Detailed Information on Publication Record
2023
Asymptotic root distribution of Charlier polynomials with large negative parameter
BLASCHKE, Petr and František ŠTAMPACHBasic information
Original name
Asymptotic root distribution of Charlier polynomials with large negative parameter
Authors
BLASCHKE, Petr (203 Czech Republic, guarantor, belonging to the institution) and František ŠTAMPACH (203 Czech Republic)
Edition
Journal of Mathematical Analysis and Applications, San Diego (USA), Academic Press Inc. Elsevier Science, 2023, 0022-247X
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
RIV identification code
RIV/47813059:19610/23:A0000125
Organization unit
Mathematical Institute in Opava
UT WoS
000944363200001
Keywords in English
Charlier polynomials; Asymptotic root distribution; Variable parameter; Non-standard parameter
Tags
Tags
International impact, Reviewed
Links
GBP201/12/G028, research and development project.
Změněno: 8/4/2024 12:15, Mgr. Aleš Ryšavý
Abstract
V originále
We analyze the asymptotic distribution of roots of Charlier polynomials with negative parameter depending linearly on the index. The roots cluster on curves in the complex plane. We determine implicit equations for these curves and deduce the limiting density of the root distribution supported on these curves. The proof is based on a determination of the limiting Cauchy transform in a specific region and a careful application of the saddle point method. The obtained result represents a solvable example of a more general open problem.