J 2023

Toeplitz operators on the weighted Bergman spaces of quotient domains

GHOSH, Gargi and E K NARAYANAN

Basic information

Original name

Toeplitz operators on the weighted Bergman spaces of quotient domains

Authors

GHOSH, Gargi (356 India, guarantor, belonging to the institution) and E K NARAYANAN (356 India)

Edition

Bulletin des Sciences Mathématiques, Amsterdam, Netherlands, Elsevier, 2023, 0007-4497

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/47813059:19610/23:A0000128

Organization unit

Mathematical Institute in Opava

UT WoS

001088074500001

Keywords in English

Toeplitz operator; Pseudorelfection group; Quotient domain; Weighted Bergman space

Tags

Tags

International impact, Reviewed

Links

GA21-27941S, research and development project.
Změněno: 25/3/2024 11:57, Mgr. Aleš Ryšavý

Abstract

V originále

Let G be a finite pseudoreflection group and omega subset of Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of omega and omega/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic properties of Toeplitz operators on the weighted Bergman space on omega/G. We specialize on the generalized zero-product problem and characterization of commuting pairs of Toeplitz operators. As a consequence, more intricate results on Toeplitz operators on the weighted Bergman spaces on some specific quotient domains (namely symmetrized polydisc, monomial polyhedron, Rudin's domain) have been obtained.