2023
Trends in torques acting on the star during a star-disk magnetospheric interaction
ČEMELJIĆ, Miljenko a A. S. BRUNZákladní údaje
Originální název
Trends in torques acting on the star during a star-disk magnetospheric interaction
Autoři
ČEMELJIĆ, Miljenko (191 Chorvatsko, domácí) a A. S. BRUN
Vydání
ASTRONOMY & ASTROPHYSICS, LES ULIS CEDEX A, EDP SCIENCES S A, 2023, 0004-6361
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Francie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/23:A0000264
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001096229100009
Klíčová slova anglicky
stars: formation;stars: pre-main sequence;stars: magnetic field;magnetohydrodynamics (MHD)
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GX21-06825X, projekt VaV.
Změněno: 16. 2. 2024 10:25, Mgr. Pavlína Jalůvková
Anotace
V originále
Aims. We assess the modification of angular momentum transport in various configurations of star-disk accreting systems based on numerical simulations with different parameters. In particular, we quantify the torques exerted on a star by the various components of the flow and field in our simulations of a star-disk magnetospheric interaction. Methods. In a suite of resistive and viscous numerical simulations, we obtained results using different stellar rotation rates, dipole magnetic field strengths, and resistivities. We probed a part of the parameter space with slowly rotating central objects, up to 20% of the Keplerian rotation rate at the equator. Different components of the flow in star-disk magnetospheric interaction were considered in the study: a magnetospheric wind (i.e., the "stellar wind") ejected outwards from the stellar vicinity, matter infalling onto the star through the accretion column, and a magnetospheric ejection launched from the magnetosphere. We also took account of trends in the total torque in the system and in each component individually. Results. We find that for all the stellar magnetic field strengths, B-star, the anchoring radius of the stellar magnetic field in the disk is extended with increasing disk resistivity. The torque exerted on the star is independent of the stellar rotation rate, Omega(star), in all the cases without magnetospheric ejections. In cases where such ejections are present, there is a weak dependence of the anchoring radius on the stellar rotation rate, with both the total torque in the system and torque on the star from the ejection and infall from the disk onto the star proportional to Omega B-star(3). The torque from a magnetospheric ejection is proportional to Omega(4)(star). Without the magnetospheric ejection, the spin-up of the star switches to spin-down in cases involving a larger stellar field and faster stellar rotation. The critical value for this switch is about 10% of the Keplerian rotation rate.