2023
Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation
KOVAL, Serhii D, Alexander BIHLO a Roman POPOVYCHZákladní údaje
Originální název
Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation
Autoři
KOVAL, Serhii D, Alexander BIHLO (40 Rakousko) a Roman POPOVYCH (804 Ukrajina, garant, domácí)
Vydání
European Journal of Applied Mathematics, New York (USA), Cambridge University Press, 2023, 0956-7925
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10102 Applied mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/47813059:19610/23:A0000141
Organizační jednotka
Matematický ústav v Opavě
UT WoS
000981844100001
Klíčová slova anglicky
(1+2)-dimensional ultraparabolic Fokker-Planck equation; complete point-symmetry pseudogroup; Lie symmetry; Lie reductions; exact solutions; Kramers equations
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 3. 2024 14:38, Mgr. Aleš Ryšavý
Anotace
V originále
We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.