � satisfying also the existence of the neutral element � ∈ � and the existence of the inverse element �� �� ∈ � for each � ∈ �.  We then have � ⊙ � = � and � ⊙�� �� = � for every � ∈ �.  We also put � ÷ " = � ⊙ "� �� for all �, " ∈ �.  An Abelian linearly ordered group 
(alo-group) is a triple ��, ⊙, ≤� such that ��, ⊙� is an Abelian group and ≤ is a binary relation of linear ordering 
on � such that � ≤ " implies � ⊙ � ≤ " ⊙ � for all �, ", � ∈ �.  The well-known examples of alo-groups are the 
Multiplicative alo-group ℛ% = �ℝ%, ⋅, ≤� with the usual multiplication and the neutral element � = 1, the Additive 
alo-group ℛ = �ℝ, +, ≤� with the usual addition and the neutral element � = 0, and the Fuzzy Multiplicative alo-
group ℱ+,;�. = �+0; 1., ⊙, ≤� with � ⊙ " = �" ��" + �1 − ���1 − "��⁄  for �, " ∈ +0; 1. and the neutral element � = 12, see [4], [7], and [8]. 

3 Desirable properties of the priority vector 

Let us consider an alo-group 3 = ��, ⊙, ≤� and let us denote the set of the first � positive natural numbers by 4; 
that is, we put 4 = �1, 2, … , ��.  Considering the set 5 = ���, ��, … , �	�, let 
 = ����� be an � × � matrix such 
that each of its element ��� ∈ � evaluates the relative importance of the objects �� and �� with respect to the given 
criterion.  The matrix 
 = ����� is called a pairwise comparison matrix, or PC matrix for short, if it is reciprocal; 
that is, if the following two conditions hold for each �, 
 ∈ 4: 

 ��� = �  ,  and  ��� ⊙ ��� = � . (1) 

Then the result of a pairwise comparison method based on the PC matrix 
 = ����� is a vector � = ���, ��, … , �	� 
of the weights ��, ��, … , �	 ∈ � of the objects ��, ��, … , �	 ∈ 5, respectively.  In other words, the �-th component �� 
of the priority vector � is the weight of the object �� for � ∈ 4.  We say the priority vector � = ���, ��, … , �	� is 
normalized if ⊙�6�	 �� = �. 

Based upon the ideas that have already appeared in the literature ([10], [1], [5], [6], [2] and [3]), we define the 
notions of desirable properties as follows. 

Definition 1.  Let 
 = ����� be a PC matrix on an alo-group 3 = ��, ⊙, ≤� and let � = ���, ��, … , �	�, with �� ∈�, be a priority vector. 

 (i) We say that the vector � is a consistent vector (CsV) of the PC matrix 
 if the following condition holds: 

 ��� = �� ÷ ��  for all �, 
 ∈ 4. (2) 

 (ii) We say that the vector � is an intensity vector (InV) of the PC matrix 
 if the following condition holds: 

 ��� > ��8 if and only if �� ÷ �� > �� ÷ �8  for all �, 
, �, 9 ∈ 4. (3) 

 (iii) We say that the vector � is a coherent vector (CoV) of the PC matrix 
 if the following condition holds: 

 ��� > � if and only if �� > ��  for all �, 
 ∈ 4. (4) 

If there exists a consistent, intensity, or coherent vector of the PC matrix 
, then 
 is called a consistent, intensity, 
or coherent PC matrix, respectively. 

By reciprocity (1) and by Definition 1, the following result is easy to see.  This is why we omit its proof. 

Proposition 2.  Let 
 = ����� be a PC matrix on an alo-group 3 = ��, ⊙, ≤� and let � = ���, ��, … , �	�, with �� ∈ �, be a vector.  Then: 

 (i) If � is a consistent priority vector of the PC matrix 
, then it is an intensity priority vector of 
.  

 (ii) If � is an intensity priority vector of the PC matrix 
, then it is a coherent priority vector of 
. 

 
 
 
 
 

Proceedings of the 41st International Conference on Mathematical Methods in Economics

2



 
 

 
 
 
 
 
 
 
 

Figure 1 The 1st expert’s judgements of 6 elements ��, ��, �:, �;, �<, �= with respect to some criterion 

 
 
 
 
 
 
 

 

Figure 2 The 2nd expert’s judgements of 6 elements ��, ��, �:, �;, �<, �= with respect to some criterion 

4 An algorithm to generate a consensual priority vector of coherent PC 

matrices in group decision-making 

Let 3 = ��, ⊙, ≤� be an alo-group.  Given an � × � pairwise comparison matrix 
 = ����� on the alo-group 3, 
we introduce binary relations ≻, ≈ and ≽ on the set 4 as follows.  For �, 
 ∈ 4, we define that � ≻ 
 if and only 
if ��� > �, and we define that � ≈ 
 if and only if ��� = �, where � is the neutral element of the alo-group 3.  
Finally, for �, 
 ∈ 4, we define that � ≽ 
 if and only if � ≻ 
 or � ≈ 
.  Notice that the PC matrix 
 is coherent if 
and only if the relation ≽ is a quasi-linear ordering of the set 4, and also ≈ is a relation of equivalence on 4; that 
is, the relation ≽ is complete (� ≽ 
 or 
 ≽ �) and transitive (� ≽ 
 ≽ �  ⟹  � ≽ �), and the relation ≈ is reflexive 
(� ≈ �), symmetric (� ≈ 
  ⟹  
 ≈ �), and transitive (� ≈ 
 ≈ �  ⟹  � ≈ �). 

Assume in the sequel that the PC matrix 
 = ����� is coherent.  Then the relation ≽ of quasi-ordering of the set 4 
can equivalently be represented by an � × � matrix C = �D��� consisting of 0’s and 1’s as follows.  Let E�, E�, … , EF be all the pairwise distinct equivalence classes of the relation ≈ on the set 4, and let the classes be 
ordered so that G < I implies � ≻ 9 for all � ∈ EJ , for all 9 ∈ EK, and for all G, I = 1, 2, … , L.  Let �� ≔ �, and for G = 1, 2, … , L, let �J%� ≔ �J − |EJ|, where |EJ| denotes the number of the elements of the class EJ .  Notice that �F%� = 0.  Then, for G = 1, 2, … , L, we put D�O� = 1 for 
 ∈ EJ , and we put D�O� = 0 for 
 ∈ 4 ∖ EJ .  Finally, we 
put D�� = 0 for all � ∈ 4 ∖ ���, ��, … , �F� and for all 
 = 1, 2, … , �.  Notice that C is a binary matrix, which consists 
of elements 0 and 1, and satisfies the following system of inequalities and conditions: 

 ∑  D��	�6� = 1 for 
 ∈ 4, (5) 

 ∑ D��	�6� ≤ � × maxU0,  1 + � − ∑ D�%�,�	�6� V for � = 1, … , � − �  for � ∈ 4, (6) 

 D�� ∈ �0, 1� for �, 
 ∈ 4. (7) 

In words, the maximal elements are in the class E� and the smaller elements are in the subsequent classes E�, … EF.  The elements of the class EJ  are represented in the �J-th row of the matrix C.  Moreover, there being |EJ| elements in the class EJ , therefore |EJ| 1’s in the �J-th row, then the subsequent �|EJ| − 1� rows, i.e. rows �J − 1, … , �J − |EJ| + 1, of the matrix C must be zero.  Examples presented in Figures 1 and 2 illustrate this 
procedure. 

In this paper, it is our purpose to consider the main subproblem of the AHP extended as follows.  Given the alo-
group 3 = ��, ⊙, ≤� and the � objects ��, ��, … , �	 to be judged with respect to the given criterion by � inde-
pendent decision makers (evaluators), each of the decision makers assesses the relative importance of the two 
items in each pair of the objects with respect to the given criterion by using an element of the alo-group 3; that is, 
let ���� ∈ � represent the �-th decision maker’s opinion how many times �� is more important or better than �� with 
respect to the given criterion for �, 
 = 1, 2, … , � and for � = 1, 2, … , �.  Additionally, we assume that each of the 


� =
⎝
⎜⎜⎛

1 5 5 5 5 5⅕ 1 1 5 5 5⅕ 1 1 5 5 5⅕ ⅕ ⅕ 1 1 1⅕ ⅕ ⅕ 1 1 1⅕ ⅕ ⅕ 1 1 1⎠
⎟⎟⎞ 

A coherent matrix of pairwise  
comparisons of elements ��, … , �=  
with respect to the criterion by the  
1st expert: 

The induced quasi-linear ordering: ��⏟E1
≻ �� ≈ �:àbacE2

≻ �; ≈ �< ≈ �=`aaabaaacEd
 

C� =
⎝
⎜⎜⎛

0 0 0 0 0 00 0 0 0 0 00 0 0 1 1 10 0 0 0 0 00 1 1 0 0 01 0 0 0 0 0⎠
⎟⎟⎞ 

The matrix C� representing the  
induced quasi-linear ordering: 

�� 

�� �: 

�; �< �= 


� =
⎝
⎜⎜⎛

1 1 1 5 5 51 1 1 5 5 51 1 1 5 5 5⅕ ⅕ ⅕ 1 1 5⅕ ⅕ ⅕ 1 1 5⅕ ⅕ ⅕ ⅕ ⅕ 1⎠
⎟⎟⎞ 

A coherent matrix of pairwise  
comparisons of elements ��, … , �=  
with respect to the criterion by the  
2nd expert: 

The induced quasi-linear ordering: �� ≈ �� ≈ �:`aaabaaacE1
≻ �; ≈ �<àbacE2

≻ �=⏟Ed
 

C� =
⎝
⎜⎜⎛

0 0 0 0 0 10 0 0 0 0 00 0 0 1 1 00 0 0 0 0 00 0 0 0 0 01 1 1 0 0 0⎠
⎟⎟⎞ 

The matrix C� representing the  
induced quasi-linear ordering: 

�� �� �: 

�; �< 

�= 
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� decision makers is coherent; that is, let each PC matrix 
� = ����� � be coherent and let e� ∈ �	 be a coherent 
priority vector of the PC matrix 
� for � = 1, 2, … , �.  Now, given the coherent PC matrices 
�, 
�, … , 
�, or 
their coherent priority vectors e�, e�, … , e� ∈ �	, our purpose is to find a single consensual priority vector � =���, ��, … , �	� ∈ �	; that is, a priority vector � ∈ �	 that is consensual with each of the priority vectors e�, e�, … , e� as much as possible. 

Generally speaking, we define that two priority vectors e� ∈ �	, and � ∈ �	 are consensual if it holds e�� >e�� ⟺ �� > �� for every �, 
 = 1, 2, … , �.  Actually, as all the PC matrices 
�, 
�, … , 
� are coherent, they induce 
the quasi-linear orderings ≽�, ≽�, … , ≽� of the set 4, defined in the above given way.  Therefore, we define that 
quasi-linear orderings ≽� and ≽ of 4 are consensual if it holds � ≻� 
   ⟺   � ≻ 
 for every �, 
 ∈ 4.  Recalling that e� ∈ �	 is a coherent priority vector of the PC matrix 
�, observe that � ≻� 
 implies e�� > e�� for �, 
 ∈ 4 for � = 1, 2, … , �.  Consequently, it is possible to simplify our task as follows: given the quasi-linear orderings ≽�, ≽�, … , ≽� of the set 4, our purpose is to find a single consensual quasi-linear ordering ≽ of the set 4; that 
is, a quasi-linear ordering ≽ of 4 that is consensual with each of the quasi-linear orderings ≽�, ≽�, … , ≽� as much 
as possible. 

Given quasi-linear orderings ≽� and ≽ of the set 4, we define the grade of their non-consensuality as follows:  
Let C� = �D��� � and C = �D��� be the binary matrix representing the relation ≽� and ≽, respectively, defined in the 
above given way; notice that the matrix C satisfies relations (5)–(7).  We then define the grade of their non-con-
sensuality as 

 
g�C� , C� = h h h |�� − �|	

�6�ijk6�

	
�l6�ijlkl 6�

	
�6�

 , (8)

where |�� − �| denotes the absolute value of the difference �� − �.  (Alternatively, we could replace |�� − �| by its 
square |�� − �|�, cube |�� − �|:, or any other power of it.)  The idea behind (8) is to penalize the change of the 
“level” of the element 
 = 1, 2, … , � when transiting from one quasi-ordering (e.g. ≽�) to the other (e.g. ≽).  Then 
the total non-consensuality of the quasi-linear ordering ≽ of 4 with the quasi-linear orderings ≽�, ≽�, … , ≽� is 
defined as g�C�, C�, … , C� , C� = ∑ g�C� , C���6� ; that is, 

 g�C� , C�, … , C� , C� = h h mh h |�� − �| × D�l��	
�l6� 

�
�6�

o × D��
	

�6�
	

�6�
 . (9)

To meet our purpose; that is, to find a single quasi-linear ordering ≽ of the set 4 that is consensual with each of 
the quasi-linear orderings ≽�, ≽�, … , ≽� as much as possible, we minimize (9) subject to (5)–(7). 

We notice that the aforegiven optimization problem (minimize (9) subject to (5)–(7)) is integer and non-smooth, 
hence difficult to solve.  For this reason, we may restrict ≽ to be a consensual linear ordering of the set 4, so that 
the corresponding matrix C reduces to a simple permutation matrix.  Constraints (6) then reduce to ∑ D��	�6� ≤ � 
for � ∈ 4, which, by taking (5) and (7) into account, can further be simplified to ∑ D��	�6� = 1 for � ∈ 4.  Then, 
to find a single linear ordering ≽ of the set 4 that is consensual with each of the quasi-linear orderings ≽�, ≽�, … , ≽� as much as possible, we minimize (9) subject to 

 ∑  D��	�6� = 1    for 
 ∈ 4, (10) 

 ∑ D��	�6� = 1    for � ∈ 4, (11) 

 D�� ∈ �0, 1� for �, 
 ∈ 4, (12) 

which is an assignment problem actually.  It is well-known that the matrix of the coefficients by the variables D��  
in (10) and (11) is totally unimodular, so that (12) can be relaxed to 

 0 ≤ D�� ≤ 1  for �, 
 ∈ 4, (13) 

yet the easy problem of continuous linear programming (minimize (9) subject to (10), (11), and (13)) has an integer 
optimal solution. 

Once we find an optimal solution to the above optimization problem (minimize (9) subject to either (5)–(7), or 
(10), (11), and (13)), we construct the corresponding consensual quasi-linear or linear ordering ≽ of the set 4 as 
follows.  Let ��, ��, … , �F be all the pairwise distinct elements of the set � � ∈ 4 ∣ D�� = 1 for some 
 ∈ 4 � and 
let them be ordered so that �� > �� > ⋯ > �F.  For G = 1, 2, … , L, put EJ = � 
 ∈ 4 ∣ D�O� = 1 �.  Finally, let � ≈ 
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  Figure 3 An optimal solution to the illustrative example min (15) s.t. (16)–(18) 

 
 
 
 
 
 

  Figure 4 An integer optimal solution to the simple illustrative example min (19) s.t. (20)–(22) 

 

for all �, 
 ∈ EJ  for G = 1, 2, … , L, and let � ≻ 
 for all � ∈ EJ  and for all 
 ∈ EK for G = 1, 2, … , L − 1 and for I =G + 1,  G + 2, … , L. 

5 An illustrative example 

Let the alo-group 3 = ��, ⊙, ≤� be the usual multiplicative group ℛ% = �ℝ%, ⋅, ≤� of the field of the reals with 
the usual multiplication and usual linear ordering, and with the neutral element � = 1.  We are given � = 6 objects ��, ��, �:, �;, �<, �= to be judged with respect to some criterion by � = 2 independent decision makers (evaluators 
or experts).  The experts have independently assessed the relative importance of the two items in each pair of the 
objects with respect to the criterion.  Matrices 
� and 
� presented in Figures 1 and 2, respectively, present the 
opinions of the two experts.  Both matrices are coherent.  The corresponding coherent priority vectors of the 
matrices are, e.g. e� = z d1{, 21{, 21{, 11{, 11{, 11{| and e� = z d1}, d1}, d1}, 21}, 21}, 11}|, respectively.  We can see the opinions of 
the experts are different: while the 1st expert considers elements �� and �: to be less important that element ��, the 
2nd expert considers all three elements ��, ��, �: to be equally important; while the 1st expert considers elements �;, �<, �= to be equally important, the 2nd expert considers elements �; and �< to be more important that element �=.  
Now, our purpose is to find a single consensual priority vector � = ���, ��, �:, �;, �<, �=� ∈ ℝ%= .  To this end, we 
find an integer optimal solution to the above given linear programming problem to minimize (9) subject to either 
(5)–(7) or (10), (11), and (13).  First, we construct the objective function; that is, the matrix of coefficients: 

 ~  =  
⎝
⎜⎜⎛

5 4 4 3 3 34 3 3 2 2 23 2 2 1 1 12 1 1 0 0 01 0 0 1 1 10 1 1 2 2 2⎠
⎟⎟⎞ +

⎝
⎜⎜⎛

5 5 5 2 2 04 4 4 1 1 13 3 3 0 0 22 2 2 1 1 31 1 1 2 2 40 0 0 3 3 5⎠
⎟⎟⎞   =  

⎝
⎜⎜⎛

10 9 9 5 5 38 7 7 3 3 36 5 5 1 1 34 3 3 1 1 32 1 1 3 3 50 1 1 5 5 7⎠
⎟⎟⎞ (14) 

Next, we solve the non-smooth integer optimization problem (minimize (9) subject to (5)–(7)); that is, 

 minimize ∑ ∑ ���D��=�6�=�6�  (15) 
subject to 

 ∑  D��=�6� = 1 for 
 = 1, 2, 3, 4, 5, 6, (16) 

 ∑ D��=�6� ≤ � × maxU0,  1 + � − ∑ D�%�,�=�6� V for � = 1, … , 6 − �  for � = 1, 2, 3, 4, 5, 6, (17) 

 D�� ∈ �0, 1� for �, 
 = 1, 2, 3, 4, 5, 6. (18) 

By using the Excel Solver, we find an optimal solution along with the respective consensual quasi-linear ordering 
of the set 5 = ���, ��, �:, �;, �<, �=� presented in Figure 3. 

We notice that the optimal solution C = C�; that is, the opinion of the 2nd expert is consensual in this example.  A 
consensual coherent priority vector is then, e.g., � = e� = z d1}, d1}, d1}, 21}, 21}, 11}|. 

An optimal solution to the problem: The quasi-linear ordering represented by the optimal solution C: �� ≈ �� ≈ �:`aaabaaacE1
≻ �; ≈ �<àbacE2

≻ �=⏟Ed
 

C =
⎝
⎜⎜⎛

0 0 0 0 0 10 0 0 0 0 00 0 0 1 1 00 0 0 0 0 00 0 0 0 0 01 1 1 0 0 0⎠
⎟⎟⎞ 

�� �� �: 

�; �< 

�= 

An optimal solution to the problem: The linear ordering represented by the optimal solution C: 

C =
⎝
⎜⎜⎛

0 0 0 0 0 10 0 0 0 1 00 0 0 1 0 00 0 1 0 0 00 1 0 0 0 01 0 0 0 0 0⎠
⎟⎟⎞ 

��⏟E1
≻ ��⏟E2

≻ �:⏟Ed
≻ �;⏟E}

≻ �<⏟E�
≻ �=⏟E�
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We also solve the simple linear programming problem (minimize (9) subject to (10), (11), and (13)); that is, 

 minimize ∑ ∑ ���D��=�6�=�6�  (19) 
subject to 

 ∑  D��=�6� = 1 for 
 = 1, 2, 3, 4, 5, 6, (20) 

 ∑ D��=�6� = 1 for � = 1, 2, 3, 4, 5, 6, (21) 

 D�� ≥ 0 for �, 
 = 1, 2, 3, 4, 5, 6. (22) 

By using the Excel Solver, we find an optimal solution along with the respective consensual linear ordering of the 
set 5 = ���, ��, �:, �;, �<, �=� presented in Figure 4. 

A consensual coherent priority vector is then, e.g., � = z �21, �21, }21, d21, 221, 121|. 

6 Concluding remarks 

In Section 4, we proposed the notion of consensuality of two priority vectors and also that of two quasi-linear 
orderings of � objects ��, ��, … , �	.  Subsequently, given two quasi-linear orderings, we proposed the notion of 
grade of their non-consensuality.  Finally, given � quasi-linear orderings ≽�, ≽�, … , ≽�, i.e. evaluations of the � objects by � evaluators (experts) with respect to some criterion, and yet an eventually consensual quasi-linear 
ordering ≽ of the objects, we defined the total non-consensuality of ≽ with ≽�, ≽�, … , ≽� by formula (9), which 
is to be minimized.  When constructing the objective function (9), we assumed that each of the � evaluators is 
equally skilled to judge the � objects ��, ��, … , �	.  Instead, we can express the importance and/or qualifications of 
the evaluators by weights ��, ��, … , �� > 0 such that �� + �� + ⋯ + �� = 1.  Then, using the general weighted 
power mean with � ∈ �−∞, +∞� ∖ �0�, of which the weighted arithmetic mean is a special case (� = 1), or the 
weighted geometric mean (� = 0), we can define the total non-consensuality of ≽ with ≽�, ≽�, … , ≽� as: 

h h �h �� × m h |�� − �| × D�l��	
�l6�

o�
�6�

��� �⁄
× D��

	
�6�

	
�6�

  or   h h �� m h |�� − �| × D�l��	
�l6�

o�l�
�6�

� × D��
	

�6�
	

�6�
 . 
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