J 2023

Polytropic representation of non-isotropic kinetic pressure tensor for non-ideal plasma fluids in relativistic jets

CREMASCHINI, Claudio

Základní údaje

Originální název

Polytropic representation of non-isotropic kinetic pressure tensor for non-ideal plasma fluids in relativistic jets

Autoři

CREMASCHINI, Claudio (380 Itálie, garant, domácí)

Vydání

PHYSICS OF FLUIDS, 2023, 1070-6631

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/23:A0000285

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001000311200005

Klíčová slova anglicky

Anisotropy; Flow of fluids; Kinetics; Magnetic moments; Phase space methods; Tensors

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 17. 1. 2024 09:41, Mgr. Pavlína Jalůvková

Anotace

V originále

Non-ideal fluids are likely to be affected by the occurrence of pressure anisotropy effects, whose understanding for relativistic systems requires knowledge of the energy-momentum tensor. In this paper, the case of magnetized jet plasmas at equilibrium is considered, in which both microscopic velocities of constituent particles and the continuum fluid flow are treated as relativistic ones. A theoretical framework based on covariant statistical kinetic approach is implemented, which permits the proper treatment of single-particle and phase-space kinetic constraints and, ultimately, the calculation of the system continuum fluid fields associated with physical observables. A Gaussian-like solution for the kinetic distribution function (KDF) is constructed, in which the physical mechanism responsible for the generation of temperature anisotropy is identified with magnetic moment conservation. A Chapman-Enskog representation of the same KDF is then obtained in terms of expansion around an equilibrium isotropic Juttner distribution. This permits the analytical calculation of the fluid 4-flow and stress-energy tensor and the consequent proof that the corresponding kinetic pressure tensor is non-isotropic. As a notable result, the validity of a polytropic representation for the perturbative non-isotropic pressure contributions is established, whereby directional pressures exhibit specific power-law functional dependences on fluid density.