2023
Quasinormal modes and grey-body factors of regular black holes with a scalar hair from the Effective Field Theory
KONOPLYA, RomanZákladní údaje
Originální název
Quasinormal modes and grey-body factors of regular black holes with a scalar hair from the Effective Field Theory
Autoři
KONOPLYA, Roman (804 Ukrajina, garant, domácí)
Vydání
Journal of Cosmology and Astroparticle Physics, GB - Spojené království Velké Británie a, 2023, 1475-7516
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 6.400 v roce 2022
Kód RIV
RIV/47813059:19630/23:A0000282
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001108894900010
Klíčová slova anglicky
Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories;Gravitational waves in GR and beyond;theory;gravity;modified gravity
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 1. 2024 13:53, Mgr. Pavlína Jalůvková
Anotace
V originále
The Effective Field Theory (EFT) of perturbations on an arbitrary background geometry with a timelike scalar profile has been recently constructed in the context of scalar -tensor theories. Unlike General Relativity, the regular Hayward metric is realized as an exact background metric in the Effective Field Theory with timelike scalar profile without resorting to special matter field, such as nonlinear electrodynamics. The fundamental quasinormal mode for axial graviational perturbations of this black hole has been considered recently with the help of various methods. Here we make a further step in this direction and find that, unlike the fundamental mode, a few first overtones deviate from their Schwarzschild limit at a much higher rate. This outburst of overtones occurs because the overtones are extremely sensitive to the least change of the near-horizon geometry. The analytical formula for quasinormal modes is obtained in the eikonal regime. In addition, we calculated grey-body factors and showed that the regular Hayward black hole with a scalar hair has a smaller grey-body factor than the Schwarzschild one. Integration of the wave-like equation in the time-domain shows that the power-law tails, following the ring-down phase, are indistinguishable from the Schwarzschild ones at late times.