Detailed Information on Publication Record
2023
Accelerating Dedispersion Using Many-core Architectures
NOVOTNÝ, Jan, Karel ADÁMEK, M. A. CLARK, Mike GILES, Wes ARMOUR et. al.Basic information
Original name
Accelerating Dedispersion Using Many-core Architectures
Authors
NOVOTNÝ, Jan (203 Czech Republic, belonging to the institution), Karel ADÁMEK (203 Czech Republic), M. A. CLARK, Mike GILES and Wes ARMOUR
Edition
Astrophysical Journal Supplement Series, GB - Spojené království Velké Británie a, 2023, 0067-0049
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10308 Astronomy
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
RIV identification code
RIV/47813059:19630/23:A0000309
Organization unit
Institute of physics in Opava
UT WoS
001096020500001
Keywords in English
fast radio-burst;southern sky survey;real-time;transient searches;pulsar;algorithms;amber
Tags
Tags
International impact, Reviewed
Změněno: 30/1/2024 13:45, Mgr. Pavlína Jalůvková
Abstract
V originále
Astrophysical radio signals are excellent probes of extreme physical processes that emit them. However, to reach Earth, electromagnetic radiation passes through the ionized interstellar medium, introducing a frequency-dependent time delay (dispersion) to the emitted signal. Removing dispersion enables searches for transient signals like fast radio bursts or repeating signals from isolated pulsars or those in orbit around other compact objects. The sheer volume and high resolution of data that next-generation radio telescopes will produce require high-performance computing solutions and algorithms to be used in time-domain data-processing pipelines to extract scientifically valuable results in real time. This paper presents a state-of-the-art implementation of brute force incoherent dedispersion on NVIDIA graphics-processing units and on Intel and AMD central-processing units. We show that our implementation is 4x faster (8-bit 8192 channels input) than other available solutions, and we demonstrate, using 11 existing telescopes, that our implementation is at least 20x faster than real time. This work is part of the AstroAccelerate package.