J
2023
Toeplitz operators on the weighted Bergman spaces of quotient domains
GHOSH, Gargi and E K NARAYANAN
Basic information
Original name
Toeplitz operators on the weighted Bergman spaces of quotient domains
Authors
GHOSH, Gargi (356 India, guarantor, belonging to the institution) and E K NARAYANAN (356 India)
Edition
Bulletin des Sciences Mathématiques, Amsterdam, Netherlands, Elsevier, 2023, 0007-4497
Other information
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
RIV identification code
RIV/47813059:19610/23:A0000128
Organization unit
Mathematical Institute in Opava
Keywords in English
Toeplitz operator; Pseudorelfection group; Quotient domain; Weighted Bergman space
Tags
International impact, Reviewed
Links
GA21-27941S, research and development project.
V originále
Let G be a finite pseudoreflection group and omega subset of Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of omega and omega/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic properties of Toeplitz operators on the weighted Bergman space on omega/G. We specialize on the generalized zero-product problem and characterization of commuting pairs of Toeplitz operators. As a consequence, more intricate results on Toeplitz operators on the weighted Bergman spaces on some specific quotient domains (namely symmetrized polydisc, monomial polyhedron, Rudin's domain) have been obtained.
Displayed: 9/11/2024 13:28