J 2023

A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space

CARUSO, Noe Angelo

Základní údaje

Originální název

A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space

Autoři

CARUSO, Noe Angelo (36 Austrálie, garant, domácí)

Vydání

Complex Analysis and Operator Theory, Basel, Switzerland, Springer Basel AG, 2023, 1661-8254

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Complex Analysis and Operator Theory

Kód RIV

RIV/47813059:19610/23:A0000145

Organizační jednotka

Matematický ústav v Opavě

DOI

http://dx.doi.org/10.1007/s11785-023-01413-0

UT WoS

001066912100001

Klíčová slova anglicky

Bounded linear operators; Compact operators; Cyclic operators; Ill-posed problems; Infinite-dimensional Hilbert space; Inverse linear problems; Krylov solution; Krylov solvability; Krylov subspaces; Normal operators

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 27. 3. 2024 14:29, Mgr. Aleš Ryšavý

Anotace

V originále

We analyse the Krylov solvability of inverse linear problems on Hilbert space H where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to understand the utility of Krylov based methods for solving inverse problems. Our results explicitly describe for the first time the Krylov subspace for such operators given any datum vector g is an element of H, as well as prove that all inverse linear problems are Krylov solvable provided that g is in the range of such an operator. We therefore expand our knowledge of the class of Krylov solvable operators to include the normal compact operators. We close the study by proving an isomorphism between the closed Krylov subspace for a general bounded normal operator and an L-2-measure space based on the scalar spectral measure.
Zobrazeno: 9. 1. 2025 08:17