J 2023

Non-Abelian covering and new recursion operators for the 4D Martínez Alonso-Shabat equation

VOJČÁK, Petr

Basic information

Original name

Non-Abelian covering and new recursion operators for the 4D Martínez Alonso-Shabat equation

Authors

VOJČÁK, Petr (203 Czech Republic, guarantor, belonging to the institution)

Edition

Communications in Nonlinear Science and Numerical Simulation, Amsterdam, Elsevier B.V. 2023, 1007-5704

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Communications in Nonlinear Science and Numerical Simulation

RIV identification code

RIV/47813059:19610/23:A0000144

Organization unit

Mathematical Institute in Opava

DOI

http://dx.doi.org/10.1016/j.cnsns.2022.107007

UT WoS

000994624800001

Keywords in English

4D Martínez Alonso–Shabat equation; Lax pairs; Nonlocal symmetries; Recursion operators

Tags

Tags

International impact, Reviewed
Změněno: 8/4/2024 12:26, Mgr. Aleš Ryšavý

Abstract

V originále

We present new recursion operators for (shadows of nonlocal) symmetries of the 4D Martínez Alonso-Shabat equation uty = uzuxy - uyuxz, and we show that their actions can produce new symmetries which are not contained in the Lie algebra of nonlocal symmetries presented in Krasil'shchik and Vojčák (2021). To this end, we construct a non-Abelian covering of the equation in question using the Lax pair with two non-removable parameters.
Displayed: 26/12/2024 12:38