J 2023

A survey of feature detection methods for localisation of plain sections of axial brain magnetic resonance imaging

MARTINŮ, Jiří, Jan NOVOTNÝ, Karel ADÁMEK, Petr ČERMÁK, Jiri KOZEL et. al.

Basic information

Original name

A survey of feature detection methods for localisation of plain sections of axial brain magnetic resonance imaging

Authors

MARTINŮ, Jiří (203 Czech Republic), Jan NOVOTNÝ (203 Czech Republic, belonging to the institution), Karel ADÁMEK (203 Czech Republic, belonging to the institution), Petr ČERMÁK (203 Czech Republic, belonging to the institution), Jiri KOZEL and David SKOLOUDIK

Edition

Biomedical Signal Processing and Control, Elsevier, 2023, 1746-8094

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/47813059:19630/23:A0000302

Organization unit

Institute of physics in Opava

UT WoS

000925845400001

Keywords in English

Image processing;Medical imaging;Magnetic resonance imaging;Computer visions;Feature detection

Tags

Tags

International impact, Reviewed
Změněno: 14/2/2024 11:55, Mgr. Pavlína Jalůvková

Abstract

V originále

Matching MRI brain images between patients or mapping patients' MRI slices to the simulated atlas of a brain is key to the automatic registration of MRI of a brain. The ability to match MRI images would also enable such applications as indexing and searching MRI images among multiple patients or selecting images from the region of interest. In this work, we have introduced robustness, accuracy and cumulative distance metrics and methodology that allows us to compare different techniques and approaches in matching brain MRI of different patients or matching MRI brain slice to a position in the brain atlas. To that end, we have used feature detection methods AGAST, AKAZE, BRISK, GFTT, HardNet, and ORB, which are established methods in image processing, and compared them on their resistance to image degradation and their ability to match the same brain MRI slice of different patients. We have demonstrated that some of these techniques can correctly match most of the brain MRI slices of different patients. When matching is performed with the atlas of the human brain, their performance is significantly lower. The best performing feature detection method was a combination of SIFT detector and HardNet descriptor that achieved 93% accuracy in matching images with other patients and only 52% accurately matched images when compared to atlas.