J 2023

Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation

KOVAL, Serhii D, Alexander BIHLO and Roman POPOVYCH

Basic information

Original name

Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation

Authors

KOVAL, Serhii D, Alexander BIHLO (40 Austria) and Roman POPOVYCH (804 Ukraine, guarantor, belonging to the institution)

Edition

European Journal of Applied Mathematics, New York (USA), Cambridge University Press, 2023, 0956-7925

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10102 Applied mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

European Journal of Applied Mathematics

RIV identification code

RIV/47813059:19610/23:A0000141

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1017/S0956792523000074

UT WoS

000981844100001

Keywords in English

(1+2)-dimensional ultraparabolic Fokker-Planck equation; complete point-symmetry pseudogroup; Lie symmetry; Lie reductions; exact solutions; Kramers equations

Tags

Tags

International impact, Reviewed
Změněno: 27/3/2024 14:38, Mgr. Aleš Ryšavý

Abstract

V originále

We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.
Displayed: 29/11/2024 02:03