D 2023

Energy dissipation in astrophysical simulations: results of the Orszag-Tang test problem

KAYANIKHOO, Fatemeh, Miljenko ČEMELJIĆ, Maciek WIELGUS and Włodek KLUŹNIAK

Basic information

Original name

Energy dissipation in astrophysical simulations: results of the Orszag-Tang test problem

Authors

KAYANIKHOO, Fatemeh, Miljenko ČEMELJIĆ (191 Croatia, belonging to the institution), Maciek WIELGUS and Włodek KLUŹNIAK

Edition

Opava, Proceedings of RAGtime 23-25: Workshops on black holes and neutron stars, p. 135-142, 8 pp. 2023

Publisher

Slezská univerzita v Opavě, Fyzikální ústav v Opavě

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10308 Astronomy

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

References:

RIV identification code

RIV/47813059:19630/23:A0000273

Organization unit

Institute of physics in Opava

ISBN

978-80-7510-577-6

ISSN

Keywords in English

magnetic energy dissipation; Magnetohydrodynamics; numerical simulations; PLUTO; resistivity

Tags

Tags

International impact, Reviewed

Links

GX21-06825X, research and development project.
Změněno: 26/2/2024 14:10, Mgr. Pavlína Jalůvková

Abstract

V originále

The magnetic field through the magnetic reconnection process affects the dynamics and structure of astrophysical systems. Numerical simulations are the tools to study the evolution of these systems. However, the resolution, dimensions, resistivity, and turbulence of the system are some important parameters to take into account in the simulations. In this paper, we investigate the evolution of magnetic energy in astrophysical simulations by performing a standard test problem for MHD codes, Orszag-Tang. We estimate the numerical dissipation in the simulations using state-of-the-art numerical simulation code in astrophysics, PLUTO. The estimated numerical resistivity in 2D simulations corresponds to the Lundquist number ≈ 104 in the resolution of 512 × 512 grid cells. It is also shown that the plasmoid unstable reconnection layer can be resolved with sufficient resolutions. Our analysis demonstrates that in non-relativistic magnetohydrodynamics simulations, magnetic and kinetic energies undergo conversion into internal energy, resulting in plasma heating.