J 2023

Accelerating Dedispersion Using Many-core Architectures

NOVOTNÝ, Jan, Karel ADÁMEK, M. A. CLARK, Mike GILES, Wes ARMOUR et. al.

Basic information

Original name

Accelerating Dedispersion Using Many-core Architectures

Authors

NOVOTNÝ, Jan (203 Czech Republic, belonging to the institution), Karel ADÁMEK (203 Czech Republic), M. A. CLARK, Mike GILES and Wes ARMOUR

Edition

Astrophysical Journal Supplement Series, GB - Spojené království Velké Británie a, 2023, 0067-0049

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/47813059:19630/23:A0000309

Organization unit

Institute of physics in Opava

UT WoS

001096020500001

Keywords in English

fast radio-burst;southern sky survey;real-time;transient searches;pulsar;algorithms;amber

Tags

International impact, Reviewed
Změněno: 30/1/2024 13:45, Mgr. Pavlína Jalůvková

Abstract

V originále

Astrophysical radio signals are excellent probes of extreme physical processes that emit them. However, to reach Earth, electromagnetic radiation passes through the ionized interstellar medium, introducing a frequency-dependent time delay (dispersion) to the emitted signal. Removing dispersion enables searches for transient signals like fast radio bursts or repeating signals from isolated pulsars or those in orbit around other compact objects. The sheer volume and high resolution of data that next-generation radio telescopes will produce require high-performance computing solutions and algorithms to be used in time-domain data-processing pipelines to extract scientifically valuable results in real time. This paper presents a state-of-the-art implementation of brute force incoherent dedispersion on NVIDIA graphics-processing units and on Intel and AMD central-processing units. We show that our implementation is 4x faster (8-bit 8192 channels input) than other available solutions, and we demonstrate, using 11 existing telescopes, that our implementation is at least 20x faster than real time. This work is part of the AstroAccelerate package.