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Abstract
We consider transferable utility cooperative gameswith infinitelymany players. In particular,
wegeneralize the notions of core andbalancedness, and also theBondareva–ShapleyTheorem
for infinite TU games with and without restricted cooperation, to the cases where the core
consists of κ-additive set functions. Our generalized Bondareva–Shapley Theorem extends
previous results byBondareva (ProblemyKibernetiki 10:119–139, 1963), Shapley (NavalRes
Logist Q 14:453–460, 1967), Schmeidler (On balanced games with infinitely many players,
The Hebrew University, Jerusalem, 1967), Faigle (Zeitschrift für Oper Res 33(6):405–422,
1989), Kannai (J Math Anal Appl 27:227–240, 1969; The core and balancedness, handbook
of game theory with economic applications, North-Holland, 1992), Pintér (Linear Algebra
Appl 434(3):688–693, 2011) and Bartl and Pintér (Oper Res Lett 51(2):153–158, 2023).

Keywords TU games with infinitely many players · Bondareva–Shapley Theorem ·
κ-Core · κ-Balancedness · κ-Additive set function · Duality theorem for infinite LPs

1 Introduction

The core (Aumann, 1961;Gillies, 1959; Shapley, 1955) is definitely one of themost important
solution concepts of cooperative game theory. In the transferable utility setting (henceforth
games) the Bondareva–Shapley Theorem (Bondareva, 1963; Faigle, 1989; Shapley, 1967)
provides a necessary and sufficient condition for the non-emptiness of the core; it states
that the core of a game with or without restricted cooperation is not empty if and only if
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the game is balanced. The textbook proof of the Bondareva–Shapley Theorem goes by the
strong duality theorem for linear programs (henceforth LPs), see e.g. Peleg and Sudhölter
(2007). The primal problem corresponds to the concept of balancedness and so does the dual
problem to the notion of core. However, this result is formalized for games with finitely many
players. It is a question how one can generalize this result to the infinitely many player case.

The finitely many player case is special in (at least) two counts: (1) it can be handled by
finite linear programs, (2) since the power set of the player set is also finite, it is natural to
take the solution of a game from the set of additive set functions (additive games).

There are two main directions to reformulate the notion of additive set function. The first,
when we weaken (generalize) the notion of additivity; this leads to the notion of k-additive
core (Grabisch & Miranda, 2008), where k is a finite cardinal (natural number). The second,
when we use a notion stronger than additivity (e.g. σ -additivity). This latter approach is
considered here.

Schmeidler (1967), Kannai (1969, 1992), Pintér (2011), and Bartl and Pintér (2023)
considered games with infinitely many players. All these papers studied the additive core;
that is, the case when the core consists of bounded additive set functions. Schmeidler (1967)
and Kannai (1969) showed that the additive core of a non-negative game without restricted
cooperation with infinitely many players is not empty if and only if the game is Schmeidler
balanced (Definition 17). Bartl and Pintér (2023) extended these results and showed that the
additive core of a game bounded belowwith our without restricted cooperation with infinitely
many players is not empty if and only if the game is (bounded-)Schmeidler balanced.

Kannai (1969, 1992) considered the following question:When does there exist a bounded
σ -additive set function in the core? In this paper we generalize the above question as follows:
When does there exist a bounded κ-additive set function in the core, where κ is an infinite
cardinal number? Moreover, we consider this question in the case of games with restricted
cooperation too.

Addressing this question, we introduce the notions of κ-core and κ-balancedness (Defini-
tions 15 and 21). Then, we apply the strong duality theorem for infinite LPs by Anderson and
Nash (1987) (Proposition 3) and prove that the κ-core of a game with or without restricted
cooperation and with arbitrarily many players is not empty if and only if the game is κ-
balanced (Theorem 25).

The set-up of the paper is as follows. In the next section we recall the main mathematical
notions and results,which are related to infiniteLPs, and used in this paper. In Sect. 3wedefine
the notion of κ-additive set functions and discuss some related concepts and results. In Sect. 4
we present game theory notions and define various cores (such as κ-core) and balancedness
conditions (such as κ-balancedness) we consider in this paper. Section5 presents our main
result. We give an answer to the question we have raised: there is a bounded κ-additive set
function in the core if and only if the game is κ-balanced (Theorem 25). The last section
briefly concludes.

2 Duality theorem

In this section we discuss the duality theorem for infinite linear programs that we will use
later.

Let X and Y be real vector spaces. The algebraic dual of X is the space of all linear
functionals on X ; that is, all linear mappings ϕ : X → R, which are also known as linear
forms on X . We denote the algebraic dual of X by X ′. Similarly Y ′ denotes the algebraic dual
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of Y . Moreover, Y ∗ ⊆ Y ′ denotes a linear subspace of Y ′ such that (Y , Y ∗) is a dual pair of
spaces; that is, if f ∈ Y is non-zero, then there exists a y ∈ Y ∗ such that y( f ) �= 0. For any
linear mapping A : X → Y its adjoint mapping is A′ : Y ′ → X ′ with (A′(y))(x) = y

(
A(x)

)

for all x ∈ X and y ∈ Y ′. Moreover, a subset P ⊆ X of the vector space X is a convex cone
if αx + β y ∈ P for all x, y ∈ P and all non-negative α, β ∈ R. For any two functionals
f , g : X → R we write f ≥P g if f (x) ≥ g(x) for all x ∈ P .
Now, given a linear mapping A : X → Y , a point b ∈ Y and a linear functional c : X → R,

let us consider the following infinite LP-pair (cf. Anderson & Nash, 1987, Section 3.3):

(PLP) c(x) → sup (DLP) y(b) → inf

s.t. A(x) = b s.t. A′(y) ≥P c

x ∈ P y ∈ Y ∗
(1)

where P ⊆ X is a convex cone and Y ∗ is a subspace of Y ′ such that (Y , Y ∗) is a dual pair of
spaces.

Definition 1 The program (DLP) is consistent if there exists a linear functional y ∈ Y ∗
such that

(
A′(y)

)
(x) ≥ c(x) for all x ∈ P . The value of a consistent program (DLP) is

inf
{
y(b) : A′(y) ≥P c, y ∈ Y ∗ }

.

In the next definition we assume the weak topology on the space Y with respect to Y ∗. To
define that, we describe all the neighborhoods of a point. A setU ⊆ Y is aweak neighborhood
of a point f0 ∈ Y if there exist a natural number n and functionals y1, . . . , yn ∈ Y ∗ such that⋂n

j=1

{
f ∈ Y : ∣∣y j ( f ) − y j ( f0)

∣∣ < 1
} ⊆ U .

Definition 2 Put D = {(
A(x), c(x)

) : x ∈ P
}
. The program (PLP) is superconsistent if

there exists a z ∈ R such that (b, z) ∈ D, where D is the closure of D. The supervalue of a
superconsistent program (PLP) is sup

{
z : (b, z) ∈ D

}
.

We recall that a pair (I ,≤) is right-directed if I is a preordered set and for any i, j ∈ I
there exists a k ∈ I such that i ≤ k and j ≤ k. A net (generalized sequence) of X is (xi )i∈I
where (I ,≤) is a right-directed pair and xi ∈ X for all i ∈ I .

Notice that the program (PLP) is superconsistent if there exists a net (xi )i∈I from P such
that A(xi )

w−→ b, whichmeans that A(xi ) converges to b in theweak topology, and (c(xi ))i∈I
is bounded. Furthermore, a number z∗ is the supervalue of a superconsistent program (PLP)
if it is the least upper bound of all numbers z such that there exists a net (xi )i∈I from P such
that A(xi )

w−→ b and c(xi ) −→ z.

Proposition 3 Consider the programs in (1). Program (PLP) is superconsistent and z∗ is its
finite supervalue if and only if program (DLP) is consistent and z∗ is its finite value.

Proposition 3 is a restatement of Theorem 3.3, p. 41, in Anderson and Nash (1987).
Notice that we differ from Anderson and Nash (1987) in the point that Anderson and Nash
use slightly different notions of superconsistency and supervalue. However, they also remark
that their notions and the ones we use here are equivalent (p. 41 above Theorem 3.3). This is
why we omit the proof of Proposition 3 here.
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3 The �-structures

Throughout this section κ is an infinite cardinal number. Let N be a non-empty set and let
A ⊆ P(N ) be a field of sets; that is, if S1, . . . , Sn ∈ A, then

⋃n
j=1 S j ∈ A, and N ∈ A with

N\S ∈ A for any S ∈ A. The pair (N ,A) is called chargeable space.
Given a chargeable space (N ,A), let ba(A) and ca(A) denote, respectively, the set of

bounded additive set functions and the set of bounded σ -additive (i.e. countably additive) set
functions μ : A → R.

Let (Si )i∈I be a net of sets of A; a net (Si )i∈I is a κ-net if #I ≤ κ , where #I is the
cardinality of the set I . In addition, the net (Si )i∈I is monotone decreasing or monotone
increasing if i ≤ j implies Si ⊇ S j or Si ⊆ S j , respectively, for any i, j ∈ I .

Let μ : A → R be a set function. We say that μ is upper κ-continuous or lower κ-
continuous at S ∈ A if for any monotone decreasing or increasing κ-net (Si )i∈I from A
with

⋂
i∈I Si = S or

⋃
i∈I Si = S, respectively, it holds that limi∈I μ(Si ) = μ(S). The set

function μ is κ-continuous if it is both upper and lower κ-continuous at every set S ∈ A.
Next we define the notion of κ-additivity. Our definition is similar to the one byArmstrong

and Prikry (1980) or Schervish et al. (2017).

Definition 4 A set function μ : A → R is κ-additive if it is additive and κ-continuous. Let
baκ (A) denote the set of κ-additive set functions over A.

Note that baκ (A) is a linear subspace of ba(A). Furthermore, the following proposition
is easy to see.

Proposition 5 If the set function μ : A → R is additive, then it is

• upper κ-continuous if and only if it is lower κ-continuous;
• κ-continuous if and only if it is lower κ-continuous at ∅;
• ℵ0-continuous if and only if it is σ -additive.

Example 6 The Lebesgue measure on B([0, 1]), the Borel σ -field of [0, 1], is not κ-additive
for any κ ≥ c, where c denotes the cardinality of the real numbers; but it is κ-additive for
κ = ℵ0.

However, if μ is a measure such that it is a linear combination of Dirac measures, then it
is κ-additive for every cardinal number κ .

If κ is not countable and the field of sets on which the κ-additive set function is defined
is rich enough, then one may ask whether there are enough or just few κ-additive set func-
tions. Without going into the details we remark that this problem is related to the notion of
measurable cardinal (Ulam, 1930).

The next example shows that there are many κ-additive set functions in the space baκ (A)

even in the case when the field A is large; that is, the theory is not trivial nor vacuous.

Example 7 Let X be an arbitrary set such that #X = κ ≥ ℵ0. Consider P(X), the power set
of X . It is clear that the Dirac measures on P(X) are κ-additive. Let

Δ =
{ ∞∑

n=1

αnδn : (αn)
∞
n=1 ∈ 	1, δn being Dirac measures onP(X) for n = 1, 2, 3, . . .

}

.

It is clear that each μ ∈ Δ is a κ-additive set function on P(X). Notice that #Δ ≥
#ca

(
N,P(N)

)
; that is, even in the “worst” case, when there does not exist a non-trivial
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{0, 1}-valued κ-additive set function on P(X), which means the cardinal κ is not measur-
able (Ulam, 1930), the collection Δ of the trivial κ-additive set functions on P(X) is at
least as large as the collection of the σ -additive ones on P(N). In other words, even in the
“worst” case, the problem of the non-emptiness of the κ-core is at least as complex as the
non-emptiness of the σ -core with player setN and all coalitions feasible, the case considered
by Kannai (1969, 1992).

Given a set system A, the space R(A) consists of all functions λ : A → R with a finite
support; that is,

R
(A) = {

λ ∈ R
A : #{ S ∈ A : λS �= 0 } < ∞}

.

Denoting λ(S) and the characteristic function of a set S ∈ A by λS and χS , respectively, let
�(A) = {λS1χS1 + · · · + λSnχSn : n ∈ N, λS1 , . . . , λSn ∈ R, S1, . . . , Sn ∈ A} be the space
of all simple functions on (N ,A); that is,

�(A) =
{

∑

S∈A
λSχS : λ ∈ R

(A)

}

.

We define a norm on�(A) as follows. For a simple function f = λS1χS1 +· · ·+λSnχSn ∈
�(A) let

‖ f ‖ = sup
x∈N

| f (x)|.

The defined norm induces a topology on �(A), and the topological dual (�(A))
 of the
vector space �(A) consists of all linear functionals μ′ : �(A) → R continuous with respect
to the norm. It is well-known that the dual (�(A))
 is isometrically isomorphic to ba(A),
the space of all bounded additive set functions onA (see e.g. Dunford and Schwartz (1958),
Theorem IV.5.1, p. 258); that is, we can identify the space (�(A))
 with ba(A) for simplicity.
Indeed, a set function μ ∈ ba(A) induces a continuous linear functional μ′ ∈ (�(A))
 on
�(A) as follows:

μ′( f ) = λS1μ(S1) + · · · + λSnμ(Sn) (2)

for any f = λS1χS1 + · · · + λSnχSn ∈ �(A).

Lemma 8 It holds that
(
�(A), baκ (A)

)
is a dual pair of spaces.

Proof Let f ∈ �(A) be non-zero, whence there is an x ∈ N such that f (x) �= 0. Then δx ,
the Dirac measure concentrated at point x on A, is a κ-additive set function, and δ′

x ( f ) =
f (x) �= 0. ��

4 The �-core and the �-balancedness of TU games

Let κ be an arbitrary infinite cardinal number as in the previous section. First, we recall the
notion of TU games. Let N be a non-empty set of players and letA′ ⊆ P(N ) be a collection
of sets such that ∅, N ∈ A′. Then a TU game (henceforth a game) on A′ is a set function
v : A′ → R such that v(∅) = 0. Every A ∈ A′ is called a (feasible) coalition, the set A = N
is the grand coalition, and v(A) is the payoff of A if the coalition A is formed. We denote
the class of games on A′ by GA′

. Let A denote the field hull of A′; that is, the smallest field
of sets that contains A′. We say that v ∈ GA′

is a game without restricted cooperation if
A′ = A; that is, A′ is a field. Otherwise, if A′ is not a field, we say v ∈ GA′

is a game with
restricted cooperation.
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Example 9 Consider the following game: Let the player set N be the set of natural numbers;
that is, let N = N. Moreover, let A′, the class of the feasible coalitions, be the class of the
finite and co-finite subsets of N; that is, A′ = {A ⊆ N: either #A < ∞ or #(N\A) < ∞}.
Furthermore, let game v be defined as follows:

v(A) =
{

0 if # A < ∞,

1 otherwise.

Since A′ is a field, we have that v is a game without restricted cooperation.
Let us modify the game v above as follows: Let the set of the feasible coalitions be

A′′ = A′ ∪ {2k : k ∈ N}; that is, the coalitions from A′ and the set of the even numbers.
Moreover, let the modified game v′ be the following:

v′(A) =
{

v(A) if A ∈ A′,
10 otherwise.

Since A′′ = A′ ∪ {2k : k ∈ N} is not a field, we conclude that v′ is a game with restricted
cooperation.

In the following subsections we introduce the three notions of core and the three notions
of balancedness that we consider in this paper.

4.1 The core of a TU game

First, we recall the notion of additive core of a game, which was considered by Schmeidler
(1967), Kannai (1969, 1992), Pintér (2011), and Bartl and Pintér (2023).

Definition 10 For a game v ∈ GA′
its additive core (henceforth ba-core) is defined as follows:

ba-core(v) = {
μ ∈ ba(A) : μ(N ) = v(N ) and μ(S) ≥ v(S) for all S ∈ A′} .

Example 11 Consider the games v and v′ from Example 9. Since v itself is an additive set
function, we have that

ba-core(v) = {v}.
Since the domain A′′ = A′ ∪ {2k : k ∈ N} of v′ is not a field, it is meaningless to use the
notion of additivity to characterize v′. Moreover, since the domain of v is a proper subset of
the domain of v′, and v′ itself is an extension of v from A′ onto A′′, we have the following:

ba-core(v′) =
{
μ ∈ ba(A′′) : μ

({2k : k ∈ N}) ≥ 10, μ(A) = v(A) for all A ∈ A′} ,

where A′′ is the field hull of A′′.
In other words, each element of ba-core(v′) is such an extension of v, the only element

of ba-core(v), that its value at the set of the even numbers is at least 10. It is clear that there
exists such an extension of v; that is, ba-core(v′) �= ∅. Even more, it is easy to see that there
are continuummany such extensions of v because the value of any extension at the set of even
numbers can be any real number not smaller than 10, hence the cardinality of ba-core(v′) is
continuum.

We shall also need the notion of σ -additive core of a game.
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Definition 12 For a game v ∈ GA′
its σ -additive core (henceforth ca-core) is defined as

follows:

ca-core(v) = {
μ ∈ ca(A) : μ(N ) = v(N ) and μ(S) ≥ v(S) for all S ∈ A′}.

Example 13 Consider the games v and v′ from Example 9 again. Since the ca-core is a subset
of the ba-core for any game, and v is not σ -additive (

∑
n∈N v

({n}) = 0 �= 1 = v(N )), we
conclude

ca-core(v) = ∅.

Since the restriction of any element of ca-core(v′) onto A′ is an element of ca-core(v), but
ca-core(v) = ∅, we conclude that

ca-core(v′) = ∅.

Example 14 Consider the following game: Let the player set N be the set of real numbers,
that is, let N = R. Moreover, let A′, the class of the feasible coalitions, be the class of the
finite and co-finite subsets of R; that is, A′ = {A ⊆ R : either #A < ∞ or #(N\A) < ∞}.
Furthermore, let game w be defined as follows:

w(A) =
{

0 if # A < ∞,

1 otherwise.

Then it is easy to see that w itself is a measure (non-negative and σ -additive), hence

ca-core(w) = {w}.
In general, for an infinite cardinal number κ we introduce the notion of κ-core of a game.

Definition 15 For a game v ∈ GA′
its κ-core is defined as follows:

κ-core(v) = {
μ ∈ baκ (A) : μ(N ) = v(N ) and μ(S) ≥ v(S) for all S ∈ A′}.

Example 16 Consider the game w from Example 14. Then it is clear that w is not κ-additive
for any κ ≥ c, hence

κ-core(w) = ∅
for every κ ≥ c.

In words, the ba-core, the ca-core, and the κ-core consists of bounded additive, bounded
σ -additive, and bounded κ-additive, respectively, set functions defined on the field hull A
of the feasible coalitions A′ that meet the conditions of efficiency (μ(N ) = v(N )) and
coalitional rationality (μ(S) ≥ v(S) for all S ∈ A′). Observe that the ca-core is a special
case of the κ-core when κ = ℵ0.

Notice that in the finite case all the three notions of ba-core, ca-core, and κ-core are
equivalent with the notion of (ordinary) core.

4.2 Balancedness of a TU game

In the case of infinite games without restricted cooperation with additive core Schmeidler
(1967) defined the notion of balancedness. Here, letting

R
(A′)
+ = {

λ ∈ R
(A′) : λS ≥ 0 for all S ∈ A′},

we generalize his notion to the restricted cooperation case, and call it Schmeidler balanced-
ness.
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Definition 17 We say that a game v ∈ GA′
is Schmeidler balanced if

sup

{
∑

S∈A′
λSv(S) :

∑

S∈A′
λSχS = χN , λ ∈ R

(A′)
+

}

≤ v(N ). (3)

Example 18 Consider the game v from Example 9. Take any balancing weights (λ ∈ R
(A′)
+

such that
∑

S∈A′ λSχS = χN ). Then for any ba-core element μ we have that
∑

S∈A′
λSv(S) ≤

∑

S∈A′
λSμ(S) = μ(N ) = v(N ),

therefore the game v is Schmeidler balanced.

Notice that for finite games the notions of Schmeidler balancedness and (ordinary) bal-
ancedness (Bondareva, 1963; Faigle, 1989; Shapley, 1967) coincide, hence Schmeidler
balancedness is an extension of (ordinary) balancedness.

Recall that Y ∗ = baκ (A) is a linear subspace of Y 
 = ba(A), which can be identified
with the topological dual of the normed linear space Y = �(A). In the next two definitions,
where we introduce two new notions of balancedness, we consider the weak topology on
Y = �(A) with respect to Y ∗ = baκ (A) (see Lemma 8).

First, for a game v ∈ GA′
consider the convex cone

K+
v =

{(
∑

S∈A′
λSχS,

∑

S∈A′
λSv(S)

)

: λ ∈ R
(A′)
+

}

. (4)

Definition 19 We say that a game v ∈ GA′
is Schmeidler κ-balanced if

z ≤ v(N )

for all z ∈ R such that (χN , z) ∈ K+
v , whereK+

v is the closure of K+
v .

Example 20 Consider the gamew fromExample 14. Knowing that ca-core(w) �= ∅, it is easy
to see that the game w is Schmeidler balanced. We show that it is Schmeidler ℵ0-balanced

too. Take a net of weights (λi )i∈I ⊆ R
(A′)
+ such that

∑
S∈A′ λiSχS

w−→ χN ; that is, for any
μ ∈ ca(A′) we have

∑
S∈A′ λiSμ(S) −→ μ(N ); and such that

∑
S∈A′ λiSw(S) −→ z. Then

for any ca-core element μ and for any index i ∈ I we have that
∑

S∈A′
λiSv(S) ≤

∑

S∈A′
λiSμ(S).

Moreover, since both sides converge, it follows that

z = lim
i∈I

∑

S∈A′
λiSv(S) ≤ lim

i∈I
∑

S∈A′
λiSμ(S) = μ(N ) = w(N ),

therefore the game w is Schmeidler ℵ0-balanced.

Observe that Schmeidler κ-balancedness implies Schmeidler balancedness, which implies
(ordinary) balancedness.

Lastly, for a game v ∈ GA′
let

R
(A′)∗ = {

λ ∈ R
(A′) : λS ≥ 0 for all S ∈ A′\{N }}

123



Annals of Operations Research (2024) 332:689–703 697

and consider the convex cone

Kv =
{(

∑

S∈A′
λSχS,

∑

S∈A′
λSv(S)

)

: λ ∈ R
(A′)∗

}

. (5)

Definition 21 A game v ∈ GA′
is κ-balanced if

z ≤ v(N )

for all z ∈ R such that (χN , z) ∈ Kv , whereKv is the closure of Kv .

Example 22 Consider the game w from Example 14. We know by Example 20 that the game
is Schmeidler ℵ0-balanced, hence Schmeidler balanced.We now show that the gamew is not
Schmeidler κ-balanced if κ ≥ c. Take the index set I = {

i ⊆ N : #(N\i) < ∞}
, and define

its ordering by i ≤ j if i ⊇ j . Observe that #I = c. Consider the net of weights (λi )i∈I , with
λi ∈ R

(A)
+ , defined as follows: for any i ∈ I and for any S ∈ A let

λiS =
{

1 if S = i or S = N ,

0 otherwise.

Then
∑

S∈A′ λiSχS = χi + χN
w−→ χN ; that is, for any μ ∈ baκ (A′), with κ ≥ c, we

have
∑

S∈A′ λiSμ(S) = μ(i) + μ(N ) −→ μ(N ). However, for every i ∈ I we have that∑
S∈A′ λiSw(S) = w(i)+w(N ) = 2, therefore limi∈I

∑
S∈A′ λiSw(S) = 2 > 1 = w(N ). In

other words, the game w is not Schmeidler κ-balanced, hence it is not κ-balanced, if κ ≥ c.

Remark 23 The notion of κ-balancedness and Schmeidler κ-balancedness is very closely
related to the notion of supervalue given in Definition 2. The cone Kv or K+

v is precisely

the set D if A(λ) = ∑
S∈A′ λSχS and c(λ) = ∑

S∈A′ λSv(S) with P = R
(A′)
+ or P =

R
(A′)∗ , respectively, in Definition 2. Then the game is κ-balanced or Schmeidler κ-balanced,

respectively, if and only if the supervalue of the related primal problem (PLP) is not greater
than v(N ).

Notice that the notion of κ-balancedness is a “double" extension of Schmeidler balanced-
ness. First, we do not take the balancing weight system alone, but we take nets of weight
systems. Second, we let the weight of the grand coalition be sign unrestricted. It is worth
noticing that the notion of κ-balancedness applies its full strength when in a net of weight
systems the net of the weights of the grand coalition is not bounded below (see Lemma 24
below).

The insight why we need the “double” extension is the following: As we shall see, the
proof of our generalized Bondareva–Shapley theorem is based on the strong duality theorem
for infinite LPs (Proposition 3), which is based on separation of a closed convex set from
a point (not in the set). Therefore, we need to take the weak closure of a convex set and to
approach a point in the closure. This is why we need to use the nets of weight systems.

Regarding that the weight of the grand coalition is sign unrestricted, notice that the linear
combinations of Dirac measures are κ-additive for any κ , moreover, it is easy to see that the
linear space spanned by the Dirac measures is weak* dense in the set of bounded additive
set functions. Hence, by the results of Schmeidler (1967), Kannai (1969, 1992), and Bartl
and Pintér (2023), we have a necessary and sufficient condition for the non-emptiness of the
“approximate” κ-core for any κ for free: Schmeidler balancedness. However, we analyze the
non-emptiness of the (exact) κ-core for any κ . Therefore, we set the appropriate variable (the
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weight of the grand coalition) in the primal problem be sign unrestricted, by which we get
equality in the related constraint in the dual problem (the total mass of an allocation must
exactly be the value of the grand coalition), hence we will have a necessary and sufficient
condition for the non-emptiness of the κ-core for any κ: κ-balancedness.

Between Schmeidler balancedness and κ-balancedness, there lies Schmeidler κ-
balancedness, where only the first step is taken: we take nets of weight systems. Even though
we shall see later that Schmeidler κ-balancedness does not lead to new characterization
results, it provides deeper understanding of the problem.

Since Schmeidler κ-balancedness is the same as κ-balancedness except that Kv in
Definition 19 is replaced by K+

v in Definition 21, by K+
v ⊆ Kv , it is clear that κ-

balancedness implies Schmeidler κ-balancedness. Furthermore, Schmeidler κ-balancedness
and κ-balancedness are related by the following lemma.

Lemma 24 For a game v ∈ GA′
it holds

sup
(λi )i∈I⊆R

(A′)
+

A(λi )
w−→χN

c(λi )−→z

z ≤ v(N ) if and only if sup
(λ j ) j∈J⊆R

(A′)∗
A(λ j )

w−→χN
c(λ j )−→z

lim inf λ
j
N>−∞

z ≤ v(N ).

where A(λ) = ∑
S∈A′ λSχS and c(λ) = ∑

S∈A′ λSv(S) for any λ ∈ R
A′
+ .

Proof The “if” part is obvious. Given a net (λi )i∈I ⊆ R
(A′)
+ , consider the same net (λ j ) j∈J =

(λi )i∈I ⊆ R
(A′)∗ . Notice that lim inf λ

j
N ≥ 0.

We prove the “only if” part indirectly. Suppose the right-hand side does not hold. Then

there exists a net (λ j ) j∈J ⊆ R
(A′)∗ such that lim inf λ

j
N = L > −∞ and A(λ j )

w−→ χN

with c(λ j ) −→ z > v(N ).
If L > 0, then there exists a j0 ∈ J such that j ≥ j0 implies λ

j
N ≥ 0. Consider the index

set I = { j ∈ J : j ≥ j0} and the net (λi )i∈I ⊆ R
(A′)
+ , which satisfies A(λi )

w−→ χN and
c(λ j ) −→ z > v(N ).

Assume L ≤ 0. There exists a subnet (λ ji )i∈I of (λ j ) j∈J such that λ
ji
N −→ L . Define the

net (λ̄i )i∈I as follows: for any i ∈ I and for any S ∈ A′ let

λ̄iS =
{
0 if S = N ,

λ
ji
S /(1 − L) otherwise.

Then

A(λ̄i ) =
∑

S∈A′
S �=N

λ
ji
S χS

1 − L
= A(λ ji ) − λ

ji
NχN

1 − L

w−→ χN − LχN

1 − L
= χN ,

and

c(λ̄i ) =
∑

S∈A′
S �=N

λ
ji
S v(S)

1 − L
= c(λ ji ) − λ

ji
Nv(N )

1 − L

−→ z − Lv(N )

1 − L
>

v(N ) − Lv(N )

1 − L
= v(N ).
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It follows that the left-hand side does not hold in either case, which concludes the proof.
��

5 Themain result

The next result is our generalized Bondareva–Shapley Theorem.

Theorem 25 For any game v ∈ GA′
it holds that κ-core(v) �= ∅ if and only if the game is

κ-balanced.

Proof Put X = R
(A′), P = R

(A′)∗ , Y = �(A), and Y ∗ = baκ (A), moreover define the
mapping A : R(A′) → �(A) by A(λ) = ∑

S∈A′ λSχS , let b = χN , and define the functional
c : R(A′) → R by c(λ) = ∑

S∈A′ λSv(S). Now, consider the programs (PLP) and (DLP)

of (1).
Notice that program (PLP) is superconsistent and its supervalue is at least v(N ). (Consider

that
(
A(λ), c(λ)

) ∈ Kv ⊆ Kv for λ ∈ R
(A′) with λN = 1 and λS = 0 for S �= N .) Then

the game is κ-balanced (Definition 21) if and only if the supervalue of (PLP) is finite and not
greater than v(N ) (Remark 23).

Moreover, observe that a set function μ ∈ baκ (A) is feasible for (DLP) if and only if
μ(S) ≥ v(S) for all S ∈ A′ and μ(N ) = v(N ). Thus program (DLP) is equivalent to finding
an element of κ-core(v), and its value is v(N ) if it is consistent, and its value is+∞ otherwise.

Therefore byProposition 3 the game has a non-empty κ-core (program (DLP) is consistent)
if and only if it is κ-balanced (the supervalue of program (PLP) is not greater than v(N )). ��

If the player set N is finite, then so is A′ ⊆ P(N ), whence the cone Kv is closed.
Then by Lemma 24 κ-balancedness reduces to Schmeidler balancedness, which is (ordinary)
balancedness (Bondareva, 1963; Faigle, 1989; Shapley, 1967), and the κ-core is the (ordinary)
core in the finite case.We thus obtain the classical Bondareva–ShapleyTheorem as a corollary
of Theorem 25:

Corollary 26 (Bondareva–Shapley Theorem) If N is finite, then the core of a game with or
without restricted cooperation is non-empty if and only if the game is balanced.

Regarding Theorem 25, it is worth mentioning that while Bondareva (1963) applied the
strong duality theorem to prove the Bondareva–Shapley Theorem, Shapley (1967) used a
different approach. We do not go into the details, but we remark that the common point in
both approaches is the application of a separating hyperplane theorem. In other words, both
Bondareva’s and Shapley’s approaches are based on the same separating hyperplane theorem,
practically their result is a direct corollary of that. Here we use the strong duality theorem
for infinite LPs (Proposition 3, Anderson & Nash, 1987), which is also a direct corollary of
the same separating hyperplane theorem.

5.1 The�-additive case

In this subsection let κ = ℵ0. Then baκ (A) = ca(A), the space of all bounded countably
additive set functions onA. Given a game v ∈ GA′

, its κ-core is theσ -additive core ca-core(v)

given in Definition 12.
In the next example we demonstrate that there exists a Schmeidler ℵ0-balanced non-

negative game without restricted cooperation having its ca-core empty.
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Example 27 Let the player set N = N, the system of coalitions A = P(N), and the game
v be defined as follows: for any S ∈ A let

v(S) =
{
1 if #(N \ S) ≤ 1,

0 otherwise.

We show that ca-core(v) = ∅. If μ ∈ ca-core(v), then μ
(
N\{n}) ≥ v

(
N\{n}) = 1 and

v(N ) = 1, whenceμ
({n}) ≤ 0. So 0 ≥ ∑∞

n=1 μ
({n}) = μ(N ) = v(N ) = 1, a contradiction.

We now show that, if (χN , z) ∈ K+
v , see (4), then z ≤ 1 = v(N ). We have (χN , z) ∈ K+

v

if and only if each neighborhood of the point (χN , z) intersects the cone K+
v . In particular,

if (χN , z) ∈ K+
v , then for any natural number m and for any ε > 0 there exists a point

( f , t) ∈ K+
v such that f belongs to the weak neighborhood

{
f ∈ �(A) : ∣

∣δ′
i ( f ) − 1

∣
∣ < ε for i = 1, . . . , m

}
,

where δ′
i is the continuous linear functional induced by theDiracmeasure δi concentrated at i ,

see (2), and t belongs to the neighborhood
{
t ∈ R : |t − z| < ε

}
. Hence, we have a natural

number n, some distinct sets S0, S1, . . . , Sn ∈ A, and some non-negative λS0 , λS1 , . . . , λSn
such that f = λS0χS0 + λS1χS1 + · · · + λSnχSn and

∣∣∣∣∣∣∣∣

n∑

j=0
S j�i

λS j − 1

∣∣∣∣∣∣∣∣

< ε for i = 1, . . . ,m (6)

with
∣∣∣∣∣∣

n∑

j=0

λS j v(S j ) − z

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

n∑

j=0
#(N\S j )≤1

λS j − z

∣∣∣∣∣∣∣∣

< ε. (7)

We can assume w.l.o.g. that S0 = N , as well as #(N\S j ) = 1 for j = 1, . . . , n1 and
#(N\S j ) > 1 for j = n1 + 1, . . . , n, where n1 ≤ n.

Everything is clear if there exists an i ∈ {1, . . . ,m} such that i ∈ ⋂n1
j=1 S j . Then by (6)

n∑

j=0
#(N\S j )≤1

λS j =
n1∑

j=0

λS j ≤
n∑

j=0
S j�i

λS j < 1 + ε,

whence z < 1 + 2ε by (7).
In the other casewe havem ≤ n1 and, because the sets S0, S1, . . . , Sn are pairwise distinct,

for i = 1, . . . ,m we can assume w.l.o.g. that Si = N\{i}. By (6)
n1∑

j=0

λS j − λSi =
n1∑

j=0
j �=i

λS j ≤
n∑

j=0
S j�i

λS j < 1 + ε for i = 1, . . . ,m.

Summing up,we getm
∑n1

j=0 λS j −
∑m

i=1 λSi < m+mε, whencem
∑n1

j=0 λS j −
∑n1

j=0 λSi <

m + mε. It then follows
n∑

j=0
#(N\S j )≤1

λS j =
n1∑

j=0

λS j <
m

m − 1
(1 + ε).
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Taking (7) into account, we obtain

z <
m

m − 1
(1 + ε) + ε. (8)

Since 1+ 2ε < (1+ ε)m/(m − 1) + ε, inequality (8) holds in both cases. By that m ≥ 2
and ε > 0 can be arbitrary, we conclude that z ≤ 1.

Remark 28 Consider the game v from Example 27. Since ca-core(v) = ∅, the game is not
ℵ0-balanced. To see this, consider the sequence (λi )∞i=1, with λi ∈ R

(A)∗ , defined as follows:
for any i ∈ N and for any S ∈ A let

λiS =

⎧
⎪⎨

⎪⎩

−(i − 2) if S = N ,

1 if S = N\{n} for n = 1, . . . , i,

0 otherwise.

Then
∑

S∈A λiSχS = 2χN−χ{1,...,i}
w−→ χN , where theweak convergence in the space�(A)

is with respect to ca(A), and
∑

S∈A λiSv(S) = 2 > 1 = v(N ).
Notice again that the sequence (λiN )∞i=1 = (2 − i)∞i=1 is unbounded below. If (λiN )∞i=1

were bounded below, then by Lemma 24 we would get a contradiction with Example 27.

Example 27 demonstrates that it is not sufficient to use R
(A)
+ and K+

v in the definition
of κ-balancedness; that is, Schmeidler κ-balancedness is unable to reveal that the ca-core is
empty even for non-negative games without restricted cooperation.

Remark 29 Reconsidering Schmeidler balancedness for the additive case, it is somehow
tempting to ask whether the following “σ -extension” of condition (3) could lead to a similar
result in the σ -additive case too:

sup

{
∑

S∈A′
λSv(S) :

∑

S∈A′
λSχS = χN , λ ∈ R

[A′]
+

}

≤ v(N ), (9)

where R[A′] = {
λ ∈ R

A′ : #{S ∈ A′ : λS �= 0} ≤ ℵ0
}
and R[A′]

+ = {
λ ∈ R

[A′] : λS ≥ 0 for
all S ∈ A′}. Moreover, the convergence of the sum

∑
S∈A′ λSχS is understood pointwise. In

this case it is equivalent to say that the convergence is weak in the space �(A) with respect
to ca(A). If the sum

∑
S∈A′ λSv(S) is convergent, but not absolutely convergent, then we

put
∑

S∈A′ λSv(S) := +∞.
Denoting A(λ) = ∑

S∈A′ λSχS and c(λ) = ∑
S∈A′ λSv(S), we can also consider the

following generalization of (9). Let z ≤ v(N ) whenever there exists a net (λi )i∈I ⊆ R
[A′]
+

such that A(λi )
w−→ χN and c(λi ) −→ z where z is finite. Then for each i ∈ I there exists

a sequence (λin)∞n=1 ⊆ R
(A′)
+ such that A(λin)

w−→ A(λi ) and c(λin) −→ c(λi ). Conse-

quently, there exists a net (λ j ) j∈J ⊆ R
(A′)
+ such that A(λ j )

w−→ χN and c(λ j ) −→ z. In
other words, Schmeidler κ-balancedness covers such extensions of Schmeidler balancedness
(Definition 17) like (9).

Moreover, in Example 27 we presented a non-negative Schmeidler κ-balanced game.
Therefore, the presented game is balanced according to (9) too, but the ca-core of the game
is empty.
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6 Conclusion

We have generalized the Bondareva–Shapley Theorem to TU games with and without
restricted cooperation, with infinitely many players, and with at least σ -additive cores: we
have proved for an arbitrary infinite cardinal κ that the κ-core of a TU game with or without
restricted cooperation is not empty if and only if the TU game is κ-balanced.

Perhaps the most interesting result of this paper is that in the proper notion of balancing
weight system the weight of the grand coalition is sign unrestricted. More precisely, it is not
surprising at all that in the definition of κ-balancedness we need nets (generalized sequences)
since we have to take a weak closure of a set and to approach a point in the closure. How-
ever, the fact that in the elements of the net the weight of the grand coalition must be sign
unrestricted, even more unbounded below, is interesting.

The reason why we need sign unrestricted weight of the grand coalition is simple. In
the proof of Theorem 25 in the dual problem (which describes of the κ-core), when we set
μ(N ) = v(N ) (equality), then it means the corresponding variable λN in the primal problem
must be sign unrestricted. If we do not set μ(N ) = v(N ), but only μ(N ) ≥ v(N ), in the
dual problem, then we get Schmeidler κ-balancedness. However, Example 27 shows that
Schmeidler κ-balancedness does not imply the non-emptiness of the κ-core.

Notice that Kannai (1969, 1992) gave another necessary and sufficient condition for that
the σ -additive core of a non-negative game without restricted cooperation is not empty.
Kannai’s result is based on a very different approach and not related directly to our ℵ0-
balancedness condition.

Funding Open access funding provided by Corvinus University of Budapest. This research was supported
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