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1. Introduction
Many types of scientific and engineering problems are connected with nonlinear
processes. The extensive development of nonlinear dynamics nowadays is ex-
plained not only by practical needs but also by new possibilities in the analysis.
In this connection, a main role was played by simple nonlinear systems, which,
on the one hand, are characterized by quite complicated dynamics but, on the
other hand, admit profound qualitative analysis. The mathematical environment
for modeling nonlinear phenomena is called a discrete dynamical system. It is
usually defined as an ordered pair (X, f) where X is a compact metric space and
f is a continuous map acting on X. To understand the dynamical properties
of a system is necessary to analyze the trajectories of any point x ∈ X under
the iteration of f . Limit sets of trajectories are a helpful tool for these purposes
since they can be used to understand long time behaviour of discrete dynamical
systems in the future or the past. It is known that rendering long-term prediction
of their behaviour by computer is impossible in general, even though these sys-
tems are deterministic. Limit sets can be very complicated, this is often the case
when the dynamics is chaotic. Chaotic behaviour exists in many natural dynam-
ical systems, continuous or discrete, such as weather and climate or biological
model of population growth, and chaos theory has applications in several disci-
plines, including meteorology, physics, computer science, engineering, economics
and biology.

The thesis studies the qualitative properties of limit dynamics when we as-
sume that arbitrarily large amount of time (hence, infinite) has passed. In the
two main sections of the thesis ”Limit sets of backward trajectories” and ”Chaotic
behaviour” we recapitulate main results of 8 papers accompanied by a commen-
tary. For proofs and details we refer reader to the corresponding paper in the
attachments.

List of papers concerning the thesis
T1. M. Foryś-Krawiec, J. Hantáková, P. Oprocha, On the structure of α-limit sets

of backward trajectories for graph maps, Discrete and Continuous Dynamical
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T2. J. Hantáková, S. Roth, On backward attractors of interval maps, Nonlinear-
ity 34 (2021), 7415-7445.

T3. J. Hantáková, Li-Yorke sensitivity does not imply Li-Yorke chaos, Ergodic
Theory and Dynamical Systems 39 (2019), 3066-3074.

T4. J. Doleželová, Distributionally scrambled invariant sets in a compact metric
space, Nonlinear Analysis 79 (2013), 80–84.

T5. J. Doleželová, Scrambled and distributionally scrambled n-tuples, J. Differ-
ence Eq. Appl. 20 (2014), 1169–1177.

T6. J. Doleželová-Hantáková, Distributional chaos and factors, J. Difference Eq.
Appl. 22 (2016), 99-106.
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2. Limit sets of backward
trajectories

2.1 Introduction and state-of-art
The ω-limit sets (ω(x) for short), i.e. the sets of limit points of a forward tra-
jectories, were deeply studied by many authors. For instance, one can ask for a
criterion allowing to decide whether a given closed invariant subset of X is an
ω-limit set of some point x ∈ X. The question is very hard in general, however
some cases are known. For example, the answer for ω-limit sets of a continuous
map acting on the compact interval was provided by Blokh et al. in [8]. A closely
related question is that of characterizing all those dynamical systems which may
occur as restrictions of some system to one of its ω-limit sets. These abstract
ω-limit sets were studied by Bowen [12] and Dowker and Frielander [16]. It was
also proved that each ω-limit set of a continuous map of the interval is contained
in the maximal one by Sharkovsky [33]. While the aforementioned results about
ω-limit sets were first obtained for interval maps, some of them hold for maps
acting on graphs, dendrites, Cantor space (for example, in work of Chudziak et
al. [13], Kočan et al. [24], Barwell et al. [5]). In general compact metric spaces
only partial results are known (e.g. recent work on ω-limit sets in topologically
hyperbolic systems by Barwell et al. [6]).

α-limit sets (α(x) for short) were introduced as a dual concept to ω-limit sets
and they should be regarded as a source of the trajectory of a point. While for
invertible maps α-limit sets are well defined, for noninvertible maps there are
many possibilities how to construct the limit of the backward trajectory. One
possibility is to take as an α-limit set the set of all accumulation points of the
set of pre-images f−n(x). This approach was used by Coven and Nitecki [14],
who showed that for an interval map, a point x is nonwandering if and only if
x ∈ α(x). Other approach used by Balibrea et al. in [3] propose instead of looking
at all possible preimages to pick one backward branch and check accumulation
points of this sequence. The union of the sets of accumulation points over all
backward branches of the map was called a special α-limit set (sα(x) for short)
by Hero [20]. While α-limit sets seems to be similar to ω-limit sets, they were
not much explored so far. The reason for this is that they may have very rich
structure, and also it is very hard to control the dynamics backward.

To study special α-limit sets is more complicated than to study ordinary α-
limit sets or ω-limit sets. While it is clear that α-limit sets or ω-limit sets are
always closed, the situation of special α-limit sets is unclear. By definition, those
sets are in general uncountable unions of closed sets, so a priori their structure
may be very complicated. Recent study by Kolyada et al. [23] provided some
answers. In particular, they showed that a special α-limit set needs not to be
closed in general setting and conjectured that, for all continuous maps of the unit
interval all special α-limit sets are closed.
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2.2 Main results

2.2.1 On the structure of α-limit sets of backward trajec-
tories for graph maps

Recall that a graph G is a continuum which can be written as an union of finitely
many arcs such that any two of them can intersect only in their endpoints. A
backward branch of a point x ∈ G is any sequence {xi}i≤0 ⊂ G such that x0 = x
and f(xi) = xi+1 for each i < 0. In this section we study backward branches and
their accumulation points forming α-limit sets of a backward branch. A point y
belongs to the α-limit set of a backward branch {xi}i≤0, denoted by α({xi}i≤0),
if and only if there is a strictly decreasing sequence of negative integers {ni}i≥0
such that xni

→ y as i → ∞. For interval maps, every α-limit set of a backward
branch is an ω-limit set while the converse is not true by results in [3]. Our
research in the article (T1) is motivated by the following question:

Question 1. Let A = α({xj}j≤0) be an α-limit set of a backward branch {xj}j≤0
of a map f on topological graph. Is A an ω-limit set? How many different sets
A can be generated using backward branches starting at x0?

We give full characterization under some additional conditions on f , and al-
most complete picture in general case. Complete answer to Question 1 is provided
for topologically mixing f : G → G acting on a topological graph G.

Theorem 2 (T1). For every ω-limit set ω(y) in G and every accessible point x
in G, there is a backward branch starting at x with the α-limit set being equal to
ω(y). Conversely, every α-limit set of any backward branch in G is an ω-limit
set of some point in G.

Quite different, still complete, picture is obtained for maps f : G → G with
zero topological entropy.

Theorem 3 (T1). For zero entropy graph maps, the family of α-limit sets of
backward branches coincides with the family of minimal sets. Moreover, the col-
lection of all α-limit sets of backward branches starting at a point x is thin - it
contains at most one infinite set.

When considering maps with positive entropy, some uncertainty enters our de-
scription. In this case, we may observe phenomena specific both for zero entropy
maps and for mixing maps, however tools we use do not allow us to completely
reveal the structure of some α-limit sets. We prove in (T1) that for all but
at most countably many points x from a basic set D and every infinite ω-limit
set ω(y) ⊂ D, there exists a backward branch {zj}j≤0 starting at x such that
α({zj}j≤0) = ω(y) ∪ R where R is at most countable subset of isolated points of
α({zj}j≤0). This shows that for a typical point x from a basic set the collection of
all α-limit sets of backward branches starting at x is abundant. By results of A.
Blokh [9, 10, 11], graph maps with positive entropy must contain a basic set, but
it may contain also other maximal ω-limit sets which are typical for zero entropy
maps, that is solenoidal sets, circumferential sets and periodic orbits. Thus we
may detect this kind of α-limit sets of backward branches for maps with positive
entropy as well.
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As was stated above, our tools do not allow us to answer whether the at
most countable set R is empty or not, however its possible existence is a result of
incomplete control of backward trajectory in the construction rather than a fact.
In practice it may happen that these α-limit sets behave exactly the same as for
other backward trajectories, that is they always coincide with ω-limit sets and
all ω-limit sets in basic sets can appear as α-limit sets (recall results of [3] that
some ω-limit sets are never α-limit sets for zero entropy maps). These aspects of
Question 1 remain as open problem for further research.

2.2.2 On backward attractors of interval maps
One of the most classic applications of limit sets of forward trajectories in dy-
namics is due to Birkhoff. There are many notions of recurrence in topological
dynamics (such as periodicity, non-wandering behaviour, chain-recurrence, etc.),
but the term recurrent point has been reserved for those points x which belong
to their own ω-limit sets. Birkhoff showed that these points can be used to
identify the Birkhoff center (Birkhoff called it the “set of central motions”) of
a topological dynamical system (X, f), which is obtained by restricting f to its
non-wandering set, then restricting that system to its non-wandering set, and
so on through transfinite induction (taking intersections at limit ordinals) until
reaching some countable ordinal (the “depth”) at which the sequence stabilizes.
Birkhoff’s result is that the center of the system obtained in this way is the same
as the closure of the set of recurrent points [7].

In light of Birkhoff’s work, one can ask the analogous question, what is the
significance of a point belonging to its own limit set of backward trajectory? In
one-dimensional dynamics good answers to this question have appeared for the
α-limit set and the special α-limit set. Coven and Nitecki showed that a point x
is non-wandering for a continuous interval map f if and only if x belongs to its
own α-limit set [14]. But there is a deeper result related to the attracting center
of an interval map f : [0, 1] → [0, 1], defined by Xiong as the set of all points x
such that x is in the ω-limit set of some point x1, which itself is in the ω-limit
set of some point x2, and so on for some infinite sequence {xi}∞

i=1 of points in the
interval [38]. Xiong showed that the attracting center is a subset of the Birkhoff
center (they can coincide) and that if x1, x2 can be found as above, then x is
already in the attracting center (so the “depth” here is at most 2) [38]. The
connection to limit sets of backward trajectories was made in 1992 by Hero, who
showed that a point x belongs to the attracting center of a continuous interval
map if and only if it belongs to its own sα-limit set [20].

We now recall Hero’s definition of a special α-limit set. A backward branch
of a point x is any sequence {xi}i≤0 such that x0 = x and f(xi) = xi+1 for each
i < 0. The corresponding α-limit set of a backward branch is defined as the set of
all limits of convergent subsequences xij

(analogously as ω-limit sets are defined
from forward trajectories). Then the special α-limit set of a point x, denoted
sα(x), is defined as the union of all α-limit sets over all backward branches of
x [20].

Kolyada, Misiurewicz, and Snoha began a systematic study of sα-limit sets
in [23]. They investigated special α-limit sets of interval maps and proved that
for interval maps with a closed set of periodic points, every special α-limit set
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has to be closed. This result led to the following conjecture:

Conjecture 4. [23] For all continuous maps of the unit interval all special α-
limit sets are closed.

In the article (T2) we disprove the conjecture by showing a counterexample of
a continuous interval map with a special α-limit set which is not closed and give
the properties of continuous interval maps that determine if all special α-limit
sets are closed in the following theorem.

Theorem 5 (T2). Let f : [0, 1] → [0, 1] be a continuous interval map. The
following are equivalent:

1. For some y ∈ [0, 1], sα(y) is not closed.

2. The attracting center Λ2(f) is not closed.

3. The attracting center is strictly contained in the Birkhoff center Λ2(f) ⊊
Rec(f).

4. Some solenoidal ω-limit set of f contains a non-recurrent point in the
Birkhoff center.

We identify three classes of continuous interval maps for which all sα-limit
sets are closed - piecewise monotone maps, zero entropy maps with a closed set
of recurrent points and maps which are not Li-Yorke chaotic. On the other hand,
we show that for all continuous maps of the unit interval all special α-limit sets
are both Fσ and Gδ. We give further topological properties of special α-limit sets
of interval maps.

Theorem 6 (T2). If sα(x) is not closed, then it is uncountable and nowhere
dense. If sα(x) is closed, then it is the union of a nowhere dense set and finitely
many (perhaps zero) closed intervals.

We verify the following conjecture by Kolyada et al. from [23].

Theorem 7 (T2). The isolated points in a special α-limit set for a continuous
interval map are always periodic.

We also show that a countable special α-limit set for an interval map is a
union of periodic orbits. These results are opposite to the case of ω-limit sets.
The ω-limit sets of a general dynamical system do not posses any periodic isolated
points unless ω(x) is a single periodic orbit.

The authors of [23] also investigated the properties of special α-limit sets of
transitive interval maps and stated the following conjecture:

Conjecture 8. [23] Let f : [0, 1] → [0, 1] be a continuous map and x, y ∈ [0, 1].

• If x ̸= y and sα(x) = sα(y) = [0, 1], then f is transitive.

• If sα(x) = [0, 1] then either f is transitive or there is c ∈ (0, 1) such that
f |[0,c] and f |[c,1] are transitive.
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We show in (T2) that f is transitive if there are three distinct points x, y, z ∈
[0, 1] with sα(x) = sα(y) = sα(z) = [0, 1] . If f has one or two points with special
α-limit sets equal to [0, 1], but not more, then [0, 1] is the union of two transitive
cycles of intervals.

It is known that if two ω-limit sets of an interval map contain a common
open set, then they are equal. The last conjecture in [23] suggested that a similar
property holds for special α-limit sets. We correct this conjecture in the following
theorem.

Theorem 9 (T2). At most three distinct special α-limit sets of a continuous
interval map f can contain a given nonempty open set.

Since sα-limit sets need not be closed, we propose a new notion of β-limit
sets (β(x) for short) to serve as backward attractors. The β-limit set of x is the
smallest closed set to which all backward orbit branches of x converge, and it
coincides with the closure of the sα-limit set.

To summarize, the key properties of limit sets as they apply to continuous
maps of the interval are as follows:

x is recurrent ⇐⇒ x ∈ ω(x),
x is nonwandering ⇐⇒ x ∈ α(x),
x is in the attracting center ⇐⇒ x ∈ sα(x).

We conjecture additionally in (T2) that

x is in the Birkhoff center ⇐⇒ x ∈ β(x).
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3. Chaotic behaviour

3.1 Introduction and state-of-art
The term ”chaos” in connection with a function was introduced in [28] by Li
and Yorke in 1975, since then several different definitions of what it means for a
function to be chaotic have been proposed. One could say ”as many authors, as
many definitions of chaos”; most of them are based on the idea of unpredictability
of the behaviour of trajectories or sensitive dependence on initial conditions. The
idea of chaos emerged from experiments in physics. Physicists expressed their
opinion of what mathematical property could describe chaotic behaviour and then
mathematicians began using the word ”chaos” as a label for this property. More
recently, people from other fields have started to think about chaos - in computer
science, chaos is connected to computational complexity. Biology and economics
have also produced their own concepts of disorder. This creates some confusion
in contemporary mathematical literature and therefore the word ”chaos” should
always be understood in the right context. The chaotic properties considered in
this thesis are limited to Li-Yorke chaos, various types of distributional chaos and
Li-Yorke sensitivity.

It often occurs that in a restricted class of topological dynamical systems
several chaotic properties or definitions of chaos coincide, or one implies another,
while this is false when looking at the whole category of dynamical systems -
among interval maps distributional chaos and positive topological entropy are
equivalent properties, something which is false in general. That each smaller
class of dynamical systems like interval maps or graph maps has its own theory
of chaos is important. The picture of chaos changes completely when one extends
the scope from interval maps to the whole field of topological dynamics. This
thesis consider maps acting on general compact metric spaces and examine chaotic
properties in this more universal setting.

3.2 Main results

3.2.1 Li-Yorke sensitivity does not imply Li-Yorke chaos
Li-Yorke sensitivity and Li-Yorke chaos are well-known properties of dynamical
systems, where by a dynamical system we mean a phase space X endowed with
an evolution map T . In this section we require that the phase space (X, d) is a
compact metric space and the evolution map is a continuous surjective mapping
T : X → X. The definition of Li–Yorke sensitivity is a combination of sensitivity
and Li–Yorke chaos. Li–Yorke chaos was introduced in 1975 by Li and Yorke in
[28]. A dynamical system (X, d) is Li–Yorke chaotic if there is an uncountable
scrambled set. A set S is scrambled if any two distinct points x, y ∈ S are
proximal (i.e. trajectories of x and y are arbitrarily close for some times) but not
asymptotic, which means that

lim inf
n→∞

d(T n(x), T n(y)) = 0 and lim sup
n→∞

d(T n(x), T n(y)) > 0. (3.1)
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We will call a pair of points (x, y) ∈ X2 with the property (3.1) as a scrambled
pair. Recall that (x, y) ∈ X2 is a distal pair if lim infn→∞ d(T n(x), T n(y)) > 0.
A dynamical system (X, T ) is distal if every pair of distinct points in (X, T ) is
distal.

The initial idea of sensitivity goes back to Lorenz [29], but it was firstly used
in topological dynamics by Auslander and Yorke in [2] and popularized later by
Devaney in [15]. A map T is sensitive if there is ϵ > 0 such that, for each
x ∈ X and each δ > 0, there is y ∈ X with d(x, y) < δ and n ∈ N such that
d(T n(x), T n(y)) > ϵ. By Huang and Ye in [21], T is sensitive if and only if there
is ϵ > 0 with the property that any neighbourhood of any x ∈ X contains a point
y such that trajectories of x and y are separated by for infinitely many times,
that is, lim supn→∞ d(T n(x), T n(y)) > ϵ. Inspired by the above results, Akin and
Kolyada introduced Li–Yorke sensitivity in [1]. A map T is Li–Yorke sensitive if
there is ϵ > 0 with the property that any neighbourhood of any x ∈ X contains
a point y proximal to x, such that trajectories of x and y are separated by ϵ for
infinitely many times. Thus,

lim inf
n→∞

d(T n(x), T n(y)) = 0 and lim sup
n→∞

d(T n(x), T n(y)) > ϵ.

Akin and Kolyada proved, among other things, that weak mixing systems are
Li–Yorke sensitive and stated five conjectures concerning Li–Yorke sensitivity.
Three of them were disproved in [39] and [40], one was confirmed recently in [32].
Only one problem remained open until now, as follows.

Question 10. [1] Are all Li–Yorke sensitive systems Li–Yorke chaotic?

We show in (T3) that the answer is negative. We construct an infinite-
dimensional compact metric space X, which is a closed subset of S × H, where
S is the unit circle and H is the Hilbert cube, and a skew-product map F , which
is a combination of a rotation on S and a contraction on H, such that (X, F ) is
Li–Yorke sensitive but possesses at most countable scrambled sets. Moreover, the
mapping F can be continuously extended to get a connected dynamical system
with the same properties.

Theorem 11 (T3). The Li–Yorke sensitive dynamical system (X, F ) which is
not chaotic in the Li–Yorke sense.

The mapping F from Theorem 11 is not minimal (it is even not transitive).
In the case of minimal maps, we still have the following open question.

Question 12 (T3). Are all Li-Yorke senstive minimal systems Li-Yorke chaotic?

The space X from Theorem 11 is infinite-dimensional. We can examine the
relation between Li– Yorke sensitivity and Li–Yorke chaos for low-dimensional
dynamical systems. It is known that in the case of graph mappings (in particular,
interval mappings) Li–Yorke sensitivity implies Li–Yorke chaos, since, for graph
mappings, the existence of a single scrambled pair implies the existence of an
uncountable scrambled set. But this is not true for other classes of dynamical
systems—shifts, maps on dendrites, triangular maps of the square.

Question 13 (T3). Are all Li-Yorke sensitive shifts, maps on dendrites or tri-
angular maps of the square Li-Yorke chaotic?
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3.2.2 Distributional chaos
It was a long standing problem, what are the relations between positive topologi-
cal entropy and the existence of Li-Yorke chaos. Topological entropy is a measure
of the complexity of a dynamical system - for systems with positive topological
entropy, the number of distinguishable orbits grows exponentially with time. A
theorem by Misiurewicz [30] which characterizes positive topological entropy of
interval maps in terms of topological horseshoes provided a tool for proving that
positive topological entropy implies the existence of an uncountable scrambled
set [22]. Since Xiong [37] and Smı́tal [34] constructed some interval maps with
zero topological entropy which are Li-Yorke chaotic, Li-Yorke chaos was found to
be a necessary but not sufficient condition for positivity of topological entropy.

Schweizer and Smı́tal [31] introduced the related concept of a distributionally
chaotic pair, which means, roughly speaking, that the statistical distribution
of distances between the orbits does not converge. They discovered that the
existence of a single distributionally chaotic pair is equivalent to positivity of
topological entropy when restricted to the interval case. This fact, combined
with the characterization of maps with positive entropy by S. Li in [27], shows
that the existence of a distributionally chaotic pair forces a very strong chaotic
behaviour. In particular, distributional chaos, positive topological entropy, ω-
chaos and chaos in the sense of Devaney are all equivalent properties for interval
maps.

Two more chaotic properties of interval maps are equivalent to the positivity
of topological entropy - invariant and multivariant chaos. By invariant chaos
we mean existence of an invariant chaotic set (see [18]), by multivariant chaos
we mean existence of scrambled n-tuples. Existence of one scrambled triple for
f ∈ C(I) implies f having positive topological entropy by [25]. In particular,
existence of a scrambled triple for the interval map f implies existence of an
uncountable scrambled set (in the sense of pairs) and therefore scrambled triples
are always accompanied by scrambled pairs.

Later the definition of distributional chaos was split into three versions of
distributional chaos (briefly, DC1 – DC3), equivalent for the interval case but
distinct for a general dynamical system. One can easily see from the definitions
that DC1 implies DC2 and DC2 implies DC3. On the other hand, there are
examples which show that DC1 is stronger than DC2 and DC2 is stronger than
DC3. It is also obvious that either DC1 or DC2 implies Li-Yorke chaos. For maps
acting on a general compact metric space, positive topological entropy implies
DC2 by [17].

We proceed with the definition of distribution functions for a pair (x1, x2) ∈
X2 whose value at δ may be interpreted as lower and upper asymptotic densities
of times when the distance between the trajectories of x1 and x2 is less than δ.
Definition 1. For a pair (x1, x2) of points in X, define the lower distribution
function generated by f as

Φ(x1,x2)(δ) = lim inf
m→∞

1
m

#{0 ≤ k ≤ m; d(fk(x1), fk(x2)) < δ},

and the upper distribution function as

Φ∗
(x1,x2)(δ) = lim sup

m→∞

1
m

#{0 ≤ k ≤ m; d(fk(x1), fk(x2)) < δ},
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where #A denotes the cardinality of the set A.
A pair (x1, x2) ∈ X2 is called distributionally chaotic of type 1 (briefly DC1) if

Φ∗
(x1,x2)(δ) = 1, for every 0 < δ ≤ diam X,

Φ(x1,x2)(ϵ) = 0, for some 0 < ϵ ≤ diam X,

distributionally chaotic of type 2 (briefly DC2) if

Φ∗
(x1,x2)(δ) = 1, for every 0 < δ ≤ diam X,

Φ(x1,x2)(ϵ) < 1, for some 0 < ϵ ≤ diam X,

distributionally chaotic of type 3 (briefly DC3) if

Φ(x1,x2)(δ) < Φ∗
(x1,x2)(δ), for every δ ∈ (a, b), where 0 ≤ a < b ≤ diam X.

We can define both distribution functions at 0 as the limit Φ(x1,x2)(0) =
limδ→0+ Φ(x1,x2)(δ) and Φ∗

(x1,x2)(0) = limδ→0+ Φ∗
(x1,x2)(δ). Then (x1, x2) being DC1

is equivalent to

Φ∗
(x1,x2)(0) = 1, Φ(x1,x2)(ϵ) = 0, for some 0 < ϵ ≤ diam X;

and DC2 is equivalent to

Φ∗
(x1,x2)(0) = 1, Φ(x1,x2)(0) < 1.

A subset S of X is called distributionally scrambled of type i if every pair of
distinct points in S is distributionally chaotic of type i. There are two ways to
define distributional chaos - either as the existence of at least one distributionally
chaotic pair or the existence of an uncountable distributionally scrambled set.
We say that the dynamical system (X, f) is distributionally chaotic of type i
(DCi for short), where i = 1, 2, 3, if there is at least one distributionally chaotic
pair of type i in X. When we use the other way of defining distributional chaos,
we will emphasize the fact that an uncountable distributionally scrambled set is
concerned. We call a dynamical system strictly DCi if it is DCi but possesses no
DCj pairs for j < i.

This section contains results of 5 separate articles (T4) - (T8) unified by the
same subject - distributional chaos. In the first article (T4) we state a sufficient
condition for invariant distributional chaos in general compact metric spaces.

Theorem 14 (T4). Let (X, d) be a compact metric space, #X > 1, and let
f : X → X be a continuous mapping with weak specification property which has
a fixed point and infinitely many periodic points with mutually different periods.
Then there is a point x ∈ X such that (f i(x), f j(x)) is a DC1 pair for all i ̸= j,
i.e., the forward orbit of x is a distributionally scrambled set of type 1.

Remark Later, authors in [35] found that the condition of having infinitely
many periodic points can be omitted. The assumption about a fixed point is
natural - if x belongs to an invariant scrambled set, then (x, f(x)) is proximal.
By the compactness of X there is an increasing sequence ki and a point p ∈ X
such that limi→∞ fki(x) = p and simultaneously limi→∞ d(fki(x), fki(f(x))) = 0,
which by continuity of f implies that f(p) = p.

In the previous theorem we obtained a countable distributionally scrambled
invariant set. Another interesting question is how large can this set be.
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Theorem 15 (T4). Let (X, d) be a compact metric space, #X > 1, and let
f : X → X be a continuous mapping with weak specification property which has
a fixed point and infinitely many periodic points with mutually different periods.
Then there is a dense invariant distributionally scrambled (of type 1) Mycielski
set (i.e. countable union of Cantor sets).

We say that a continuous map from the k-dimensional unit cube Ik into
itself exhibits invariant distributional chaos of type 1 almost everywhere (briefly
invariant DC1 a.e.) if there exists a distributionally scrambled set D ⊂ Ik of type
1 such that λ(D) = 1 and D is invariant, where λ denotes the Lebesgue measure
on Ik.

It is known that if D ⊂ Ik is a dense union of perfect sets then D is home-
omorphic to a set of full Lebesgue measure. An appropriate homeomorphism is
obtained by application of the Oxtoby-Ulam theorem. This fact together with
Theorem 15 implies the following corollary.
Corollary. Every map f ∈ C(Ik) with weak specification property, a fixed point,
and infinitely many periodic points with mutually different periods is conjugate
to some map g ∈ C(Ik) which exhibits invariant DC1 a.e.

In the next article (T5) we investigate the relation between distributional
chaos and existence of scrambled triples. The concept of scrambled pairs from Li-
Yorke definition of chaos given by equation (3.1) can be generalized to scrambled
n-tuples.

Definition 2. A tuple (x1, x2, ..., xn) ∈ Xn is called scrambled if

lim inf
k→∞

max
1≤i<j≤n

d(fk(xi), fk(xj)) = 0 (3.2)

and
lim sup

k→∞
min

1≤i<j≤n
d(fk(xi), fk(xj)) > 0. (3.3)

In the interval case, distributional chaos is equivalent to the positivity of
topological entropy, which was shown in [25] to be equivalent to the existence of
a scrambled triple. Hence distributionally chaotic pairs are always accompanied
by scrambled triples. We show that it is no longer true for mappings acting
on a general compact metric space. Both counterexamples from the following
theorems are shift spaces, their construction is based on the well-known Thue-
Morse sequence.

Theorem 16 (T5). There exists a dynamical system with an infinite extremal
distributionally scrambled set but without any scrambled triple.

Theorem 17 (T5). There exists a noncompact dynamical system with an un-
countable extremal distributionally scrambled set but without any scrambled triple.

The third article (T6) examines whether the distributional chaos is preserved
under semiconjugacy. A dynamical system (X, f) is semiconjugate to an ex-
tension (Y, F ) if there is a surjective continuous map π : Y → X such that
f ◦ π = π ◦ F . Semiconjugacy is used as a common tool for proving topological
chaos or positive topological entropy. The usual technique is to find a semi-
conjugacy π with a chaotic system and transfer the chaos to the extension. For

12



instance, by continuity of π, the topological entropy of the extension is not smaller
than the entropy of the factor system. Unfortunately, semiconjugacy may not au-
tomatically guarantee the distributional chaos in the extension. The system from
the following theorem is a skew-product map acting on a converging sequence of
unit intervals which is extended to a three-dimensional union of countably many
homocentric cylinders with unit height and converging radius.

Theorem 18 (T6). There exists a distributionally chaotic system of type 1 (pos-
sessing an uncountable DC1 set) which is semiconjugate to an extension with no
distributionally chaotic pair (of type 1 or 2).

The last two articles (T7) and (T8) study the weakest version of distributional
chaos. We show in (T7) that, unlike its stronger relatives, DC3 chaos does not
imply Li-Yorke chaos, and DC3 chaos is not an invariant for topological conjugacy.
In a weak sense, these two results were already stated in [4]. However, it should
be noticed that the distributional chaos in [4] was defined as the existence of a
single DC3 pair, but nowadays it is generally assumed that distributional chaos
means the existence of an uncountable distributionally scrambled set. Moreover,
the proof of Theorem 2 in [4] is unfortunately in error - the authors constructed
a conjugacy which destroys a DC3 pair, but they overlooked many other DC3
pairs which persist.

The dynamical system in Theorem 19 is a skew-product map acting on the
Cartesian product of Cantor set Ω and unit circle, where the base space is Ω and
in the fibers we rotate the unit circle by an angle depending on ω ∈ Ω.

Theorem 19 (T7). There exists a distal dynamical system which possesses an
uncountable DC3 scrambled set. Thus, distributional chaos of type 3 does not
imply Li-Yorke chaos.

The counterexample implying Theorem 20 has the phase space consisting of
2 concentric columns of rings, in each column the rings are accumulating on the
bottom-most ring. The map carries each ring down to the next lower ring with
some rotation and fixes the bottom ring.

Theorem 20 (T7). Distributional chaos of type 3 (assuming the existence of an
uncountable scrambled set) is not preserved by conjugacy.

Our second goal in (T7) is to strengthen the definition of the DC3 pair in
such a way that it is preserved under conjugacy and implies Li-Yorke chaos – we
denote the new definition by DC22

1 . DC21
2 is stronger than DC3 (any distal DC3

system must be without DC21
2 pairs) and weaker than DC2 (see the example of

a strictly DC21
2 system in (T7)). By results in [17], positive topological entropy

implies existence of an uncountable DC2 set, hence strictly DC21
2 systems must

have zero topological entropy.

Definition 3 (T7). A pair (x1, x2) ∈ X2 is called distributionally chaotic of type
21

2 if there are positive numbers c and s such that, for any 0 < δ < s,

Φ(x1,x2)(δ) < c < Φ∗
(x1,x2)(δ).
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It follows immediately from the definition that (x1, x2) ∈ X2 being DC21
2 is

equivalent to
Φ(x1,x2)(0) < Φ∗

(x1,x2)(0).

By simple observation we can see that if (x1, x2) ∈ X2 is DC21
2 then it satisfies

equation (3.1) and thus it is a scrambled pair. Since c < Φ∗
(x1,x2)(δ), for arbitrary

small δ, (x1, x2) must be proximal. Similarly, (x1, x2) is not asymptotic since for
asymptotic pairs Φ(x1,x2)(δ)) = 1 for every δ > 0.

Like DC1 and DC2, DC21
2 is conjugacy invariant.

Theorem 21 (T7). Let f and g be topologically conjugate continuous maps of a
compact metric space X, i.e. there is a continuous map π on X such that π is
one-to-one and onto and π ◦ f = g ◦ π. Then f is DC21

2 if and only if g is DC21
2 .

We claim in (T8) that DC21
2 is also iteration invariant while DC3 is not.

We say that a property P is an iteration invariant if, for any dynamical system
(X, f) and any n ∈ N, (X, f) has the property P if and only if (X, fn) has
P as well. Li in [26] and Wang et al. in [36] proved that DC1 and DC2 are
iteration invariants and posed an open question whether DC3 is also preserved
under iteration. Dvořáková proved in [19] one implication - if a function f is
distributionally chaotic of type 3, then fn is distributionally chaotic of type 3,
for every n ∈ N , and conjectured that the opposite implication also holds. We
disprove this conjecture by finding a dynamical system (X, f) which has a DC3
pair with respect to f 2 but no DC3 pairs with respect to f . That legitimates the
attempt to replace DC3 by its slightly strengthened version denoted by DC21

2 .

Theorem 22 (T8). For any integer N > 1, the function fN is distributionally
chaotic of type 21

2 if and only if f is as well.

The counterexample implying Theorem 23 is a disjoint union of three oscil-
latoric dynamical systems, where points regularly move from the right endpoint
of some interval to the left endpoint (and back), and two of these oscillators are
mirror reflections of each other with a line symmetry.

Theorem 23 (T8). Distributional chaos of type 3 with respect to f 2 doesn’t imply
distributional chaos of type 3 with respect to f . Thus the distributional chaos of
type 3 is not iteration invariant.
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tional chaos. Chaos, Solitons, Fractals, 23:1581–1583, 2005.

[5] A. Barwell, C. Good, R. Knight, and B. Raines. A characterization of ω-limit
sets in shift spaces. Erg. Th. Dyn. Syst., 30:21–31, 2010.

[6] A. Barwell, C. Good, P. Oprocha, and B. Raines. Characterizations of ω-limit
sets in topologically hyperbolic systems. Disc. Cont. Dyn. Syst., 33:1819–
1833, 2013.

[7] G. Birkhoff. Dynamical Systems. Colloquium Publications Vol. 9. American
Mathematical Society, New York, 1927.

[8] A. Blokh, A. M. Bruckner, P. D. Humke, and J. Smı́tal. The space of ω-
limit sets of a continuous map of the interval. Trans. Amer. Math. Soc.,
348:1357–1372, 1996.

[9] A. M. Blokh. Dynamical systems on one–dimensional branched manifolds I.
J. Soviet Math., 48:500–508, 1990.

[10] A. M. Blokh. Dynamical systems on one–dimensional branched manifolds
II. J. Soviet Math., 48:668–674, 1990.

[11] A. M. Blokh. Dynamical systems on one–dimensional branched manifolds
III. J. Soviet Math., 49:875–883, 1990.

[12] R. Bowen. ω-limit sets for axiom a diffeomorphisms. J. Diff. Equations,
18:333–339, 1975.

[13] J. Chudziak, J. L. G. Guirao, L. Snoha, and V. Špitalský. Universality with
respect to ω-limit sets. Nonlinear Anal., 71:1485–1495, 2009.

[14] E. Coven and Z. Nitecki. Non-wandering sets of the powers of maps of the
interval. Erg. Th. Dyn. Syst., 1:9–31, 1981.

[15] R. L. Devaney. An introduction to chaotic dynamical systems. Addison-
Wesley Studies in Nonlinearity. Addison-Wesley Publ. Comp. Advanced
Book Program, Redwood City, CA, 1989.

[16] Y. Dowker and F. Frielander. On limit sets in dynamical systems. Proc.
London Math. Soc.Trans. Amer. Math. Soc., 4:168–176, 1954.

15



[17] T. Downarowicz and Y. Lacroix. Measure-theoretic chaos. Ergod. Th. Dy-
nam. Sys., 34:110–131, 2014.

[18] B. S. Du. On invariance of li-Yorke chaos of interval maps. J. Difference
Equ. Appl., 11:823–828, 2005.
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[39] M. Čiklová. Li-Yorke sensitive minimal maps. Nonlinearity, 19:517–529,
2006.
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Abstract. In the paper we study what sets can be obtained as α-limit sets

of backward trajectories in graph maps. We show that in the case of mixing
maps, all those α-limit sets are ω-limit sets and for all but finitely many points

x, we can obtain every ω-limits set as the α-limit set of a backward trajectory

starting in x. For zero entropy maps, every α-limit set of a backward trajectory
is a minimal set. In the case of maps with positive entropy, we obtain a

partial characterization which is very close to complete picture of the possible

situations.

1. Introduction and main results. Let a dynamical system be defined as a pair
(X, f) where X is a compact metric space and f is a continuous map acting on
X. To understand the dynamical properties of a system it is necessary to analyze
the behavior of the trajectories of any point x ∈ X under the iteration of f . Limit
sets of trajectories are a helpful tool for understanding of qualitative properties of
dynamics. The ω-limit set (set of limit points of forward trajectory of a point x;
denoted ω(x)), is among fundamental objects in theory of dynamical systems. The
first question that comes to mind, is whether a given closed invariant subset of X
is the ω-limit set of some point x ∈ X. Finding the answer is hard in general,
however some cases are known. For example, a characterization of ω-limit sets of
a continuous map acting on the compact interval was provided by Blokh et al. in
[10]. A closely related question asks which dynamical systems may occur as ω-limit
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sets in larger systems. These abstract ω-limit sets were studied by Bowen [11] and
Dowker and Frielander [15]. Of particular interest are invariant sets obtained as
limits (in the Hausdorff metric) of ω-limit sets. Sharkovsky proved in [31] that
every ω-limit sets of continuous map on the interval is contained in the maximal
one, and later Blokh et al. in [10] showed that the family of all ω-limit sets of f
endowed with the Hausdorff metric is compact. While the aforementioned results
about ω-limit sets were first obtained for interval maps, some of them hold for maps
acting on graphs, dendrites, Cantor space and others, e.g. see [12, 24, 5]. In general
compact metric spaces only partial results are known and are usually hard to obtain
(e.g. see [6]).

The properties of ω-limit sets for graph maps are to some extent similar to the
interval case (however the proofs are usually much harder). Every ω-limit set is
contained in a maximal one since the family of ω-limit sets of a graph map is closed
with respect to the Hausdorff metric by result of Mai and Shao [26]. By Blokh’s
Decomposition Theorem [7], there are only four types of maximal ω-limit sets: basic
sets, solenoidal sets, circumferential sets and periodic orbits. For a graph map f ,
the topological entropy of f is positive if and only if it possesses a basic set (i.e. an
infinite maximal ω-limit set containing a periodic point; see Hric and Málek [21]).
The topological characterization of ω-limit sets of graph maps [21] shows that an
ω-limit set is a finite set, or an infinite compact nowhere dense set, or a cycle of
connected subgraphs. Conversely, whenever a set A is of one of the above forms
then there is a graph map f such that A is an ω-limit set for f .

As a dual concept to ω-limit sets the α-limit sets (denoted α(x)) were intro-
duced. Intuitively, they represent a “source” of the trajectory of a point. While for
invertible maps α-limit sets can be defined as ω-limits sets of dynamical system with
reversed time, for noninvertible maps there are a few possibilities how to construct
the limit along the backward trajectory which can not be uniquely defined. One
possibility is to take as an α-limit set the set of all accumulation points of the set of
pre-images f−n(x). This approach was used by Coven and Nitecki [13], who showed
that for an interval map, a point x is non-wandering if and only if x ∈ α(x). This
approach attracted some attention, e.g. see Cui and Ding [14] on α-limit sets of
unimodal interval maps. Another approach (see [4]), which is studied in the present
paper, instead of complete preimages considers a fixed backward branch and its
accumulation points forming an α-limit set of a backward branch. By results of [4]
for interval maps, every α-limit set of a backward branch is an ω-limit set while
the converse is not true. The third approach to α-limit sets, proposed by Hero in
[19], falls somewhere between two possibilities mentioned above. It considers the
union of α-limit sets over all backward branches starting at a point x, and call
obtained set the special α-limit set (denoted sα(x)). Recent studies by Kolyada et
al. [25] and Hantáková and Roth [16] provided basic properties of special α-limit
sets for interval maps. For instance, sα(x) does not need to be closed and its iso-
lated points are always periodic, which is in some contrast to the properties of ω(x).
Outside the realm of one-dimensional dynamics the situation is even more compli-
cated. It has been shown that sα-limit sets are always analytic, but not necessarily
Borel [22]. If we denote by SA(f) (respectively, ω(f)) the union of α-limit sets
of all backward branches (respectively, all ω-limit sets) of a map f and by Rec(f)

the set of all recurrent points of f , then Rec(f) ⊆ SA(f) ⊆ Rec(f) ⊆ ω(f), for
every map f on the topological graph (see [34], cf. [19], [4]). It was shown in [33]
that Rec(f) ⊆ SA(f) holds in the special case of maps acting on dendrites with



ON THE STRUCTURE OF α-LIMIT SETS 3

countable set of endpoints and that there are dendrite maps with SA(f) 6⊂ Rec(f).
We show that Rec(f) ⊆ SA(f) holds for general dynamical systems in Corollary 1.

Our research is motivated by the following question:

Question 1.1. Let A = α({xj}j≤0) be an α-limit set of a backward branch {xj}j≤0

of a map f on topological graph. Is A an ω-limit set? How many different sets A
can be generated using backward branches starting at x0?

In the paper we provide full characterization under some additional conditions
on f , and almost complete picture in general case.

Complete answer to Question 1.1 in the case of topologically mixing f : G → G
on topological graph G is provided in Section 3. Strictly speaking we prove for these
maps the following:

1. for every ω-limit set ω(y) in G and every accessible point x in G, there is a
backward branch starting at x with the α-limit set being equal to ω(y),

2. every α-limit set of any backward branch in G is an ω-limit set of some point
in G.

Quite different, still complete, picture is obtained for maps f : G → G with zero
topological entropy. For these maps we prove in Section 5 that

1. family of α-limit sets of backward branches coincides with the family of min-
imal sets,

2. the collection of all α-limit sets of backward branches starting at x is rather
thin - it contains at most one infinite set.

We also provide an example that in the above case, beyond one infinite minimal
set, α-limit sets of backward branches starting at x can form quite large family of
periodic orbits.

When considering maps with positive entropy, some uncertainty enters our de-
scription. In this case, we may observe phenomena specific both for zero entropy
maps and for mixing maps, however tools we use (in Section 6) do not allow us
to completely reveal the structure of some α-limit sets. We prove that for all but
at most countably many points x from a basic set D and every infinite ω-limit
set ω(y) ⊂ D, there exists a backward branch {zj}j≤0 starting at x such that
α({zj}j≤0) = ω(y) ∪ R where R is at most countable subset of isolated points of
α({zj}j≤0). This shows that for a typical point x from a basic set the collection of
all α-limit sets of backward branches starting at x is abundant. By results men-
tioned earlier, graph maps with positive entropy must contain a basic set, but it
may contain also other maximal ω-limit sets which are not limited to zero entropy
maps only, that is solenoidal sets, circumferential sets and periodic orbits. Thus we
may detect this kind of α-limit sets of backward branches starting at a point x in
maps with positive entropy.

As was stated above, our tools do not allow us to answer whether the at most
countable set R is empty or not, however its possible existence is a result of in-
complete control of backward trajectory in the construction rather than a fact. In
practice it may happen that these α-limit sets behave exactly the same as for other
backward trajectories, that is they always coincide with ω-limit sets and all ω-limit
sets in basic sets can appear as α-limit sets (recall results of [4] that some ω-limit
sets are never α-limit sets for zero entropy maps). These aspects of Question 1.1
remain as open problem for further research.
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2. Preliminaries.

2.1. Topological graphs. Let u1, u2, . . . , uk+1 be k+1 affinely independent points
in Rn. A k-simplex σ is the convex hull of {u1, u2, . . . , uk+1} where the convex hull
is the set of all convex combinations of points ui. We use special labels in the first
2 dimensions: vertex for 0-simplex and edge for 1-simplex. A face of a k-simplex σ
is the convex hull of a non-empty subset of {u1, u2, . . . , uk+1}. A simplicial complex
is a finite collection of simplices K such that, for every face τ of any simplex σ ∈ K,
τ ∈ K, and, for every σ, η ∈ K, σ ∩ η is either empty or a face of both σ, η. The
dimension of K is the maximum dimension of any of its simplices. The underlying
space, denoted by |K|, is the union of its simplices together with the topology
inherited from Rn. A triangulation of a topological space X is a simplicial complex
K together with a homeomorphism between X and |K|. Finally, a (topological)
graph is a continuum G ⊂ R3 such that there is a triangulation of G to a one-
dimensional simplicial complex K. Any subset of G which is a graph itself is called
a subgraph of G. Without loss of generality we can assume that each graph is not
just homeomorphic to a complex, but it is a simplicial complex embedded in the
Euclidean space R3. In particular, it comes equipped with some fixed triangulation,
and all triangulations are just subdivisions of the fixed one. Recall that a simplicial
complex L is a subdivision of another simplicial complex K if |L| = |K| and every
simplex in L is contained in a simplex in K. We assume that G is endowed with
the taxicab metric, that is, the distance between any two points of G is equal to
the length of the shortest arc in G joining these points. If G is a graph, and K is
a triangulation of G, then we denote the set of all vertices of K by V and the set
of all edges by E . The star of a vertex v, denoted by St(v), is the union of all the
edges that contain the vertex v. For every x ∈ G we define the degree of x in the
following way: if x ∈ V then deg(x) is equal to the number of connected components
of St(x) \ {x}, and deg(x) = 2 otherwise. Points x ∈ G with deg(x) = 1 are called
endpoints of the graph G and points with deg(x) > 2 are called branching points.
We denote the set of all endpoints in G by End(G) and the set of all branching
points in G by Br(G). An arc J ⊂ G is free if and only if J ∩Br(G) = ∅. If J ⊂ G
is an arc with endpoints x and y, then it is convenient to write J = [x, y], which
means that we identify J with interval [0, 1] by a homeomorphism π : J → [0, 1]
with π(x) = 0, π(y) = 1. This way, we may use standard ordering on [0, 1] in J . In
particular, for b ∈ [x, y] \ {x, y} we may write x < b < y (using ordering of J) and
also [b, y] ⊂ [x, y] is defined in a natural way.

The next fact follows directly from the definition of the topological graph.

Fact 2.1. Let G be a topological graph.

1. Any non-degenerate subcontinuum H ⊂ G is a subgraph of G.
2. For any subgraphs H1, H2 ⊂ G, the intersection H1 ∩ H2 is either empty or

has finitely many connected components.

Proof. (1) Let K be the simplicial complex for G. Then there is a subdivision L of
K with at most two new vertices in every simplex σ ∈ K such that H is triangulated
by L.
(2) Let K1,K2 be the simplicial complexes for H1, H2. There is a subdivision of the
complex for G in which both K1 and K2 are subcomplexes and so the intersection is
a subcomplex. Any subcomplex has only finitely many connected components.
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2.2. Dynamics on graphs. By a (graph) map we mean a dynamical system on
a graph, that is, a continuous map f : G → G. The orbit of a point x ∈ G is
the set Orbf (x) = {fn(x) : n ≥ 0}, while the orbit of a set A ⊂ G is the set
Orbf (A) = ∪∞n=0f

n(A). If the function f in the above definitions is clear from the
context, we use the notation Orb(x) and Orb(A). By Per(f) we denote the set of
periodic points of f , that is points with the property that fp(x) = x for some p > 0.
The smallest such p is the period of a point x ∈ Per(f). A set A is invariant if
f(A) ⊆ A and it is strongly invariant if f(A) = A.

A point y belongs to the ω-limit set of a point x, denoted by ωf (x), if and
only if there is a strictly increasing sequence of natural numbers {ni}i≥0 such that

fni(x)→ y as i→∞. Otherwise stated ωf (x) = ∩n≥1Orb(fn(x)).

Fact 2.2. For every ε > 0 and every x ∈ G there is N > 0 such that ∪Nn=1B(fn(x),
ε) ⊃ ωf (x).

Proof. Let {B(yi,
ε
2 )} be a finite cover of ωf (x) such that yi ∈ ωf (x) for every i.

Then for every i we can choose ki ∈ N such that fki(x) ∈ B(yi,
ε
2 ) and the desired

N is the maximal ki.

We denote ω(f) =
⋃
x∈G ωf (x). We say that x is recurrent if x ∈ ωf (x) and

by Rec(f) we denote the set of recurrent points for map f . A backward branch of
a point x ∈ G is any sequence {xi}i≤0 ⊂ G such that x0 = x and f(xi) = xi+1

for each i < 0. A point y belongs to the α-limit set of a backward branch {xi}i≤0,
denoted by αf ({xi}i≤0), if and only if there is a strictly decreasing sequence of
negative integers {ni}i≥0 such that xni

→ y as i → ∞. It is easy to see that both
ω-limit sets and α-limit sets of backward branches are closed strongly invariant sets.
We denote by SA(f) the union of all α-limit sets of backward branches in G. If the
function from the definition of ω-limit set or α-limit set of a backward branch is
clear, we use the notation ω(x), α({xj}j≤0).

Map f : G→ G is transitive if for every pair of nonempty open subsets U, V ⊂ G
there is some integer n > 0 such that fn(U) ∩ V 6= ∅ and totally transitive if fn is
transitive for all n > 0. If f is transitive then {x ∈ G : ωf (x) = G} is dense in G.
Observe that if f is a transitive homeomorphism then f−1 is transitive as well, as
for any open U, V ⊂ X we have:

f(U) ∩ V 6= ∅ ⇔ U ∩ f−1(V ) 6= ∅.

Map f is sensitive if there is δ > 0 such that for every nonempty open U ⊂ G there
is n > 0 such that diam fn(U) > δ and it is mixing if for every pair of nonempty
open subsets U, V ⊂ G there is an N > 0 such that fn(U) ∩ V 6= ∅ for n ≥ N . A
point x ∈ G is non-wandering if for every neighborhood U of x and every N > 0
there is some n > N such that fn(U) ∩ U 6= ∅. If the opposite holds then we say x
is a wandering point.

For a mixing graph map f : G → G we define the set I(f) of inaccesible points
of f as follows:

I(f) = G \
⋂
U∈G

∞⋃
k=0

Int fk(U), (2.1)

where G is the family of all subgraphs of G. By the results of [7] we have that I(f)
is a finite strongly invariant set and hence it consists of periodic points. We say
that x ∈ G is an accessible point if x ∈ G \ I(f).
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We define the sample path space (or natural extension) as the space of infinite
chains:

Gf = {z ∈ GZ : zi+1 = f(zi) for all i ∈ Z}.
This is a closed subset of GZ, invariant with respect to the shift homeomorphism
f̃ on GZ defined as f̃(z)i = f(zi) = zi+1 for every i ∈ Z. The subsystem (Gf , f̃)

is invertible and π : (Gf , f̃) → (G, f) where π(z) = z0 is a semiconjugacy. Note
that the projection of Gf to its non-positive coordinates is a homeomorphism to the
space of all backward branches in G. In particular, αf ({xi}i≤0) = π(ωf̃−1(x)) where

x ∈ GZ with (x)i = xi for i ≤ 0. It follows immediately that SA(f) = π(ω(f̃−1)).
The following results hold for general dynamical systems.

Proposition 1. [2, Proposition 1.4, Theorem 2.3] A dynamical system (X, f) is

transtive if and only if the sample path system (Xf , f̃) is transitive.

Proposition 2. Let (X, f) be a transitive dynamical system. There is a dense
subset D ⊂ X such that for every x ∈ D there is a backward branch {xi}i≤0 with
x0 = x and αf ({xi}i≤0) = X.

Proof. By Proposition 1 the homeomorphism f̃ acting on the sample path space
Xf is transitive implying that f̃−1 is transitive as well. Thus the set {x ∈ Xf :
ωf̃−1(x) = Xf} is dense in Xf . The desired set D ⊂ X is the image of {x ∈ Xf :

ωf̃−1(x) = Xf} by the surjective continuous map π.

For every recurrent point x ∈ X, the dynamical system (ωf (x), f) is transitive
and obviously x ∈ ωf (x). Thus we have the following corollary.

Corollary 1. Let (X, f) be a dynamical system. If x ∈ Rec(f) then there is a
backward branch {xi}i≤0 such that αf ({xi}i≤0) = ωf (x). In particular, Rec(f) ⊂
SA(f).

For fixed n ≥ 0 and ε > 0 we define the Bowen ball as follows:

Bn(x, ε) = {y ∈ G : d(f i(x), f i(y)) ≤ ε for i = 0, . . . , n}
and by B′n(x, ε) we denote the connected component of the Bowen ball Bn(x, ε)
that contains x.

For any nonempty compact subsets U, V ⊂ G we define their Hausdorff distance
by:

dH(U, V ) = max{dist(u, V ),dist(v, U) : u ∈ U, v ∈ V },
where dist(x, U) = inf{d(x, y) : y ∈ U}. We denote by K(G) be the set of all
compact subsets of G equipped with the Hausdorff metric dH . We call a set A ⊆ G
the Hausdorff limit of the sequence of compact sets {Ai}i≥0 if {Ai}i≥0 converges
to A in the metric dH .

A subset Y ⊂ G is internally chain transitive if for every pair of points u, v ∈ Y
and every ε > 0 there is a finite sequence z0, . . . , zn of points in Y such that
z0 = u, zn = v and d(f(zi), zi+1) < ε for i = 0, . . . , n− 1. It is well-known fact that
in any dynamical system (X, f), every ω-limit set is internally chain transitive and
the same holds for α-limit sets of a backward branch by [20, Lemma 2.1]. Therefore
α-limit sets of a backward branch share the following property of ω-limit sets.

Lemma 2.1. Let (X, f) be a dynamical system and α({xj}j≤0) ⊂ X be an α-limit
set of a backward branch {xj}j≤0. Then every periodic orbit that lies in α({xj}j≤0)
but does not coincide with α({xj}j≤0) is not isolated in α({xj}j≤0). In particular, if
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α({xj}j≤0) consists of finitely many points, then these points form a single periodic
orbit.

Proof. Assume that the statement does not hold, i.e. there is a periodic orbit
Orb(p) ⊂ α({xj}j≤0) isolated in α({xj}j≤0) and a point q ∈ α({xj}j≤0) \ Orb(p).
Let ε > 0 be such that ∪x∈Orb(p)B(x, ε) does not contain any point from α({xj}j≤0)\
Orb(p). As α({xj}j≤0) is internally chain transitive, there is a chain z0, . . . , zn of
points from α({xj}j≤0) joining p and q with d(f(zi), zi+1) < ε for i = 0, . . . , n− 1.
We have zi ∈ Orb(p), for every i = 0, . . . , n − 1, by the choice of ε. But then
d(f(zn−1), q) < ε implies q ∈ Orb(p) which contradicts the assumption. There-
fore α({xj}j≤0) ⊆ Orb(p) and since α({xj}j≤0) is an invariant set, α({xj}j≤0) =
Orb(p).

Remark 1. Since every ω-limit set ω(y) ⊂ G is internally chain transitive, we
obtain by the same reasoning as above that if ω(y) is finite then it is a single
periodic orbit.

3. Mixing graph maps. We will show that any mixing graph map f : G→ G has
the following properties:

1. for every ω-limit set ω(y) in G and every accessible point x in G \ I(f), there
is a backward branch starting at x with the α-limit set being equal to ω(y),

2. every α-limit set of any backward branch in G is an ω-limit set of some point
in G.

We start with the construction of the backward branch starting at any accessible
point whose α-limit set equals ω(y) for a chosen point y ∈ G. Lemma 3.3 and
Lemma 3.4 distinguish two cases depending on the cardinality of ω(y). In both
cases, for infinite and finite ω(y), the idea of construction is based on the properties
of Bowen balls expressed in the following two lemmas from [17].

Lemma 3.1. [17, Lemma 10.4] Let f : G→ G be a mixing graph map. If 0 < ε <
1
2 diamG and δ > 0 then there is an N = N(ε, δ) > 0 such that B′n(x, ε) ⊂ B(x, δ)
for all x ∈ G and all n ≥ N .

Lemma 3.2. [17, Lemma 10.5] Let f : G → G be a mixing graph map. For every
ε > 0 there is a constant η = η(ε) such that

0 < η ≤ diam fn(B′n(x, ε))

for every n ≥ 0 and x ∈ G.

Lemma 3.3. Let f : G → G be a mixing graph map and y ∈ G such that ω(y) is
finite. There exists an open connected set U ⊂ G such that, for every x0 ∈ U there
is a backward branch {x̃j}j≤0 with α({x̃j}j≤0) = ω(y).

Proof. By Remark 1, every finite ω(y) is an orbit of some periodic point p ∈ G.
First assume that p ∈ G is a fixed point, i.e. f i(p) = p for all i ≥ 0, and denote
deg(p) = L. Choose ε > 0 and let η > 0 be the constant from Lemma 3.2 such that
for every n ∈ N and x ∈ G we have:

0 < η ≤ diam fn(B′n(x, ε)).

Decreasing η if necessary, we can choose {S(1)
i }i≥0, . . . {S(L)

i }i≥0 where each

{S(l)
i }i≥0 is a nested sequence of closed arcs in G such that diamS

(l)
0 = η

2 and
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diamS
(l)
i+1 = 1

2 diamS
(l)
i for every 1 ≤ l ≤ L and every i ≥ 0, and the fixed point p

is the unique element in the intersection
⋂L
l=1 S

(l)
i , for every i ≥ 0.

Choose x
(1)
0 , . . . , x

(L)
0 ∈ G such that x

(l)
0 ∈ S

(l)
0 and d(x

(l)
0 , p) = η

4 for 1 ≤ l ≤ L.
By Lemma 3.1 there exists N0 = N(ε, η8 ) > 0 such that for n > N0 and every
1 ≤ l ≤ L we have:

B′n(x
(l)
0 , ε) ⊂ B(x

(l)
0 ,

η

8
) ⊂ S(l)

0 .

Pick x
(l)
1 ∈ S

(l)
1 , 1 ≤ l ≤ L such that d(x

(l)
1 , p) = η

23 . Again by Lemma 3.1 we get
N1 > 0 such that for every n > N1 we have:

B′n(x
(l)
1 , ε) ⊂ B(x

(l)
1 ,

η

24
) ⊂ S(l)

1 .

By Lemma 3.2 we know that η ≤ diam fn(B′n(x
(l)
1 , ε)) for 1 ≤ l ≤ L, which implies

η ≤ diam fn(S
(l)
1 ) as well for any 1 ≤ l ≤ L and n > N1. As S

(l)
0 ∩ S

(l)
1 = S

(l)
1 3 p,

we have that for every 1 ≤ l ≤ L and any n > N1 there exists some m ∈ {1, . . . , L}
such that fn(S

(l)
1 ) ⊃ S(m)

0 . For any l ∈ {1, . . . , L} we denote:

n
(l)
1 = min{n ≤ N1 + 1 : there exists m ∈ {1, . . . , L} such that fn(S

(l)
1 ) ⊃ S(m)

0 }.

Note that for n < n
(l)
1 we have fn

(
S

(l)
1

)
⊂
⋃L
m=1 S

(m)
0 , so in particular the diameter

of fn
(
S

(l)
1

)
is less than η.

Now for every 1 ≤ l ≤ L we are going to construct a sequence {n(l)
i }i>0, whose

element n
(l)
i indicates the first iteration of f such that fn

(l)
i (S

(l)
i ) ⊃ S

(m)
i−1 for some

m ∈ {1, . . . , L}. Fix l ∈ {1, . . . , L}. Let Nk+1 > 0 be the constant from Lemma 3.1
such that for n > Nk+1 we have:

B′n(x
(l)
k+1, ε) ⊂ B(x

(l)
k+1,

η

2k+3
) ⊂ S(l)

k+1.

By Lemma 3.2 we have that η ≤ diam fn(B′n(x
(l)
k+1, ε)) for 1 ≤ l ≤ L, which implies

η ≤ diam fn(S
(l)
k+1) as well for any 1 ≤ l ≤ L and n > Nk+1. As S

(l)
k+1∩S

(l)
k = S

(l)
k+1 3

p, we have that for n > Nk+1 each fn(S
(l)
k+1) covers S

(m)
0 for some 1 ≤ m ≤ L. In

other words, for each n > Nk+1 there exists some m ∈ {1, . . . , L} such that :

fn(S
(l)
k+1) ⊃ S(m)

k . (3.2)

Denote:

n
(l)
k+1 = min{n ≤ Nk+1+1 : there exists m ∈ {1, . . . , L}such thatfn(S

(l)
k+1) ⊃ S(m)

k }.

Note that for n < n
(l)
k+1 we have fn

(
S

(l)
k+1

)
⊂
⋃L
m=1 S

(m)
k , so in particular the

diameter of fn
(
S

(l)
k+1

)
is less than η/2k.

We are going to construct a nested sequence of closed sets {Zi}i≥0 such that
Zi ⊂ {1, . . . , L}N0 for each i ≥ 0 as follows. A point z = {zn}n≥0 belongs to Z0 if
the following holds:

z1 = l, z0 = m for m, l ∈ {1, . . . , L} such that S
(z0)
0 ⊂ fn

(z1)
1

(
S

(z1)
1

)
.

In particular z1 can take any value from the set {1, . . . , L} since in (3.2) we have
already shown there always exists at least one z0 ∈ {1, . . . , L} with the above
property, so Z0 is nonempty.
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Below we use the notation z[0,K] to denote a finite sequence of symbols z0z1 . . . zK
over the given alphabet {1, . . . , L}. For i > 0 assume Zi−1 is nonempty and for
any letter l ∈ {1, . . . , L} there is some w ∈ Zi−1 such that wi−1 = l. A point
z = {zn}n≥0 belongs to Zi if there exists some w ∈ Zi−1 such that z[0,i−1] = w[0,i−1]

and the following holds:

zi ∈ {1, . . . , L} is such that S
(zi−1)
i−1 ⊂ fn

(zi)

i

(
S

(zi)
i

)
.

Pick any l ∈ {1, . . . , L} and let m be provided by (3.2). By inductive assumption
there is some w ∈ Zi−1 such that wi−1 = m. Therefore there is some z ∈ Zi with
zi = l and in particular Zi is nonempty.

The intersection Z =
⋂
i≥0 Zi is non-empty, since {Zi}i≥0 is a nested sequence

of nonempty compact sets, so fix some z ∈ Z. Depending on the first symbol of z

put U = IntS
(l)
0 provided that z0 = l, l ∈ {1, . . . , L}. For every i ≥ 1 denote :

ki = n
(l)
i for such an l ∈ {1, . . . , L} that zi = l

and

S̃i = S
(l)
i for such an l ∈ {1, . . . , L} that zi = l.

Then fki(S̃i) ⊃ S̃i−1, for every i > 1. Let x̃0 be an arbitrary point from U . The
backward branch {x̃j}j≤0 starting at x̃0 is defined as follows. For j = −

∑m
i=1 ki

for consecutive m = 1, 2, 3, . . ., we pick

x̃j ∈ S̃m such that fkm(x̃j) = x̃j+km

and for all other j we define

x̃j = f(x̃j−1) for −
m∑
s=1

ks < j < −
m−1∑
s=1

ks,m > 1, or − k1 < j < 0.

The above conditions guarantee that x̃j is well defined for j ≤ 0 and {x̃j}j≤0 is
a backward branch of some point from U . By the construction for every m > 0
we will find some t > 0 such that {x̃j}j≤−t ⊂ B(p, η

2m+1 ), so altogether {p} =
α({x̃j}j≤0).

Now assume that p is a point of period K > 1. We use the above result for map
fK for which p is a fixed point to get the backward branch {x̃j}j≤0 with x̃0 ∈ U .
Hence {ỹj}j≤0 defined as follows:

ỹKj = x̃j , j ≤ 0,

ỹs = f(ỹs−1) for (K + 1)j < s < Kj, j ≤ 0

is the backward branch of ỹ0 = x̃0 ∈ U for map f . By continuity, and the fact that
{p} = αfK ({x̃j}j≤0) we obtain that Orb(p) = αf ({ỹj}j≤0).

Lemma 3.4. Let f : G → G be a mixing graph map and y ∈ G such that ω(y) is
infinite. There exists an open connected set U ⊂ G such that, for every x̃0 ∈ U ,
there is a backward branch {x̃j}j≤0 with α({x̃j}j≤0) = ω(y).

Proof. Let a ∈ ω(y) be an accumulation point of the infinite set ω(y) and J = [a, b]
be an arc such that a is an accumulation point of the set Λ = ω(y)∩ [a, b]. We may
assume that J \ {a, b} is an open free arc, that means (J \ {a, b})∩Br(G) = ∅. Let
{εn}n≥0 be a sequence of positive numbers such that ε0 = 1

2 diam J and εn+1 <
1
2εn
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for every n ≥ 0. Now let {ηn}n∈N be the sequence of constants from Lemma 3.2,
such that for every n, k ∈ N and x ∈ G we have:

0 < ηn ≤ diam fk(B′k(x, εn)).

Choose some l0,m0, r0 ∈ Λ such that d(l0, r0) < η1
4 and:

a < l0 < m0 < r0.

As l0, r0 ∈ ω(y) there exist x0, x̂0 ∈ Orb(y) ∩ (J \ {a, b}) such that d(x0, l0) < η1
8

and d(x̂0, r0) < η1
8 . Define γ0 = 1

8 min{d(l0, x0), d(r0, x̂0), η2} and note that in
particular γ0 <

η1
64 . Let N0 = N(ε0, γ0) > 0 be the constant from Lemma 3.1 and

take n0, n̂0 > N0 such that B′n0
(x0, ε0) ⊂ B(x0, γ0) and B′n̂0

(x̂0, ε0) ⊂ B(x̂0, γ0).
Choose l1,m1, r1 ∈ Λ such that d(l1, r1) < η2

4 and:

a < l1 < m1 < r1 < l0.

Again there exist x1, x̂1 ∈ Orb(y) ∩ (J \ {a, b}) with d(l1, x1) < γ0, and d(x̂1, r1) <
γ0. Denote γ1 = 1

8 min{d(l1, x1), d(r1, x̂1), η3} and let N1 = N(ε1, γ1) > 0 be the
constant from Lemma 3.1. Using Fact 2.2 take n1, n̂1 > N1 such that:

B′n1
(x1, ε1) ⊂ B(x1, γ1) and d(fn1(x1),m0) < γ1 and

n1−1⋃
i=0

B(f i(x1), ε1) ⊃ ω(y),

B′n̂1
(x̂1, ε1) ⊂ B(x̂1, γ1) and d(f n̂1(x̂1),m0) < γ1 and

n̂1−1⋃
i=0

B(f i(x̂1), ε1) ⊃ ω(y).

By Lemma 3.2 we have:

η1 ≤ diam fn1(B′n1
(x1, ε1)),

η1 ≤ diam f n̂1(B′n̂1
(x̂1, ε1)).

Note that the following inequalities hold:

d(fn1(x1),m0) + d(x0,m0) + diamB′n0
(x0, ε0) <

η1

64
+
η1

4
+
η1

8
<
η1

2
,

d(fn1(x1),m0) + d(x̂0,m0) + diamB′n̂0
(x̂0, ε0) <

η1

64
+
η1

4
+
η1

8
<
η1

2
,

(3.3)

hence at least one of the following inclusions must hold:

fn1(B′n1
(x1, ε1)) ⊃ B′n0

(x0, ε0) or fn1(B′n1
(x1, ε1)) ⊃ B′n̂0

(x̂0, ε0).

Analogously, we also have:

d(f n̂1(x̂1),m0) + d(x0,m0) + diamB′n0
(x0, ε0) <

η1

64
+
η1

4
+
η1

8
<
η1

2
,

d(f n̂1(x̂1),m0) + d(x̂0,m0) + diamB′n̂0
(x̂0, ε0) <

η1

64
+
η1

4
+
η1

8
<
η1

2
.

(3.4)

and therefore, as before:

f n̂1(B′n̂1
(x̂1, ε1)) ⊃ B′n0

(x0, ε0) or f n̂1(B′n̂1
(x̂1, ε1)) ⊃ B′n̂0

(x̂0, ε0).

Now we are going to construct sequences of Bowen balls {Bnk
(xk, εk)}k≥0 and

{Bn̂k
(x̂k, εk)}k≥0 with the properties as follows for every k ≥ 1:

1. there are some properly chosen points lk,mk, rk ∈ Λ with d(lk, rk) < ηk+1

4 and
a < lk < mk < rk < lk−1 for which we may find xk, x̂k ∈ Orb(y)∩ (J \ {a, b})
such that xk is within γk−1 distance from lk and x̂k is within γk−1 distance
from rk, where γk−1 = 1

8 min{d(xk−1, lk−1), d(x̂k−1, rk−1)}.
2. nk, n̂k > Nk
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3. fni(B′ni
(xi, εi)) ⊃ B′ni−1

(xi−1, εi−1) or fni(B′ni
(xi, εi)) ⊃ B′n̂i−1

(x̂i−1, εi−1),

4. f n̂i(B′n̂i
(x̂i, εi)) ⊃ B′ni−1

(xi−1, εi−1) or f n̂i(B′n̂i
(x̂i, εi)) ⊃ B′n̂i−1

(x̂i−1, εi−1)

Assume the above conditions are fulfilled for i = 0, . . . , k for some k ≥ 1. We pro-
ceed with the construction to get Bnk+1

(xk+1, εk+1) and Bn̂k+1
(x̂k+1, εk+1). Choose

lk+1,mk+1, rk+1 ∈ Λ such that d(lk+1, rk+1) < ηk+2

4 and:

a < lk+1 < mk+1 < rk+1 < lk.

Take some xk+1, x̂k+1 ∈ Orb(y) ∩ (J \ {a, b}) such that d(xk+1, lk+1) < γk and
d(x̂k+1, rk+1) < γk, let γk+1 = 1

8 min{d(lk+1, xk+1), d(rk+1, x̂k+1)), ηk+3}. Apply
Lemma 3.1 to obtain Nk+1 = N(εk+1, γk+1) > 0 and pick nk+1, n̂k+1 > Nk+1 by
the Fact 2.2 such that:

B′nk+1
(xk+1, εk+1) ⊂ B(xk+1, γk+1) and d(fnk+1(xk+1),mk) < γk+1,

B′n̂k+1
(x̂k+1, εk+1) ⊂ B(x̂k+1, γk+1) and d(f n̂k+1(x̂k+1),mk) < γk+1,

nk+1−1⋃
i=0

B(f i(xk+1), εk+1) ⊃ ω(y),

n̂k+1−1⋃
i=0

B(f i(x̂k+1), εk+1) ⊃ ω(y).

Next, by Lemma 3.2 we have:

ηk+1 ≤ diam fnk+1(B′nk+1
(xk+1, εk+1)),

ηk+1 ≤ diam f n̂k+1(B′n̂k+1
(x̂k+1, εk+1)).

The estimations analogous to those in (3.3) and (3.4) imply that:

fnk+1(B′nk+1
(xk+1, εk+1)) ⊃ B′nk

(xk, εk) or f
nk+1(B′nk+1

(xk+1, εk+1)) ⊃ B′n̂k
(x̂k, εk)

and:

f n̂k+1(B′n̂k+1
(x̂k+1, εk+1)) ⊃ B′n̂k

(xk, εk) or f
n̂k+1(B′n̂k+1

(x̂k+1, εk+1)) ⊃ B′n̂k
(x̂k, εk).

The induction is completed.
Now we will perform a construction similar to the one from Lemma 3.3. We are

going to construct a nested sequence of closed sets {Zi}i≥0 such that Zi ⊂ {l, r}N0

for each i ≥ 0 as follows. A point z = {zn}n≥0 from {l, r}N0 is an element of Z0 if
one of the following holds:

z0 = l and
(
B′n0

(x0, ε0) ⊂ fn1(B′n1
(x1, ε1)) or B′n0

(x0, ε0) ⊂ f n̂1(B′n̂1
(x̂1, ε1))

)
,

z0 = r and
(
B′n̂0

(x̂0, ε0) ⊂ fn1(B′n1
(x1, ε1)) or B′n̂0

(x̂0, ε0) ⊂ f n̂1(B′n̂1
(x̂1, ε1))

)
.

For i > 0 an infinite sequence a point w belongs to Zi if there exists some z ∈ Zi−1

such that z[0,i−1] = w[0,i−1] and one of the following holds:

wi = l, wi−1 = l and B′ni−1
(xi−1, εi−1) ⊂ fni(B′ni

(xi, εi)),

wi = l, wi−1 = r and B′ni−1
(xi−1, εi−1) ⊂ f n̂i(B′n̂i

(x̂i, εi)),

wi = r, wi−1 = l and B′n̂i−1
(x̂i−1, εi−1) ⊂ fni(B′ni

(xi, εi)),

wi = r, wi−1 = r and B′n̂i−1
(x̂i−1, εi−1) ⊂ fni(B′n̂i

(x̂i, εi)).
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The intersection Z =
⋂
i≥0 Zi is non-empty, since {Zi}i≥0 is nested sequence of

compact sets, so fix some z ∈ Z. Depending on the first symbol of z put:

U =

{
IntB′n0

(x0, ε0) if z0 = l

IntB′n̂0
(x̂0, ε0) if z0 = r

and define:

ki =

{
ni if zi = l

n̂i if zi = r
, i ≥ 1.

and

B′i =

{
B′ki(xi, εi) if zi = l

B′ki(x̂i, εi) if zi = r
, i ≥ 1.

Let x̃0 be an arbitrary point from U . The backward branch {x̃j}j≤0 starting at x̃0

is defined as follows:

x̃j ∈ B′m such that fkm(x̃j) = x̃j+km for j = −
m∑
s=1

ks,m ≥ 1,

x̃j = f(x̃j−1) for −
m∑
s=1

ks < j < −
m−1∑
s=1

ks,m > 1, or − k1 < j < 0.

By the definition of Z we have fkj (B′j) ⊃ B′j−1 for every j ≥ 1, so x̃j is well defined
for j < 0.

To prove that α({x̃j}j≤0) ⊃ ω(y) fix a point q ∈ ω(y) and an integer m > 0. Let
b ∈ {xm, x̂m} be the point such that B′m = B′km(b,

εm). As ω(y) ⊂
⋃km−1
i=0 B(f i(b), εm) we can find an integer 0 ≤ s < km such

that d(fs(b), q) < εm. Simultaneously d(fs(b), fs(x̃j)) < εm, for j = −
∑m
i=1 ki,

since x̃j ∈ B′m by the definition of {x̃j}j≤0. Altogether we have d(x̃j+s, q) < 2εm
so indeed α({x̃j}j≤0) ⊃ ω(y).

On the other hand, there exists an increasing sequence {sk}k∈N such that the
orbit Orb(fsk(y)) contains f l(xk) for all 0 ≤ l < nk and f l(x̂k) for all 0 ≤ l < n̂k
and the orbit Orb(fsk(y)) is εk-close from ω(y). Therefore for each m ∈ N there is

N ≥ 0 such that {x̃j}j≤−N ⊂ B(Orb(fsm(y)), εm) which yields that for any m we
have α({x̃j}j≤0) ⊂ B(ω(y), 2εm) so α({x̃j}j≤0) ⊂ ω(y) indeed.

Remark 2. In the proof of Lemma 3.4 by continuity of map f and the proper
choice of the sequence {εn}n∈N with εn decreasing sufficiently fast, for any β > 0
and an arbitrarily large s ∈ N, we will find a point following the orbits of each xn
and x̂n for s iterations at distance at most β. To achieve this, numbers nk, n̂k in
the construction must be very large, to overpass any fixed s, not only greater that
Nk.

Theorem 3.5. Let f : G → G be a mixing graph map. For every z ∈ G \ I(f)
and every y ∈ G there exists a backward branch {zj}j≤0 such that z0 = z and
α({zj}j≤0) = ω(y).

Proof. Depending on the cardinality of ω(y) we apply Lemma 3.3 or Lemma 3.4
to get an open set U ⊂ G such that for every x̃0 ∈ U , there is a backward branch
{x̃j}j≤0 with α({x̃j}j≤0) = ω(y). Let z ∈ G \ I(f). Then there is ε > 0 such that
z ∈ G\B(I(f), ε). By [17, Theorem 4.6], we can find k > 0 such that z ∈ Int fk(U)
and thus there exists a preimage z′ ∈ U such that z = fk(z′). Since z′ is from U
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we can find a backward branch {z̃j}j≤0 with z̃0 = z′ and α({z̃j}j≤0) = ω(y). The
desired backward branch {zj}j≤0 starting at z has the form z0 = z = fk(z′), z−1 =
fk−1(z′), . . . , z−k+1 = z′ = z̃0, z−k = z̃−1, z−k−1 = z̃−2, . . . .

Remark 3. By [17, Theorem 4.6] we know that inaccessible points are periodic and
the set I(f) is finite and backward invariant, so the only α-limit sets of inaccessible
points are periodic orbits contained in I(f).

Having proved that for mixing map every ω-limit set in G is an α-limit set of
some backward branch, the natural question is whether it is also true that every
α-limit set of a backward branch in G is the ω-limit set of some point from G at
the same time. The answer to that problem is given below.

Theorem 3.6. Let f : G→ G be the mixing graph map. Then for every backward
branch {xj}j≤0 ⊂ G the set α({xj}j≤0) is equal to an ω-limit set of some point in
G.

Proof. If α({xj}j≤0) is finite then by Lemma 2.1 it is a periodic orbit of a point
p ∈ G and obviously ω(p) = α({xj})j≤0. Assume α({xj}j≤0) is infinite. Let
a ∈ α({xj}j≤0) be an accumulation point of α({xj}j≤0) and J = [a, b] be an arc
such that the set Λ = α({xj}j≤0) ∩ [a, b] accumulates on a. We may assume that
J \ {a, b} is an open free arc, that means (J \ {a, b}) ∩ Br(G) = ∅. We show that
α({xj}j≤0) is approximated by an infinite sequence of periodic orbits. Let {εn}n≥0

be a sequence of positive numbers such that ε0 = 1
2 diam J and εn+1 < 1

2εn for
every n ≥ 0. Let {ηn}n≥0 be the sequence of constants from Lemma 3.2 such that
for every x ∈ G and every k > 0 we have:

0 < ηn ≤ diam fk(B′k(x, εn)).

For every k > 0 fix lk,mk, rk ∈ Λ such that d(lk, rk) < ηk
4 and:

a < l1 < m1 < r1,

a < lk < mk < rk < lk−1 for k > 1.

Put γk = 1
8 min{d(mk, lk), d(mk, rk)} and let Nk = N(εk, γk) be the constant from

Lemma 3.1 implying that B′n(x, εk) ⊂ B(x, γk) for every x ∈ G and n > Nk. Take
a point yk ∈ {xj}j≤0 from γk-neighborhood of mk with the property that all points
from the backward branch preceeding yk are within εk-distance from α({xj}j≤0),
that is:

dist(xi, α({xj}j≤0)) < εk for i < jk where yk = xjk . (3.5)

Choose nk, n̂k > Nk for which there exists zk, ẑk ∈ {xj}j≤0 such that d(lk, zk) < γk,
d(rk, ẑk) < γk and fnk(zk) = f n̂k(ẑk) = yk and note that increasing Nk when
necessary, we may assume the following:

Nk−1⋃
i=0

B(xjk−i, εk) ⊃ α({xj}j≤0). (3.6)

By the definition of ηk and Nk we have:

ηk ≤ diam fnk(B′nk
(zk, εk)),

ηk ≤ diam f n̂k(B′n̂k
(ẑk, εk)).
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and B′nk
(zk, εk) ⊂ B(zk, γk) and B′n̂k

(ẑk, εk) ⊂ B(ẑk, γk). Moreover, yk is the ele-

ment of both fnk(B′nk
(zk, εk)) and f n̂k(B′n̂k

(ẑk, εk)). Taking it all into consideration
we get the following:

d(yk,mk) + d(mk, lk) + d(lk, zk)+ diamB′nk
(zk, εk)

<
ηk
32

+
ηk
4

+
ηk
32

+
ηk
16

<
ηk
2
,

d(yk,mk) + d(mk, rk) + d(rk, ẑk)+ diamB′n̂k
(ẑk, εk)

<
ηk
32

+
ηk
4

+
ηk
32

+
ηk
16

<
ηk
2
,

(3.7)

which implies that fnk(B′nk
(zk, εk)) covers either (B′nk

(zk, εk)) or (B′n̂k
(ẑk, εk)). In

the first case there exists a point of period nk inside (B′nk
(zk, εk)). In the second

case we may take f n̂k(B′n̂k
(ẑk, εk)) which, by (3.7), covers either B′nk

(zk, εk) or
B′n̂k

(ẑk, εk). Then there exists a point of period nk + n̂k in B′nk
(zk, εk) or a point of

period n̂k inside B′n̂k
(ẑk, εk). Regardless of the case we found at least one periodic

point in εk-neighborhood of the backward branch {xj}j≤0. Some iteration of this
periodic point denoted by pk is contained in BNk

(xjK−Nk
, εk). Denote the period

of pk by dk. The construction results in a set {pk}k>0 of periodic points and an
increasing sequence {dk}k>0 of their periods. It assures that for k > 0 the orbit of
each pk follows some finite segment starting at xjk−Nk

of length Nk of the backward
branch εk-close, while at the same time all points from that segment stay εk-close
to the set α({xj}j≤0) by (3.5). Therefore by (3.5) and (3.6) we get that for every
k > 0 and every q ∈ α({xj}j≤0) there exists some i < Nk such that:

d(f i(pk), xjk−i) + d(xjk−i, q) < 2εk.

Combining it with (3.5) we get that dH(Orb(pk), α({xj}j≤0)) < 2εk for k > 0. By
[27, Theorem 3.1] we know that the set of all ω-limit sets is closed, so there exists
a point y ∈ G such that the sequence of orbits {Orb(pk)}k>0 converges to ω(y)
with respect to Hausdorff metric, which gives α({xj}j≤0) = ω(y) completing the
proof.

4. Relation of α-limit sets of backward branches to maximal ω-limit sets.
We will use the notation from a series of papers by A. Blokh [7, 8, 9]. In Blokh’s
papers, a “graph” (also called a one-dimensional branched manifold) is not assumed
to be connected, and is actually a finite union of graphs with respect to the definition
of a graph we use in the present paper. We reformulate his results for our purposes
where necessary in a similar way as authors in [32]. Therefore we will provide
references from both [7, 8, 9] and [32].

A subgraph K of G is called periodic of period k or k-periodic if K, f(K), ...,
fk−1(K) are pairwise disjoint and fk(K) = K. If, instead of fk(K) = K, it is
known only that fk(K) ⊆ K, the subgraph K is called weakly k-periodic. Then the

set Orb(K) = ∪k−1
i=0 f

i(K) is called a k-cycle of graphs if K is k-periodic and a weak
k-cycle of graphs if K is weakly k-periodic. We will write just cycle of graphs and
weak cycle of graphs when the period k is not relevant.

We start this section with simple facts about cycles of graphs containing an
infinite α-limit set of a backward branch.

Lemma 4.1. Let f : G→ G be a graph map and M ⊆ G be a weak n-cycle of graphs.
Then there is an n-cycle of graphs M̂ ⊆M . If M contains an infinite α-limit set of
a backward branch α({yi}i≤0) then M̂ is non-degenerate and α({yi}i≤0) ⊆ M̂ ⊆M .
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Proof. Let M = Orb(K), where K is an n-periodic subgraph of G. The set

K̂ := ∩k≥0f
kn(K) is non-empty, compact and connected since it is a decreasing

intersection of non-empty compact connected components, and fn(K̂) = K̂. By

Fact 2.1 (1) K̂ is a subgraph of G. If there is an infinite α({yi}i≤0) ⊂ M , because

α({yi}i≤0) is strongly invariant we have α({yi}i≤0) ⊆ Orb(K̂) and since α({yi}i≤0)

is infinite, K̂ is non-degenerate. The set M̂ = Orb(K̂) is an n-cycle of graphs.

Let f : G→ G be a graph map and α({yi}i≤0) ⊆ G be an infinite α-limit set of
a backward branch. Then define

C(α({yi}i≤0)) := {X|X ⊆ G is a cycle of graphs and α({yi}i≤0) ⊆ X}.
Since the graph G is weakly 1-periodic and α({yi}i≤0) ⊆ G, Lemma 4.1 implies
that C(α({yi}i≤0)) is never empty.

Lemma 4.2. Let f : G→ G be a graph map and α({yi}i≤0) ⊆ G be an infinite α-
limit set of a backward branch. Let X,Y ∈ C(α({yi}i≤0)). Then there is Z ⊂ X∩Y
which satisfies Z ∈ C(α({yi}i≤0)) and Z has period not smaller than the maximum
of periods of X and Y .

Proof. Since α({yi}i≤0) is infinite the intersection of α({yi}i≤0) with some con-
nected component of X (resp. Y ) is infinite. In fact, every connected component
of X (resp. Y ) contains infinite subset of α({yi}i≤0) since α({yi}i≤0) is strongly
invariant and the preimage of an infinite set has to be infinite. By Fact 2.1 (2) X∩Y
has finitely many connected components. Let Z1, . . . , Zn denote all the connected
components of X ∩ Y intersecting α({yi}i≤0). For every i ∈ {1, . . . , n}, there is
j ∈ {1, . . . , n} such that f(Zi) ⊆ Zj since f(Zi) is included in some component of
X ∩Y and meets f(α({yi}i≤0)) = α({yi}i≤0). Therefore Zi is weakly periodic with
the period not greater than n. The set α({yi}i≤0) is internally chain transitive by

[20, Lemma 2.1] and thus Z̃ = {Z1, . . . , Zn} is one weak n-cycle of graphs, i.e. it
cannot split into a few disjoint cycles. By Lemma 4.1 there is an n-cycle of graphs
Z ⊂ Z̃ such that α({yi}i≤0) ⊂ Z, and clearly period of Z cannot decrease.

Lemma 4.3. Let f : G → G be a graph map and α({yi}i≤0) ⊆ G be an infinite
α-limit set of a backward branch such that the periods of the cycles in C(α({yi}i≤0))
are bounded. There exists a cycle of graphs X ∈ C(α({yi}i≤0)) such that X ⊆ Y
for every Y ∈ C(α({yi}i≤0)).

Proof. Let j be the maximal period of the cycles in C(α({yi}i≤0)) and by Cj ⊆
C(α({yi}i≤0)) denote the family of j-cycles of graphs containing the set α({yi}i≤0).

We will show that there exists X ∈ Cj , such that, for every X̃ ∈ Cj , X̃ ⊆ X implies

X̃ = X. Let (Yλ)λ∈Γ be a totally ordered family in Cj (that is, all elements in Γ are
comparable and, if λ ≤ µ, then Yλ ⊆ Yµ). Then Y = ∩λ∈ΓYλ is compact and has
j connected components because this is a decreasing intersection of j-cycles, and
f(Y ) = Y . Moreover, α({yi}i≤0) ⊆ Y and Y is non-degenerate since α({yi}i≤0)
is infinite (at least one component of Y is non-degenerate and, by continuity of f ,
every component of Y is non-degenerate). Hence Y ∈ Cj . Thus Zorn’s Lemma
applies, and there exists a minimal (with respect to inclusion) element X ∈ Cj that

is, for every X̃ ∈ Cj , X̃ ⊆ X implies X̃ = X.
Let Y ∈ C(α({yi}i≤0)). Then by Lemma 4.2 there is X∩Y ⊃ Z ∈ C(α({yi}i≤0))

which has period greater than or equal to the period of X . On the other hand,
the period of Z is at most j by the definition. Hence Z ∈ Cj . Then Z = X by the
minimality of X, i.e., X ⊆ Y .
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A generating sequence or a sequence generating a solenoidal set is any nested
sequence of cycles of graphs M1 ⊃M2 ⊃ · · · for f with periods tending to infinity.
The intersection Q =

⋂
nMn is automatically closed and strongly invariant, i.e.

f(Q) = Q, and any closed and strongly invariant subset of Q (including Q itself)
will be called a solenoidal set. Blokh showed that Q contains a perfect minimal set
Qmin = Q∩Perf such that Qmin = ω(x), for all x ∈ Q, and a maximal ω-limit set
(with respect to inclusion) Qmax such that Qmax = Q ∩ ω(f) [7, Theorem 1].

If x is a point of a graph G, then by a side T of the point x we mean a family
of open, non-degenerate arcs {VT (x)} containing no branching points, with one

endpoint at x, such that
⋂
VT (x)∈T VT (x) = {x} and if V 1

T (x) ∈ T, V 2
T (x) ∈ T , then

either V 1
T (x) ⊆ V 2

T (x) or V 2
T (x) ⊆ V 1

T (x). Members of the family T are called T -
sided neighborhoods of x.
Let f : G→ G be a graph map and M ⊂ G be a cycle of graphs. For every x ∈M ,
we define the prolongation set of x with respect to f |M :

PM (x, f) =
⋂
U

∞⋃
i=1

f i(U),

where U is a relative neighborhood of x in M . If it is clear which map is considered,
then we will write PM (x), if M = G then we will write P (x, f) or P (x). Observe
that just as x being recurrent is equivalent to x ∈ ωf (x), x being non-wandering
is equivalent to x ∈ P (x). Obviously, P (x) is an invariant closed set and the map
f |P (x) is surjective whenever x is a non-wandering point. Similarly, we define the
prolongation set of x with respect to a side T :

PTM (x, f) =
⋂
VT (x)

∞⋃
i=1

f i(VT (x)),

where VT (x) is a relative T -sided neighborhood of x in M . We will call an arc
V ⊆ G non-wandering if there is an integer m ≥ 1 such that fm(V ) ∩ V 6= ∅. It is
easy to see that if every VT (x) ∈ T is non-wandering then f |PT (x) is surjective.

Lemma 4.4. Let f : G → G be a graph map and T be a side of a point x ∈ G. If
every set VT (x) ∈ T is non-wandering then PT (x) is one of the following:

• PT (x) is a periodic orbit,
• PT (x) is a cycle of graphs,
• PT (x) is a solenoidal set Q.

Proof. By assumptions, for every VT (x) ∈ T , there is m ≥ 1 such that fm(VT (x))∩
VT (x) 6= ∅. Clearly, the set Jk = ∪∞i=1f

mi+k(VT (x)) is connected, for 0 ≤ k < m.

Thus the set ∪m−1
k=0 Jk = Orb(VT (x)) has finitely many components. Let I ⊃ VT (x)

be a component of Orb(VT (x)) and n be the minimal integer such that fn(VT (x))∩
VT (x) 6= ∅. Then fn(I) ⊆ I and Orb(VT (x)) is a weak cycle of graphs. Let us
choose a family of arcs {Wm}∞m=1 so that Wm ∈ T , Wm ⊃ Wm+1 and λ(Wm)→ 0
as m→∞, where λ(A) denotes the length of the arc A. By the previous reasoning,

Km := Orb(Wm) is a weak cycle of graphs, for every m ≥ 1. Then Km ⊃ Km+1

and PT (x) = ∩m≥1Km. If periods of Km are bounded and the intersection is
non-degenerate then PT (x) is a cycle of graphs, since f |PT (x) is surjective. If

periods of Km are bounded and the intersection is degenerate then PT (x) is a
periodic orbit. If periods of Km are unbounded then we can find a generating
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sequence of cycles of graphs K ′1 ⊃ K ′2 ⊃ · · · , where K ′m := ∩k≥0f
k(Km), such that

PT (x) = ∩m≥1K
′
m = Q is a solenoidal set.

Let M ⊂ G be a cycle of graphs. We define the following sets:

E(M,f) = {x ∈M : PM (x, f) = M}

and

ES(M,f) = {x ∈M : there is a side T such that PTM (x, f) = M}.
Clearly, ES(M,f) ⊆ E(M,f). These sets are closed and invariant. If E(M,f) is
infinite then, by [7, Theorem 2], ES(M,f) = E(M,f). In general, ES(M,f) 6=
E(M,f) and f(E(X, f)) 6= E(X, f). See the following example from [32].

Example 4.1. Let S be a circle and decompose S as the union of “western half-
circle” and “eastern half-circle”. Let f restricted to any of these half-circles be
topologically conjugate to the tent map, the “south pole” of S being a fixed point
of f and the “north pole” being mapped to the “south pole”. Then E(S, f) consists
of the two “poles” but f(E(S, f)) is a singleton containing just the “south pole”
and ES(S, f) is empty set.

Theorem 4.5. [7, 8] Let M ⊂ G be a cycle of graphs such that ES(M,f) is non-
empty. If ES(M,f) is finite then it is a periodic orbit. Otherwise, ES(M,f) =
E(M,f) and it is an infinite maximal ω-limit set.

Let E(M,f) be the infinite maximal ω-limit set from Theorem 4.5. Then we say
that E(M,f) is a basic set if Per(f) ∩M 6= ∅ and we denote it by D(M,f), while
for Per(f) ∩M = ∅ we say that E(M,f) is a circumferential set and we denote it
by S(M,f). We will write just D(M) and S(M) in the case where f is clear from
the context.

Remark 4. The set D(M) (resp. S(M)) is contained in a minimal (with respect
to inclusion) cycle of graphs if the periods of the cycles of graphs from the family
C(D(M)) (resp. C(S(M))) are bounded according to Lemma 4.3. It was shown in
[32, Remark 17] that for both D(M) and S(M) this is the case and the minimal
cycle of graphs containing D(M) (resp. S(M)) is exactly M .

Theorem 4.6. Let f : G → G be a graph map and {yi}i≤0 be a backward branch
starting at a point y ∈ G. Then α({yi}i≤0) is contained in a maximal ω-limit set.

Proof. If α({yi}i≤0) is a periodic orbit, then it is an ω-limit set and therefore
α({yi}i≤0) is contained in a maximal ω-limit set (recall that every ω-limit set of a
graph map is contained in a maximal one by Mai and Shao [26]). If α({yi}i≤0) is not
a periodic orbit, then {yi}i≤0 has to accumulate at every point x ∈ α({yi}i≤0) from
at least one side Tx. For every x ∈ α({yi}i≤0), the prolongation set PTx(x) contains
{yi}i≤0 and since PTx(x) is a closed invariant set, PTx(x) ⊇ α({yi}i≤0)∪ {yi}i≤0 ∪
Orb(y). By Lemma 4.4, PTx(x) is either a cycle of graphs or a solenoidal set Q(x).
In the latter case, Q(x) ⊃ α({yi}i≤0) and, by results from [34], ω(f) ⊃ α({yi}i≤0),
therefore α({yi}i≤0) is contained in the ω-limit set Qmax = Q(x) ∩ ω(f). Recall
that Qmax is a maximal ω-limit set by [7, Theorem 1]. If there is no x ∈ α({yi}i≤0)
such that PTx(x) is a solenoidal set, then PTx(x) is a cycle of graphs for every
x ∈ α({yi}i≤0). The set α({yi}i≤0) is infinite and thus we can define the family
C(α({yi}i≤0)). The next step of the proof depends on whether the periods of cycles
of graphs in C(α({yi}i≤0)) are bounded or unbounded.
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We show that if the periods of cycles of graphs in C(α({yi}i≤0)) are unbounded
then there is a sequence of cycles of graphs {Xi}∞i=1 with strictly increasing periods
generating a solenoidal set Q ⊃ α({yi}i≤0) and therefore α({yi}i≤0) is again con-
tained in a maximal solenoidal set Qmax = Q∩ω(f). By the assumption there exists
a sequence {Yn}∞n=1 of cycles of graphs in C(α({yi}i≤0)) with strictly increasing pe-
riods {ln}∞n=1. We define inductively a sequence {Y ′n}∞n=1 as follows. Let Y ′1 = Y1.
If Y ′n is already defined then, according to Lemma 4.2, there exists a l′n+1-cycle of
graphs Y ′n+1 such that α({yi}i≤0) ⊆ Y ′n+1 ⊆ Y ′n ∩ Yn+1 and l′n+1 ≥ ln+1. Finally
choose a subsequence {ni}∞i=1 such that l′ni+1 > l′ni

for all i ≥ 1 and set Xi := Y ′ni
.

If the periods of cycles of graphs in C(α({yi}i≤0)) are bounded then by Lemma
4.3 there exists an element X ∈ C(α({yi}i≤0)) such that X ⊆ Y for every Y ∈
C(α({yi}i≤0)). Fix x ∈ α({yi}i≤0). We assumed that PTx(x) ∈ C(α({yi}i≤0)) and
thus PTx(x) ⊃ X. We will show that the prolongation set PTx(x) coincides with

PTx

X (x) and in consequence PTx

X (x) = X. Since X ⊇ α({yi}i≤0) and α({yi}i≤0)
is infinite, Int(X) ∩ α({yi}i≤0) is nonempty. It follows that {yi}i≤0 ∩X is infinite
and thus {yi}i≤0 ⊂ X. Therefore X contains the Tx-sided neigborhood of x and

PTx(x) = PTx

X (x) = X. By Theorem 4.5 the set ES(X, f) is finite iff it is a periodic
orbit. But we have just showed that α({yi}i≤0) ⊆ ES(X, f) and α({yi}i≤0) is not
a periodic orbit by the assumption. Therefore ES(X, f) is an infinite set and, by
Theorem 4.5, it is a maximal ω-limit set.

For any of the above-mentioned infinite maximal ω-limit sets we can find a model
with which the ω-limit set is almost conjugated and this almost conjugacy is unique
up to the homeomorphism. For basic sets, the model is a mixing map of a cycle of
graphs as described in Corollary 2.

Definition 4.7. Let f : X → X and g : Y → Y be two continuous maps of compact
metric spaces X,Y and K ⊆ X be a closed invariant set. A continuous surjection
φ : X → Y is an almost conjugacy between f |K and g if φ ◦ f = g ◦ φ and

1. φ(K) = Y,
2. ∀y ∈ Y, φ−1(y) is connected,
3. ∀y ∈ Y, φ−1(y) ∩K = ∂φ−1(y), where ∂A denotes the boundary of A.

If X,Y are graphs or cycles of graphs, the conditions (2) and (3) imply φ−1(y)∩K
is a set of endpoints of a subgraph of X and hence a finite set, for every y ∈ Y .

Lemma 4.8. Let f : X → X and g : Y → Y be two continuous maps of cycles of
graphs X,Y and K ⊆ X be a closed invariant set. If there is an almost conjugacy
φ between f |K and g, then φ is unique up to the homeomorphism.

Proof. Let x be an arbitrary point from X and φ1 and φ2 be almost conjugacies
between f |K and g. Then φ−1

1 (φ1(x)) (respectively, φ−1
2 (φ2(x))) is a closed con-

nected set containing x and, by Fact 2.1 (1), it is a subgraph of X. We will show
that φ−1

1 (φ1(x)) ≡ φ−1
2 (φ2(x)). Assume the contrary. Then φ1 is not a constant

function on Int(φ−1
2 (φ2(x))) or φ2 is not a constant function on Int(φ−1

1 (φ1(x))).
We can assume the first case without loss of generality. Then there are y, z ∈
Int(φ−1

2 (φ2(x))) such that φ1(y) 6= φ1(z). Since φ−1
1 (φ1(y)) does not contain z,

we have ∂φ−1
1 (φ1(y)) ∩ Int(φ−1

2 (φ2(x))) 6= ∅. This is impossible since, by (3) from
Definition 4.7, ∂φ−1

1 (φ1(y)) ⊂ K and Int(φ−1
2 (φ2(x))) ∩K = ∅.

By [30, Corollary 22.3], the quotient spaces φ1(X) and φ2(X) are homeomorphic.
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Theorem 4.9. [7, 32] Let f : G → G be a graph map and X ⊆ G be a cycle of
graphs. Suppose that E(X, f) is infinite. Then there is a transitive map g : Y → Y ,
where Y is a cycle of graphs, and φ : X → Y which almost conjugates f |E(X,f) and
g.

A transitive graph map is either totally transitive or it can be decomposed into
a totally transitive one.

Theorem 4.2. [17] Let f : G→ G be a transitive graph map. Then exactly one of
the following statements holds.

1. f is totally transitive,
2. there is k > 1 and non-degenerate subgraphs G0, . . . , Gk−1 of G such that

(a) G = ∪k−1
i=0 Gi,

(b) Gi ∩Gj = End(Gi) ∩ End(Gj), for i 6= j,
(c) f(Gi) = Gi+1 mod k, for i = 0, . . . , k − 1,
(d) fk|Gi

is totally transitive, for i = 0, . . . , k − 1.

It follows from [18, Corollary 4.3, Theorem 3.2] that every totally transitive map
acting on a graph G where G is not the circle is mixing. Let S be the unit circle. If
f acting on S is totally transitive and sensitive then f is mixing by [18, Theorem
4.2, Theorem 3.2]. If it is totally transitive and not sensitive then f is a transitive
almost equicontinuous map, by Auslander-Yorke Dichotomy [3], and therefore f is
a homeomorphism by [1]. Since a basic set D(X) contains a periodic orbit, the
transitive model map g with which D(X) is almost conjugated contains a periodic
orbit as well. By [23, Proposition 11.1.4, Proposition 11.2.2], a homeomorphism
acting on S possessing periodic points is never transitive. Therefore g is not a
homeomorphism of the circle and, by the reasoning above, if g is totally transitive
then g is mixing. This fact together with Theorem 4.9 and Theorem 4.2 implies the
following corollary.

Corollary 2. Let f : G → G be a graph map and X ⊆ G be a cycle of graphs.
Suppose that D(X) is a basic set. Then there is a transitive map g : Y → Y ,
where Y is a cycle of graphs Y0, . . . Yn−1 with possibly non-empty intersection in the
endpoints, and φ : X → Y which almost conjugates f |D(X) and g. Moreover, gn|Yi
is mixing, for i = 0, . . . , n − 1. The period n of Y is a multiple of the period of X
and Yi ∩ Yj = End(Yi) ∩ End(Yj) 6= ∅ iff i 6= j and i and j are congruent modulo
the period of X.

The next lemma will help us to transfer some constructions from the model space
Y to the basic set D(X) later in Section 6.

Lemma 4.10. Let X, f,D(X), φ, g, Y be as in Corollary 2 and let δ > 0. Then there
is a finite set P (δ) = {p1, . . . , pk} ⊂ Y and γ > 0 such that, for every neigborhood
U(x) of any point x ∈ Y \P (δ) with diam(U(x)) ≤ γ and U(x)∩P (δ) = ∅, we have
diam(φ−1(U(x))) < δ.

Proof. Since diam(X) is finite, we have at most countably many points y ∈ Y
such that φ−1(y) is not a singleton and we can arrange them into a sequence
{pi}i≥1. We also include as first positions in the sequence all branching points
of the graph Y . Since we have also

∑∞
i=1 diam((φ−1(pi)) <∞, there is k ≥ 1 such

that
∑∞
i=k+1 diam((φ−1(pi)) < δ/8 and k is larger than the number of branching

points, so denote P (δ) = {p1, . . . , pk}. Let Z = X \
⋃k
i=1 Intφ−1(pi). Note that Z

is a finite union of graphs, in particular it is compact. Let V1, . . . , Vs be an open
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cover of Z by connected sets of diameter δ/8. Let Ui = φ(Vi) for each i = 1, . . . , s
and let γ = min1≤i≤s diamUi. Fix any x ∈ Y \ P (δ) with diam(U(x)) ≤ γ and
U(x)∩P (δ) = ∅. Take any p, q ∈ φ−1(U(x)) and consider p̂ = φ(p), q̂ = φ(q) ∈ U(x).
Since U(x) is connected and does not contain branching points, there is ẑ ∈ U(x)
and i, j such that p̂, ẑ ∈ Ui and q̂, ẑ ∈ Uj . But then

d(p, q) ≤ diamφ−1(p̂) + diamVi + diamφ−1(ẑ) + diamVj + diamφ−1(q̂)

≤ 5δ

8
< δ.

The proof is complete.

5. Zero entropy graph maps. We will show that the structure of the family of
α-limit sets of backward branches for a graph map greatly depends on the entropy
of the map. In particular, for zero entropy maps the family of α-limit sets of
backward branches coincides with the family of minimal sets. The following well-
known theorem shows that graph maps with zero topological entropy do not possess
basic sets.

Theorem 5.1. [21] Let f be a continuous graph map. Then the following conditions
are equivalent:

1. h(f) > 0,
2. f has a basic set.

Theorem 5.2. Let f be a continuous map acting on a graph G with h(f) = 0.
Then a set L is an α-limit set of a backward branch {xj}j≤0 if and only if L is
a minimal set.

Proof. Since a minimal set L is closed, for any backward branch {xj}j≤0 ⊆ L we
have α({xj}j≤0) ⊆ L. But α({xj}j≤0) is a closed invariant set. By minimality of L,
α({xj}j≤0) = L. By Blokh’s Decomposition Theorem [7, Theorem 4] and Theorem
5.1, the maximal ω-limit sets of the system (G, f) are solenoidal sets, circumferential
sets and periodic orbits which are maximal ω-limit sets with respect to inclusion.
If L is an α-limit set of a backward branch {xj}j≤0 then, by Theorem 4.6, L is
contained in one of these maximal ω-limit sets. If L = α({xj}j≤0) is contained
in a periodic orbit, then L coincides with this periodic orbit. Assume that L is
contained in a solenoidal maximal ω-limit set Qmax and let M1 ⊃M2 ⊃ . . . be the
generating sequence of cycles of graphs with periods tending to infinity such that
Qmax ⊆ ∩nMn. Since L is infinite, {xj}j≤0 ∩Mn 6= ∅, for every n, and, by the
invariance of Mn, {xj}j≤0 ⊂ Mn, for every n. There is a cycle Mk with period
m(k) greater than #Br(G). Denote by I the connected component of Mk such
that Mk ∩B(G) = ∅. The set {xj}j≤0 ∩ I is infinite and forms a backward branch

with respect to fm(k). Therefore I ∩ L is an α-limit set of the backward branch
for the zero entropy interval map fm(k)|I and, by Theorem 12 from [4], I ∩ L is a
perfect set. If z is an isolated point of L, then z has a pre-image ẑ in I ∩ L. Since
f is continuous and ẑ is not isolated in I ∩ L, there is a neighbourhood U of ẑ in
I ∩ L such that U is eventually mapped on z. This implies fm(k)(U) is a singleton
and as a consequence U contains a periodic point. But it is impossible, since there
are no periodic points in a solenoidal set Qmax and it follows that L is a perfect
set. By [7, Theorem 1], Qmax has at most countable set of isolated points and the
set of all limit points of Qmax is contained in the minimal set Qmin = Q ∩ Perf .
Therefore L ⊆ Qmin and, by minimality of Qmin, L = Qmin. Let L be contained in
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a circumferential set S(X, f). The following result can be found in [7, Theorem 3]
or [32] and we briefly recall it here. Let X1, . . . , Xn be the connected components
of X. Then, either, for every i, fk|Xi

is conjugate to an irrational rotation (and in
this case S(Xi, f

k) = Xi), or, for every i, there exists a semi-conjugacy φi between
fk|Xi

and an irrational rotation which is an almost conjugacy on fk|S(Xi,fk). The
latter case is called the Denjoy type of ω-limit set and it is described in detail in
[27]. In both cases, S(X, f) is the unique minimal set of the system (X, f) and all
points in X \ S(X, f) are wandering [27, Corollary 4.4]. By minimality of S(X, f),
L ⊆ S(X, f) implies L = S(X, f).

Remark 5. A minimal set for a graph map f with h(f) = 0 is either a periodic
orbit, a minimal solenoidal set or a circumferential set. Theorem 5.2 shows that
these (and only these) sets can be realized as α-limit sets of backward branches
for f .

Denote the family of all α-limit sets of backward branches starting at a point
x ∈ G by A(x),

A(x) = {L ∈ P(G) : ∃{xj}j≤0 such that x0 = x and L = α({xj}j≤0)}.

Corollary 3. Let f be a continuous map acting on a graph G with h(f) = 0 and
x ∈ G. Then A(x) contains at most one infinite set.

Proof. Let {xj}j≤0, x0 = x, be a backward branch with L := α({xj}j≤0) infi-
nite. By Remark 5, L is either a minimal solenoidal set or a circumferential set.
Assume the first case. Then there is a generating sequence of cycles of graphs
M1 ⊃M2 ⊃ . . . with periods tending to infinity such that L ⊆ Q, whereQ = ∩nMn.
Since L is infinite, the backward branch {xj}j≤0 intersects the cycle of graphs Mn,
for every n. By the invariance of Mn, x ∈ Mn, for every n, and x belongs to the
solenoidal set Q. It is a well known fact that two solenoidal sets Q = ∩nMn and
Q′ = ∩nM ′n generated by different sequences M1 ⊃ M2 ⊃ . . . and M ′1 ⊃ M ′2 ⊃ . . .
are either identical or disjoint. Since x /∈ Q′, for any Q′ 6= Q, and since there is
only one minimal set in Q, L is the unique minimal solenoidal set in A(x).

It is easy to see that, for every circumferential set S(X), where X is the minimal
cycle of graphs containing S(X), we have M ⊇ X or M ∩X = ∅, for every cycle of
graphs M . Clearly, M ∩X ( X is impossible since S(X) is the unique minimal set
of the system (X, f) and, by Remark 4, X is the minimal cycle of graphs containing
S(X). Therefore ∩nMn∩X = ∅ and x /∈ X. Since every backward branch {x′j}j≤0,
x′0 = x, has empty intersection with X, S(X) does not belong to A(x) and L is
the unique infinite set in A(x). Assume that L is a circumferential set S(X). Then
x ∈ X. For any circumferential set S(X ′), we have either X ⊆ X ′ ∧X ′ ⊆ X =⇒
X = X ′ and S(X) = S(X ′), or the intersection X ∩ X ′ is empty and x /∈ X ′.
Since every backward branch {x′j}j≤0, x′0 = x, has empty intersection with X ′, for
every X ′ 6= X, S(X) is the unique circumferential set in A(x). By the reasoning
above, there is no minimal solenoidal set in A(x) and L is the unique infinite set in
A(x).

In addition to one infinite α-limit set, the family A(x) can contain many fi-
nite α-limit sets. Every finite α-limit set is a periodic orbit by Theorem 5.2. In
the following example, we will construct A(x) containing a circumferential set and
uncountably many periodic orbits.
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Figure 1. A map where the family A(x) is uncountable.

Example 5.1. Let G be the union of the circle S and the interval [a, x] as shown
on the Figure 1. The map f : G → G is defined such that f |S is the rotation by
an irrational angle β and the graph of f : [a, c] → [a, d] is sketched on the Figure
1. The construction of the interval map f |[a,b] was previously used in [25, Example
4.8]. The remaining interval [c, x] is mapped by f into [c, x]∪S continuously in such
a way that f(c) = c and f(d) = x. Then A(x) consists of a middle-third Cantor
set of fixed points in the interval [a, b] (drawn by red color on the Figure 1) and the
circumferential set S.

6. Positive entropy graph maps. In this section, we will investigate α-limit
sets of backward branches which are included in a basic set. By Theorem 5.1, every
continuous graph map f with h(f) > 0 possess a basic set D(X). The main goal
is to use the model map g : Y → Y for the basic set D(X) given by Corollary 2 to
obtain a similar result as for mixing graph maps in Theorem 3.5 and 3.6. Recall
that the model map g is almost conjugate to f |D(X) and gn|Yi is mixing on every
component Yi of Y . We introduce an equivalence relation on X as follows:

x ∼ y ⇔ φ(x) = φ(y),

where x, y ∈ X and φ is the almost conjugacy between f |D(X) and g from Corol-
lary 2. The relation ∼ is well defined since φ is unique up to the homeomor-
phism by Lemma 4.8. Denote [x]∼ the equivalence class of a point x ∈ X and
[A]∼ =

⋃
x∈A[x]∼, for any A ⊂ X. Obviously [x]∼ = φ−1(φ(x)) and [A]∼ =

φ−1(φ(A)). By the definition of almost conjugacy, [x]∼ is a subgraph of X such
that End([x]∼) = [x]∼ ∩ D(X) and f([x]∼) ⊆ [f(x)]∼. The last inclusion ensures
that for every backward branch {x̃j}j≤0 ⊂ Y constructed with respect to the model
map g and starting at φ(x) there is a backward branch {zj}j≤0 ⊂ X with respect
to f such that φ(zj) = x̃j , for every j ≥ 0. Unfortunatelly, the oposite inclu-
sion f([x]∼) ⊇ [f(x)]∼ may not hold in general for every x ∈ X. This makes our
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aim to use the model map g difficult since the backward branch {zj}j≤0 may not
start at x but at some other point of [x]∼. Therefore in Theorem 6.2 we restrict
ourselves to the case when f([x]∼) = [f(x)]∼ for every x ∈ X or, equivalently,
f(φ−1(y)) = φ−1(g(y)) for every y ∈ Y . Let I(gn|Yi

) be the set of inacessible
points of the mixing graph map gn : Yi → Yi given by Corollary 2, for every
i = 0, 1, . . . , n − 1. Then we define the set of inaccesible points of X as the union
of preimages of inacessible points of the model mixing map,

I(X) =
⋃

0≤i≤n−1

φ−1(I(gn|Yi)).

Lemma 6.1. Let V ⊂ X be a subgraph such that φ(V ) is a non-degenerate subgraph
of Y . Then

⋃∞
k=0 f

k(V ) ⊇ X \ I(X). Consequently, for every point x ∈ X \ I(X)
there is a preimage z ∈ f−k(x) ∩ V , for some k > 0.

Proof. Notice that if φ(x) ∈ Int(φ(A)), for some x ∈ X and A ⊂ X, then x ∈ A.
Since φ(V ) is a non-degenerate subgraph of Y , there is a component Yi of Y such
that φ(V ) ∩ Yi is non-degenerate. Since gn|Yi

is mixing, we have by Equation 2.1,

∞⋃
k=0

Int(φ(fn·k(V ))) =

∞⋃
k=0

Int(gn·k(φ(V ))) = Yi \ I(gn|Yi).

The image of φ(V ) by g is a non-degenerate subgraph of the component Yi+1 (oth-
erwise gn·k(φ(V )) is a singleton, for every k > 1, which is in a contradiction with
the equation above) and the same holds for every gj(φ(V )), j = 0, 1, . . . , n − 1.
Again by Equation 2.1,

∞⋃
k=0

Int(φ(fk(V ))) =

n−1⋃
j=0

∞⋃
k=0

Int(gn·k+j(φ(V ))) =

n−1⋃
j=0

Yj \ I(gn|Yj
) = φ(X \ I(X)).

Therefore x ∈ X \ I(X) implies φ(x) ∈ Int(φ(fk(V ))), for some k > 0, and we have
x ∈ fk(V ).

Theorem 6.2. Let D(X) be a basic set such that f([x]∼) = [f(x)]∼, for every
x ∈ X. Then, for every x ∈ X \ I(X) and every ω-limit set ωf (y) such that
ωf (y) ⊂ D(X) is infinite, there exists a backward branch {zj}j≤0 such that z0 = x
and ωf (y) ⊆ α({zj}j≤0) ⊆ [ωf (y)]∼ ∩D(X).

Proof. Assume first that f |D(X) is almost conjugate to a mixing graph map g : Y →
Y , i.e. the cycle of graphs Y has only one component and take y ∈ D(X) such
that ωf (y) ⊂ D(X) is infinite. If y /∈ D(X) then we can replace it by a point
from [y]∼ ∩ D(X) since the diameter of sets [f i(y)]∼ tends to 0 as i → ∞ and
ωf (x) = ωf (y), for every x ∈ [y]∼. Note that φ(ωf (y)) = ωg(φ(y)). Image by
φ of any limit point of Orbf (y) is a limit point of Orbg(φ(y)) and conversely, by
compactness, any limit point of Orbg(φ(y)) can be obtained as an image of a limit
point in Orbf (y). Below we use the notation from the proof of Lemma 3.4. We
introduce some modification implied by Remark 2 to the construction in order to
recover the desired backward branch {zj}j≤0. The construction from the proof
of Lemma 3.4 applied for ω-limit set ωg(φ(y)) ⊂ Y and any x in an open set
U ⊂ Y gives us the backward brach {x̃j}j≤0 such that x̃0 = x and αg({x̃j}j≤0) =
ωg(φ(y)). The modification in the proof of Lemma 3.4 is as follows. Fix i ∈ N.
Let P (εi) be the finite set from Lemma 4.10. Since Orb(φ(y)) is infinite (Orb(y)
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is infinite subset of D(X) and φ|D(X) is finite-to-one), we can find N > 0 such
that φ(fn(y)) ∩ P (εi) = ∅, for n > N . In the proof of Lemma 3.4 we constructed
a sequence {xi}i∈N and {x̂i}i∈N such that xi, x̂i ∈ Orb(φ(y)) for every i ∈ N and
associated sequences {ni}i∈N and {n̂i}i∈N of times for which the orbits of points
in the Bowen ball follows εi−close the orbit of xi and x̂i respectively. We may
require that xi, x̂i ∈ Orb(φ(fN+1(y))). Since none of the points xi, x̂i or their
forward iterates belongs to P (εi), assuming that ni, n̂i are sufficiently large, we
may require that set (which can be arbitrarily small) B′ni

(xi, εi) (resp. B′n̂i
(x̂i, εi))

does not contain any points from P (εi). Furthermore, if we fix any si, then by
continuity, if ni, n̂i are sufficiently large (in practice, much larger than si), also
gj(B′ni

(xi, εi)), (resp. gj(B′n̂i
(x̂i, εi))) does not contain any points from P (εi) for

j = 0, . . . , si. By Lemma 4.10, if we fix any qi such that φ(qi) = xi and any q̃i such
that φ(q̃i) ∈ B′ni

(xi, εi) then d(f j(qi), f
j(q̃i)) < εi for j = 0, . . . , si. The same holds

if φ(qi) = x̂i and any q̃i such that φ(q̃i) ∈ B′n̂i
(x̂i, εi). In particular, we can take

qi ∈ Orb(fN+1(y)) obtaining that ∪j≤siB(f j(q̃i), 2εi) ⊃ ωf (y) provided that si
was sufficiently large. This modification ensures that α({q̃j}j≤0) ⊃ ωf (y) whenever
{q̃j}j≤0 is a backward branch such that φ(q̃j) = x̃j , for every j ≤ 0. On the other
hand, φ(ωf (y)) = ωg(φ(y)) = φ(α({q̃j}j≤0)) which gives α({q̃j}j≤0) ⊂ [ω(y)]∼.
Since α({q̃j}j≤0) is a subset of a maximal ω-limit set by Theorem 4.6 and it contains
points from ωf (y) ⊂ D(X), we have also α({q̃j}j≤0) ⊂ D(X).

It remains to show that {q̃j}j≤0 with q̃0 = x exists for every x ∈ X \ I(X). But
the sets φ−1(x̃j) form an inverse sequence by assumption, that is f(φ−1(x̃j−1)) =
φ−1(x̃j), for every j ≤ 0, therefore we can construct {q̃j}j≤0 for every q̃0 ∈ φ−1(x),
where x is an arbitrary point from an open connected set U ⊂ Y , hence for every
q̃0 ∈ φ−1(U). Denote V = φ−1(U). The result follows by Lemma 6.1.

If Y has n components then gn is mixing on each of the periodic components
Yi, i = 0, . . . , n − 1, and we can decompose ωg(φ(y)) into infinite sets ωg(φ(y)) =⋃n−1
i=0 g

i(ωgn(φ(y))). Without loss of generality assume ωgn(φ(y)) ⊂ Y0. The same
construction as above gives us the backward brach {x̃j}j≤0 such that x̃0 = x and
αgn({x̃j}j≤0) = ωgn(φ(y)), for every x in an open set U ⊂ Y0. Set:

zi =

{
x̃j if i = j · n, for every j ∈ N0,

gk(x̃j) if i = j · n+ k, for every 0 < k < n, j ∈ N0.

By continuity of g, αg({zi}i≤0) = ωg(φ(y)). We finish the proof in the same manner
as above.

Theorem 6.2 can be stated in various forms. We describe them in the following
series of facts and remarks.

Fact 6.1. The set αf ({zj}j≤0) \ ωf (y) is at most countable and consists from iso-
lated points of αf ({zj}j≤0). Consequently, if every isolated point x of αf ({zj}j≤0)
has [x]∼ = {x} then ωf (y) = αf ({zj}j≤0.

Proof. Since [x]∼ = {x}, for all but countably many x ∈ D(X), and [x]∼ ∩D(X) =
End([x]∼) is a finite set, for every x ∈ X, we have [ωf (y)]∼∩D(X)\ωf (y) countable.
Moreover, points from [ωf (y)]∼ ∩D(X) \ ωf (y) are isolated in [ωf (y)]∼ ∩D(X). If
{xi} → {x} is a converging sequence such that {xi}i>0 ⊂ [ωf (y)]∼∩D(X), then xi ∈
[yi]∼ where yi ∈ ωf (y), for every i > 0. If the sequence is not eventually constant,
we can assume [yi]∼ are pairwise disjoint subgraphs of X with diameter tending to
0 as i→∞ (we can pass to a subsequence if necessary since there is at most finitely
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many indeces k such that [yk]∼ = [yi]∼, for any i > 0). Since ωf (y) is closed, we have
yi → x and x ∈ ωf (y). Therefore points from ([ωf (y)]∼ ∩D(X)) \ ωf (y) are never
accumulation points of [ωf (y)]∼ ∩D(X). The same holds for αf ({zj}j≤0) \ ωf (y)
since αf ({zj}j≤0) \ ωf (y) ⊆ ([ωf (y)]∼ ∩D(X)) \ ωf (y).

Remark 6. If we omit the condition f([x]∼) = [f(x)]∼, for every x ∈ X, in the
assumption of Theorem 6.2, then we obtain the following weaker result:
Let D(X) be a basic set. Then, for every x ∈ X \ I(X) and every ω-limit set ωf (y)
such that ωf (y) ⊂ D(X) is infinite, there exists a backward branch {zj}j≤0 such
that z0 ∈ [x]∼ and ωf (y) ⊆ αf ({zj}j≤0) ⊆ [ωf (y)]∼ ∩D(X).

Remark 7. The inaccesible points from I(X) have only finite α-limit sets of back-
ward branches being a subset of D(X). Nevertheless, they may have many infinite
α-limit sets of backward branches being a subset of other basic set B(Z) such that
D(X) ∩B(Z) 6= ∅.

Combining together Fact 6.1, Remark 6 and the fact that [x]∼ = {x} for all but
countably many points x from D(X) we get the following corollary.

Corollary 4. Let D(X) be a basic set. Then for all but countably many points
x ∈ D(X) and every ω-limit set ωf (y) such that ωf (y) ⊂ D(X) is infinite, there
exists a backward branch {zj}j≤0 such that z0 = x and αf ({zj}j≤0) = ωf (y) ∪ R
where R is at most countable subset of isolated points of αf ({zj}j≤0). Moreover, if
every isolated point x of αf ({zj}j≤0) has [x]∼ = {x} then R is empty.

We leave the next question open for futher resaerch.

Question 6.2. Let D(X) be a basic set. Is it true that for every x ∈ D(X) \ I(X)
and every ω-limit set ωf (y) such that ωf (y) ⊂ D(X) and Orb(y) is infinite, there
exists a backward branch {zj}j≤0 such that z0 = x and αf ({zj}j≤0) = ωf (y)?

The following example shows that Theorem 6.2 can not be applied when ωf (y)
is finite. In particular, we will show that there is a basic set D(X) and a fixed
point p ∈ D(X) such that there is no backward branch {zj}j≤0 with z0 ∈ D(X)
and {p} ⊂ αf ({zj}j≤0) ⊂ [p]∼ (with the exception of the constant backward branch
zj = p, for every j ≤ 0).

Example 6.3. Let g be a mixing map of the unit interval I and p, q, r be points
from Figure 2. Let D(I, f) be a basic set such that there is an almost conjugacy
φ between f |D(I,f) and g with the following properties: φ−1(x) is not a singleton,

for every x ∈ ∪i≥0f
−i(p), φ−1(p) is an f -invariant interval [p1, p2], where p1, p2 are

fixed points with respect to f , φ−1(q) is an interval [q1, q2] such that f(q1) = p1 and
f(q2) = p2 and φ−1(r) is an interval [r1, r2] such that f(r1) = p2 and f(r2) = p1.
The fixed point p1 can be reached only by a backward branch from the invariant
interval [p1, p2], since every backward branch {zj}j≤0 converging to p1 from the left
side or from both sides has αf ({zj}j≤0) containing q1 or r2.

Theorem 6.3. Let D(X) be a basic set. Then, for every backward branch {xj}j≤0 ⊂
X such that αf ({xj}j≤0) ⊂ D(X) there is a point y ∈ X such that ωf (y) ⊆
[αf ({xj}j≤0)]∼ ∩ D(X). Moreover, if the set {x ∈ αf ({xj}j≤0) : [x]∼ = {x}}
is dense in αf ({xj}j≤0) then αf ({xj}j≤0) ⊆ ωf (y) ⊆ [αf ({xj}j≤0)]∼ ∩D(X).

Proof. If αf ({xj}j≤0) is finite then by Lemma 2.1 it is a periodic orbit of some
point y ∈ X and ωf (y) = αf ({xj})j≤0. Assume that f |D(X) is almost conjugate
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p rq

Figure 2. A map mixing interval map g with a fixed point p
such that every backward branch {zj}j≤0 with {p} = αg({zj}j≤0)
converges to p only from the right side. Every backward branch
{zj}j≤0 converging to p from the left side or from both sides has
αg({zj}j≤0) ∩ {q, r} 6= ∅, where q, r are preimages of p.

to a mixing graph g : Y → Y , i.e. the cycle of graphs Y has only one compo-
nent. Let {xj}j≤0 ⊂ X be such that αf ({xj}j≤0) ⊂ D(X) is infinite. Note that
φ(αf ({xj}j≤0) = αg({φ(xj)}j≤0).

First assume that the set S := {x ∈ αf ({xj}j≤0) : [x]∼ = {x}} is dense in
αf ({xj}j≤0). Let δ > 0 and P (δ), γ be from Lemma 4.10. We can find a finite set
M ⊂ S such that

⋃
x∈M B(x, δ) ⊃ αf ({xj}j≤0) and obviously φ(M) ∩ P (δ) = ∅.

Applying the construction from the proof of Theorem 3.6 to αg({φ(xj)}j≤0) ⊂ Y
we obtain a sequence of periodic orbits {Orb(pk)}k>0 ⊂ Y with increasing periods
{dk}k>0 such that dH(Orb(pk), αg({φ(xj)}j≤0) < 2εk, for every k > 0. Since εk goes
to 0 as k →∞, we can find k > 0 such that 2εk < min{γ,dist(φ(M), P (δ))}. Then
for every x ∈M there is i ∈ {0 . . . , dk − 1} with gi(pk) ∈ B(φ(x), 2εk). By Lemma
4.10, diamφ−1(B(φ(x), 2εk)) < δ, for every x ∈M . Therefore φ−1(B(φ(x), 2εk)) ⊂
B(x, δ), for every x ∈ M . Since pk has period dk, we can find an f -periodic point
qk ∈ φ−1(pk) with period at least dk and obviously f i(qk) ∈ φ−1(gi(pk)), for every
i ∈ {0 . . . , dk − 1}. It follows that for every x ∈M there is i ∈ {0 . . . , dk − 1} with
f i(qk) ∈ B(x, δ). Since we have assumed that

⋃
x∈M B(x, δ) covers αf ({xj}j≤0), we

conclude ∪z∈Orb(qk)B(z, 2δ) ⊃ αf ({xj}j≤0) and αf ({xj}j≤0) ⊂ ωf (y) where ωf (y)
is the Hausdorff limit of the sequence {Orb(qk)}k>0.

On the other hand, we can use the sequence of periodic orbits {Orb(pk)}k>0 ⊂ Y
from the proof of Theorem 3.6 to construct ωf (y) as the Hausdorff limit of the
sequence {Orb(qk)}k>0 with Orb(qk) ⊂ φ−1(Orb(pk)), for every k > 0, regardless
of the existence of the set S. Then φ(ωf (y)) = αg({φ(xj)}j≤0) = φ(αf ({xj}j≤0)
and at the same time ωf (y) ⊆ D(X) which gives ωf (y) ⊆ [αf ({xj}j≤0)]∼ ∩D(X).

If Y has n components Y0, . . . , Yn−1 then gn is mixing on each of the periodic
components Yi and X = ∪n−1

i=0 φ
−1(Yi) where sets φ−1(Yi) are connected, pairwise

disjoint with possibly non-empty intersection in the endpoints and they form a cy-
cle of period n. We can decompose αf ({xj}j≤0) into infinite sets αf ({xj}j≤0) =⋃n−1
i=0 f

i(αfn({xn·j}j≥0). Without loss of generality assume αfn({xn·j}j≥0) ⊂ φ−1

(Y0). First we show that if the set S = {x ∈ αf ({xj}j≤0) : [x]∼ = {x}} is dense in
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αf ({xj}j≤0) then S ∩ φ−1(Y0) is dense in αfn({xn·j}j≥0). Since S ∩ Int(φ−1(Y0))
is dense in the open (with respect to the subspace topology) set αfn({xn·j}j≥0) ∩
Int(φ−1(Y0)) it sufficies to show that αfn({xn·j}j≥0) ∩ End(φ−1(Y0)) is not iso-
lated from S ∩ φ−1(Y0). If z ∈ αfn({xn·j}j≥0) ∩ End(φ−1(Y0)) has a pre-image in
αfn({xn·j}j≥0)∩ Int(φ−1(Y0)) then z is either a limit point of S or belongs to S by
continuity of fn and invariance of S. If z has only pre-images in αfn({xn·j}j≥0) ∩
End(φ−1(Y0)) then z is a periodic point and consequently z being isolated from
S ∩ φ−1(Y0) implies that z is isolated from S. But this is impossible since z ∈
αf ({xj}j≤0).

Now we can apply the above procedure to the α-limit set αfn({xn·j}j≥0) and
obtain ωfn(y) with αfn({xn·j}j≥0) ⊆ ωfn(y) ⊆ [αfn({xn·j}j≥0)]∼ ∩D(X) (in case
S is not dense in αf ({xj}j≤0) we consider only the second inclusion). Obviously
f i(αfn({xn·j}j≥0)) ⊆ f i(ωfn(y)) ⊆ f i([αfn({xn·j}j≥0)]∼)∩D(X), for i = 0, . . . , n−
1, and therefore:

αf ({xj}j≤0) =

n−1⋃
i=0

f i(αfn({xn·j}j≥0)) ⊆ ωf (y) =

n−1⋃
i=0

f i(ωfn(y))

⊆ [αf ({xj}j≤0)]∼ ∩D(X) =

n−1⋃
i=0

f i([αfn({xn·j}j≥0)]∼) ∩D(X). (6.8)

Repeating the arguments from Fact 6.1 we can show that ωf (y) \ αf ({xj}j≤0)
consists of isolated points of ωf (y) and the following corollary holds.

Corollary 5. Let D(X) be a basic set and {xj}j≤0 ⊂ X be a backward branch such
that α({xj}j≤0) ⊂ D(X). If the set {x ∈ αf ({xj}j≤0) : [x]∼ = {x}} is dense in
αf ({xj}j≤0) then there is a point y ∈ X such that ωf (y) = αf ({xj}j≤0) ∪R where
R is at most countable subset of isolated points of ωf (y). Moreover, if every isolated
point x of ωf (y) has [x]∼ = {x} then R is empty.

In the previous Section 5 we have proved that if h(f) = 0 then every αf ({xj}j≤0)
is a minimal set, hence it is an ω-limit set of any point from αf ({xj}j≤0). Clearly,
the same holds for f with positive entropy and αf ({xj}j≤0) being a subset of one
of the three maximal ω-limit sets which are in common to both zero entropy graph
maps and positive entropy graph maps - solenoidal sets, circumferential sets and
periodic orbits. In the light of Theorem 4.6 we can conclude that, for any graph map
f , every α-limit set of a backward branch is an ω-limit set, providing the answer to
the following question turns out positive.

Question 6.4. Let D(X) be a basic set and αf ({xj}j≤0) ⊂ D(X), for a backward
branch {xj}j≤0. Is αf ({xj}j≤0) = ωf (y), for some y ∈ X?
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Abstract
Special α-limit sets (sα-limit sets) combine together all accumulation points of
all backward orbit branches of a point x under a noninvertible map. The most
important question about them is whether or not they are closed. We challenge
the notion of sα-limit sets as backward attractors for interval maps by showing
that they need not be closed. This disproves a conjecture by Kolyada, Misi-
urewicz, and Snoha. We give a criterion in terms of Xiong’s attracting centre
that completely characterizes which interval maps have all sα-limit sets closed,
and we show that our criterion is satisfied in the piecewise monotone case.
We apply Blokh’s models of solenoidal and basic ω-limit sets to solve four
additional conjectures by Kolyada, Misiurewicz, and Snoha relating topologi-
cal properties of sα-limit sets to the dynamics within them. For example, we
show that the isolated points in a sα-limit set of an interval map are always
periodic, the non-degenerate components are the union of one or two transitive
cycles of intervals, and the rest of the sα-limit set is nowhere dense. Moreover,
we show that sα-limit sets in the interval are always both Fσ and Gδ . Finally,
since sα-limit sets need not be closed, we propose a new notion of β-limit sets
to serve as backward attractors. The β-limit set of x is the smallest closed set to

∗The research was supported by RVO, Czech Republic funding for IČ47813059. The first author was supported by
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which all backward orbit branches of x converge, and it coincides with the clo-
sure of the sα-limit set. At the end of the paper we suggest several new problems
about backward attractors.

Keywords: interval map, transitivity, α-limit set, special α-limit set, β-limit set,
backward attractor
Mathematics Subject Classification numbers: primary: 37E05, 37B20
secondary: 26A18.

1. Introduction

Let a discrete dynamical system be defined as an ordered pair (X, f ) where X is a compact
metric space and f is a continuous map acting on X. To understand the dynamical properties
of such a system it is necessary to analyse the behaviour of the trajectories of any point x ∈ X
under the iteration of f . Limit sets of trajectories are a helpful tool for this purpose since they
can be used to understand the long term behaviour of the dynamical system.

The ω-limit sets (ω(x) for short), i.e. the sets of limit points of forward trajectories, were
deeply studied by many authors. For instance, one can ask for a criterion which determines
whether a given closed invariant subset of X is anω-limit set of some point x ∈ X. The question
is very hard in general, however the answer for ω-limit sets of a continuous map acting on
the compact interval was provided by Blokh et al in [5]. A closely related question is that of
characterizing all those dynamical systems which may occur as restrictions of some system to
one of its ω-limit sets. These abstract ω-limit sets were studied by Bowen [6] and Dowker and
Frielander [12]. It was also proved that each ω-limit set of a continuous map of the interval is
contained in a maximal one by Sharkovsky [24].

Backward limit sets were introduced as a dual concept to ω-limit sets in order to capture the
‘source’ of the trajectory of a point. For invertible systems they are defined quite simply: one
just reverses the direction of time and considers the ω-limit sets of the inverse system. These
so-called α-limit sets are very important in the study of flows, where they are used to define
unstable manifolds, homoclinic and heteroclinic trajectories, and the Morse decompositions at
the heart of Conley index theory [7, 14]. But when we study continuous mappings f : X → X
(not necessarily invertible), a point x may have many preimages (or none at all), and we must
clarify what kind of backward limit set we wish to speak of. Several definitions have been
proposed including conical limit sets, α-limit sets, branch α-limit sets, special α-limit sets,
and others [1, 7, 11, 15, 16, 20].

One of the most classic applications of forward limit sets in dynamics is due to Birkhoff.
There are many notions of recurrence in topological dynamics (such as periodicity, non-
wandering behaviour, chain-recurrence, etc), but the term recurrent point has been reserved
for those points x which belong to their own ω-limit sets. Birkhoff showed that these points
can be used to identify the Birkhoff centre (Birkhoff called it the ‘set of central motions’) of a
topological dynamical system (X, f ), which is obtained by restricting f to its non-wandering
set, then restricting that system to its non-wandering set, and so on through transfinite induc-
tion (taking intersections at limit ordinals) until reaching some countable ordinal (the ‘depth’)
at which the sequence stabilizes. Birkhoff’s result is that the centre of the system obtained in
this way is the same as the closure of the set of recurrent points [2].

In light of Birkhoff’s work, one can ask the analogous question, what is the significance
of a point belonging to its own backward limit set? If we consider homeomorphisms than
Birkhoff’s results already apply ( just using the inverse map), so if we wish to get something
new we must consider general continuous mappings f : X → X. In one-dimensional dynamics
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some very good answers to this question have appeared for two kinds of backward limit sets,
namely, the α-limit set and the special α-limit set. Coven and Nitecki showed that a point x
is non-wandering for a continuous interval map f : [0, 1] → [0, 1] if and only if x belongs to
its own α-limit set [9]. But there is a deeper result related to the attracting centre of an inter-
val map f : [0, 1] → [0, 1], defined by Xiong as the set of all points x such that x is in the
ω-limit set of some point x1, which itself is in the ω-limit set of some point x2, and so on for
some infinite sequence {xi}∞i=1 of points in the interval [29]. Xiong showed that the attracting
centre is a subset of the Birkhoff centre (they can coincide) and that if x1, x2 can be found
as above, then x is already in the attracting centre (so the ‘depth’ here is at most 2) [29]. The
connection to backward limit sets was made in 1992 by Hero, who defined special α-limit sets
(sα-limit sets, for short) and showed that a point x belongs to the attracting centre of a contin-
uous interval map if and only if it belongs to its own sα-limit set [15]. Partial generalizations
of this result to graph maps and some dendrite maps have appeared since then [26–28].

We now recall Hero’s definition of a special α-limit set. A backward orbit branch of a
point x is any sequence {xi}∞i=0 such that x0 = x and f (xi+1) = xi for all i. The corresponding
branchα-limit set is defined as the set of all limits of convergent subsequences xi j (analogously
as ω-limit sets are defined from forward trajectories). Then the special α-limit set of a point x,
denoted sα(x), is defined as the union of all branchα-limit sets over all backward orbit branches
of x [15].

Several studies in recent years have focused on branch α-limit sets, and in light of the
definition it is easy to deduce corresponding properties for sα-limit sets, for example:

• Branch α-limit sets are always closed and strictly invariant, and therefore each sα-limit
set is strictly invariant (i.e. f (sα(x)) = sα(x)) and contains the orbit closure of each of its
points [18].

• Branch α-limit sets are always internally chain transitive [16], and therefore sα-limit sets
are internally chain recurrent (but not necessarily chain transitive, see example 9 below).

• All the recurrent points of a system are contained in the union of its sα-limit sets, since
this property holds for the union of the branch α-limit sets [13].

• For interval maps f : [0, 1] → [0, 1], each branch α-limit set is locally expanding and
hence coincides with an ω-limit set of the same map f [1]. It follows that each sα-limit
set of an interval map f is a union of some of its ω-limit sets.

Notably lacking in the list above are purely topological properties. For example, it seems
that Hero did not consider the basic question whether all sα-limit sets are closed. Outside
the realm of one-dimensional dynamics the situation is even more complicated. It has been
shown that sα-limit sets are always analytic, but not necessarily closed or even Borel [17, 18].
Therefore it seems prudent to study more closely the properties of sα-limit sets in one-
dimensional dynamics, and especially in the most important one-dimensional space where
Hero’s work began, the unit interval.

Kolyada, Misiurewicz, and Snoha began this study as a systematic programme in [18]. They
investigated specialα-limit sets of interval maps and proved that for interval maps with a closed
set of periodic points, every special α-limit set has to be closed. This result led to the following
conjecture:

Conjecture 1 [18]. For all continuous maps of the unit interval all special α-limit sets are
closed.

We disprove the conjecture in theorem 45 by showing a counterexample of a continuous
interval map with a special α-limit set which is not closed and give the properties of continuous
interval maps that determine if all special α-limit sets are closed in theorem 41. In corollaries
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42–44 we identify three classes of continuous interval maps for which all sα-limit sets are
closed, namely, piecewise monotone maps, zero entropy maps with a closed set of recurrent
points and maps which are not Li–Yorke chaotic. On the other hand, we show that for all
continuous maps of the unit interval all special α-limit sets are both Fσ and Gδ in theorem 40.
We give further topological properties of special α-limit sets of interval maps. If sα(x) is not
closed, then it is uncountable and nowhere dense by theorem 39. If sα(x) is closed, then it is
the union of a nowhere dense set and finitely many (perhaps zero) closed intervals by theorem
24, and in section 4.2 we prove some amount of transitivity of f on those intervals. Since sα-
limit sets need not be closed, we propose a new notion of β-limit sets to serve as backward
attractors in definition 49. The β-limit set of x is the smallest closed set to which all backward
orbit branches of x converge, and it coincides with the closure of the sα-limit set.

Kolyada et al also made the following conjecture.

Conjecture 2 [18]. The isolated points in a special α-limit set for a continuous interval map
are always periodic.

We verify this conjecture in theorem 21. We also show that a countable special α-limit set
for an interval map is a union of periodic orbits. These results are opposite to the case ofω-limit
sets. The ω-limit sets of a general dynamical system do not posses any periodic isolated points
unless ω(x) is a single periodic orbit [23].

The authors of [18] also investigated the properties of special α-limit sets of transitive
interval maps and stated the following conjecture:

Conjecture 3 [18]. Let f : [0, 1] → [0, 1] be a continuous map and x, y ∈ [0, 1].

• If x �= y and sα(x) = sα(y) = [0, 1], then f is transitive.
• If sα(x) = [0, 1] then either f is transitive or there is c ∈ (0, 1) such that f |[0,c] and f |[c,1]

are transitive.

We show in theorem 26 that f is transitive if there are three distinct points x, y, z ∈ [0, 1]
with sα(x) = sα(y) = sα(z) = [0, 1]. If f has one or two points with special α-limit sets equal
to [0, 1], but not more, then [0, 1] is the union of two transitive cycles of intervals by corollary
27.

It is known that if two ω-limit sets of an interval map contain a common open set, then they
are equal. The last conjecture in [18] suggested that a similar property holds for special α-limit
sets:

Conjecture 4 [18]. Let f be a continuous map f : [0, 1] → [0, 1] and x, y ∈ [0, 1]. If
Int(sα(x) ∩ sα(y)) �= ∅ then sα(x) = sα(y).

We correct this conjecture by showing that at most three distinct special α-limit sets of f
can contain a given nonempty open set in corollary 29.

One additional motivation for studying sα-limit sets is that they provide more informa-
tion about α-limit sets (see section 2 for the definition), since there is always the containment
sa(x) ⊂ α(x). For transitive interval maps this containment is in fact an equality sα(x) = α(x)
for all x ∈ [0, 1] (this can be deduced from [18, proposition 3.10] or theorem 33). The question
then arises whether this is the typical situation, or perhaps typically sα(x) = α(x) at least for
‘most’ points x. We show in section 4.5 that for the generic interval map f : [0, 1] → [0, 1] (in
the topology of uniform convergence) there is a whole interval of points x ∈ [0, 1] for which
α(x, f ) �= sα(x, f ).

To summarize, the key properties of limit sets as they apply to continuous maps of the
interval are as follows:

x is recurrent ⇐⇒ x ∈ ω(x),
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x is nonwandering ⇐⇒ x ∈ α(x),
x is in the attracting centre ⇐⇒ x ∈ sα(x).

We conjecture additionally in this paper (see conjecture 53) that
x is in the Birkhoff centre ⇐⇒ x ∈ sα(x).

The paper is organised as follows. Sections 1 and 2 are introductory. Section 3 investigates
the relation of maximal ω-limit sets to special α-limit sets and provides tools necessary for
proving the main results. It also contains a simple example showing that, unlike ω-limit sets,
the special α-limit sets of an interval map need not be contained in maximal ones. Section 4 is
devoted to the above mentioned results on various properties of special α-limit sets of interval
maps. Section 5 studies properties of specialα-limit sets which are not closed. The paper closes
with open problems and related questions in section 6.

2. Terminology

Let X be a compact metric space and f : X → X a continuous map. A sequence {xn}∞n=0 is
called

• The forward orbit of a point x if f n(x) = xn for all n � 0,
• A preimage sequence of a point x if f n(xn) = x for all n � 0,
• A backward orbit branch of a point x if x0 = x and f (xn+1) = xn for all n � 0.

A point y belongs to the ω-limit set of a point x, denoted by ω(x), if and only if the for-
ward orbit of x has a subsequence {xni}∞i=0 such that xni → y. A point y belongs to the α-limit
set of a point x, denoted by α(x), if and only if some preimage sequence of x has a subse-
quence {xni}∞i=0 such that xni → y. And a point y belongs to the special α-limit set of a point x,
also written as the sα-limit set and denoted sα(x), if and only if some backward orbit branch
of x has a subsequence {xni}∞i=0 such that xni → y. If we wish to emphasize the map, we will
write ω(x, f ), α(x, f ) and sα(x, f ).

To summarize, the ω, α, and sα-limit sets of a point x are defined as follows. The set ω(x)
is the set of all accumulation points of its forward orbit and α(x) (resp. sα(x)) is the set of all
accumulation points of all its preimage sequences (resp. of all its backward orbit branches).

Let T : X → X and F : Y → Y be continuous maps of compact metric spaces. If there is a
surjective map φ : X → Y such that φ ◦ T = F ◦ φ then it is said that φ semiconjugates T to F
and φ is a semiconjugacy.

Let f : X → X be a continuous map. A set A ⊂ [0, 1] is invariant if f (A) ⊂ A. The for-
ward orbit of a point, regarded as a subset of X rather than a sequence, will be denoted by
Orb(x) = { f n(x) : n � 0}. The forward orbit of a set is Orb(A) =

⋃
{ f n(A) : n � 0}. We

call f transitive if for any two nonempty open subsets U, V ⊂ X there is n � 0 such that
f n(U) ∩ V �= ∅. We call f topologically mixing if for any two nonempty open subsets U, V ⊂ X
there is an integer N � 0 such that f n(U) ∩ V �= ∅ for all n � N.

Now let f : [0, 1] → [0, 1] be an interval map. We say that a point x is periodic if f n(x) = x
for some n � 1, x is recurrent if x ∈ ω(x) and x is non-wandering if for every neighbourhoodU
of x there is m � 1 such that f m(U) ∩ U �= ∅. We write Per( f ), Rec( f ), and Ω( f ) for the sets of
periodic points, recurrent points, and non-wandering points of f , respectively. We say that x is
preperiodic if x /∈ Per( f ) but f n(x) ∈ Per( f ) for some n � 1. We write Λ1( f ) =

⋃
x∈[0,1] ω(x)

for the union of all ω-limit sets of f and SA( f ) =
⋃

x∈[0,1] sα(x) for the union of all sα-limit
sets. Following [29] we define the attracting centre of f asΛ2( f ) =

⋃
x∈Λ1( f )ω(x). The Birkhoff

centre of f is the closure of the set of recurrent points Rec( f ) and coincides with Per( f ) [8].
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If the map f is clear from the context, we may drop it from the notation. The relation of these
sets is given by the following summary theorem from the works of Hero and Xiong [15, 29].

Theorem 5 [15, 29] . For any continuous interval map f : [0, 1] → [0, 1], we have

Per ⊂ Rec ⊂ Λ2 = SA ⊂ Rec ⊂ Λ1 ⊂ Ω.

If K ⊂ [0, 1] is a non-degenerate closed interval such that the sets K, f(K), . . . , f k−1(K) are
pairwise disjoint and f k(K) = K, then we call the set M = Orb(K) a cycle of intervals and the
period of this cycle is k. We may also call K an n-periodic interval. If f |M is transitive then we
call M a transitive cycle for f.

3. Maximal ω-limit sets and their relation to special α-limit sets

An important property of theω-limit sets of an interval map f is that eachω-limit set is contained
in a maximal one. These maximal ω-limit sets come in three types: periodic orbits, basic sets,
and solenoidal ω-limit sets.

A solenoidal ω-limit set is a maximal ω-limit set which contains no periodic points.
Any solenoidal ω-limit set is uncountable and is contained in a nested sequence
Orb(I0) ⊃ Orb(I1) ⊃ . . . of cycles of intervals with periods tending to infinity, also known as a
generating sequence [4, assertion 4.2]. Here is the theorem relating sα-limit sets to solenoidal
ω-limit sets; the proof is given in section 3.1.

Theorem 6 (Solenoidal sets). Let Orb(I0) ⊃ Orb(I1) ⊃ . . . be a nested sequence of
cycles of intervals for the continuous interval map f with periods tending to infinity. Let
Q =

⋂
Orb(In) and S = Q ∩ Rec(f).

(a) If α(y) ∩ Q �= ∅, then y ∈ Q.
(b) If y ∈ Q, then sα(y) ⊃ S and sα(y) ∩ Q = S.

A basic set is an ω-limit set which is infinite, maximal among ω-limit sets, and contains
some periodic point. If B is a basic set then with respect to inclusion there is a minimal cycle
of intervals M which contains it, and B may be characterized as the set of those points x ∈ M
such that Orb(U) = M for every relative neighbourhood U of x in M, see [4]. Conversely, if M
is a cycle of intervals for f , then we will write

B(M, f ) = {x ∈ M : for any relative neighbourhood U of x in M we have Orb(U) = M},

and if this set is infinite, then it is a basic set [4]. Here is the theorem relating sα-limit sets to
basic sets; the proof is given in section 3.2.

Theorem 7 (Basic sets). Let f be a continuous interval map and fix y ∈ [0, 1].

(a) If α(y) contains an infinite subset of a basic set B = B(M, f ), then y ∈ M and sα(y) ⊃ B.
(b) If sα(y) contains a preperiodic point x, then there is a basic set B = B(M, f ) such that

x ∈ B ⊂ sα(y).

The sharpness of the second claim of theorem 7 is illustrated in figure 1. The first map has
two basic sets B([0, 1], f ) and B(M, f ), where M is the invariant middle interval. It is easy to see
that set B([0, 1], f ) is a Cantor set and it is contained in sα(1). But sα(1) does not contain the
basic set B(M, f ) although it includes the left endpoint of M, which is preperiodic. The second
map shows that we cannot weaken the assumption to α(y). The α-limit set of 1 includes the
preperiodic endpoint of M but sα(1) does not contain any basic set.
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Figure 1. A map where the sα-limit set of 1 (respectively, the α-limit set of 1) contains
a preperiodic point from a basic set B(M, f ), but sα(1) ⊃/B(M, f ).

Figure 2. A map with an increasing nested sequence of sα-limit sets not contained in
any maximal one.

Periodic orbits may also be related to sα-limit sets. The following result is one of the main
theorems in [18]. Moreover, it holds for all periodic orbits of an interval map, even those which
are not maximal ω-limit sets.

Theorem 8 [18, theorem 3.2]. Let P be a periodic orbit for the continuous interval map f.
If α(y) ∩ P �= ∅, then sα(y) ⊃ P.

One additional observation is appropriate in this section. Unlike ω-limit sets, the sα-limit
sets of an interval map need not be contained in maximal ones.

Example 9. Fix two sequences of real numbers 1 = a1 > b1 > a2 > b2 > . . . both decreas-
ing to 0 and consider the ‘connect-the-dots’ map f : [0, 1] → [0, 1] where

f (0) = 0, f (ai) = ai, f (bi) = ai+2, (i = 1, 2, . . .)

and f is linear on all the intervals [ai+1, bi], [bi, ai]. The graph of such a function f is shown
in figure 2. The sα-limit sets of this map are

sα(x) = {a1, . . . , an} for x ∈ (an+1, an] and sα(0) = {0}.

In particular, we get a strictly increasing sequence of sα-limit sets and no sα-limit set
containing them all.
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3.1. Solenoidal sets

This section is devoted to the proof of theorem 6.
We start with a broader definition of solenoidal sets, taken from [4]. A generating sequence

is any nested sequence of cycles of intervals Orb(I0) ⊃ Orb(I1) ⊃ . . . for f with periods tend-
ing to infinity. The intersection Q =

⋂
n Orb(In) is automatically closed and strongly invariant,

i.e. f (Q) = Q, and any closed and strongly invariant subset S of Q (including Q itself ) will be
called a solenoidal set. Two examples described in [4] which we will need later are

(a) The set of all ω-limit points in Q, denoted Sω = Sω(Q) = Q ∩ Λ1( f ), and
(b) The set of all recurrent points in Q, denoted SRec = SRec(Q) = Q ∩ Rec( f ).

Blokh showed that Q contains a perfect set S such that S = ω(x) for all x ∈ Q
[4, theorem 3.1]. Clearly S = SRec. We refer to SRec as a minimal solenoidal set both because
it is the smallest solenoidal set in Q with respect to inclusion, and because the mapping f |SRec

is minimal, i.e. all forward orbits are dense.
If ω(x) is a maximal ω-limit set for f and contains no periodic points (what Sharkovskii

calls a maximal ω-limit set of genus 1), then it is in fact a solenoidal set [4, assertion 4.2]. Thus
it has a generating sequence Orb(I0) ⊃ Orb(I1) ⊃ . . . of cycles of intervals and belongs to their
intersection Q. If Q′ =

⋂
nOrb(I′n) is formed from another generating sequence for f , then it

is well known (and an easy exercise) that Q and Q′ are either identical or disjoint. This means
that given any solenoidal set S, there is a unique maximal solenoidal set Q which contains it
(so Q is uniquely determined, even if the generating sequence is not).

One can use a translation in a zero-dimensional infinite group as a model for the map f
acting on a solenoidal set Q =

⋂
Orb(I j). Let D = {m j}∞j=0 where m j is the period of Orb(I j)

and let H(D) = {(r0, r1, . . .) : r j+1 = r j(mod mj), for all j � 0} where r j is an element of the
group of residues modulo m j, for every j. Denote by τ the translation in H(D) by the element
(1, 1, . . .).

Theorem 10 [4, theorem 3.1]. Let {I j}∞j=0 be generating sequence with periods
D = {m j}∞j=0 for a solenoidal set Q = ∩j�0OrbIj. Then there exists a semiconjugacy φ : Q →
H(D) between f |Q and τ with the following properties:

(a) There exists a unique set SRec = Q ∩ Rec( f ) such that ω(x) = SRec for every x ∈ Q and
f |SRec is minimal

(b) For every r ∈ H(D), the set J = φ−1(r) is a connected component of Q and it is either a
singleton J = {a}, a ∈ SRec, or an interval J = [a, b], ∅ �= SRec ∩ J ⊂ Sω ∩ J ⊂ {a, b}.

One lemma which we will need several times throughout the paper is the following

Lemma 11. If A is invariant for f and α(x) ∩ Int(A) �= ∅, then x ∈ A. In particular, if sα(x) ∩
Int(A) �= ∅, then x ∈ A.

Proof. Choose a ∈ α(x) ∩ Int(A) and choose a neighbourhood U of a contained in A. There
is n ∈ N and a point x−n ∈ U such that f n(x−n) = x. Since U ⊂ A and A is invariant, x must
belong to A. We get the same conclusion when sα(x) ∩ Int(A) �= ∅, because sα(x) ⊂ α(x). �

Now we are ready to give the proof of theorem 6.

Proof of theorem 6.

(a) Fix z ∈ Q ∩ α(y) and let S = SRec = Q ∩ Rec( f ) be the minimal solenoidal set in Q. Then
by theorem 10 property (a) S = ω(z) and since α(y) is a closed invariant set it must contain
S. In particular, α(y) contains infinitely many points from each cycle of intervals Orb(In),
and so by lemma 11 y ∈ Orb(In), for all n. Therefore y ∈ Q.
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(b) Fix y ∈ Q. Since f (Q) = Q we can choose a backward orbit branch for y which never
leaves Q. Therefore it has an accumulation point in Q, and so sα(y) ∩ Q �= ∅. Let
w ∈ sα(y) ∩ Q. By theorem 10 property (a), ω(w) is the minimal solenoidal set S. Accord-
ing to [15, lemma 1], if sα(y) contains a point, then it contains the whole ω-limit set of
that point as well. Therefore sα(y) ⊃ S and sα(y) ∩ Q ⊃ S. To finish the proof it is enough
to show the opposite inclusion sα(y) ∩ Q ⊂ S.

We will assume otherwise. Suppose there is a point z ∈ sα(y) ∩ (Q\S). Let φ(z) = r,
where φ is defined in theorem 10. Since z ∈ sα(y) ⊂ SA( f ) ⊂ Λ1( f ), we can assume
z ∈ Λ1( f ) ∩ (Q\S) = Sω\S. By theorem 10 property (b), φ−1(r) has to be an interval and z
has to be one of its endpoints, say, the right endpoint, and φ−1(r) = [x, z], x ∈ S. Since φ is
a semiconjugacy we have f i([x, z]) ⊂ φ−1(τ i(r)) for all i � 0. But the intervals φ−1(τ i(r)) are
pairwise disjoint. This shows that [x, z] is a wandering interval.

Claim. z ∈ Int(Orb(I j)), for every j � 0.

We will assume otherwise. Let K be the connected component of Orb(IN), for some N � 0,
where z is an endpoint of K. Let v be a point such that z ∈ ω(v). By theorem 10 property (a),
S = ω(z) ⊂ ω(v), we have ω(v) ∩ Orb(IN) infinite and necessarily Orb(v) ∩ Int(Orb(IN)) �= ∅.
This implies f k(v) ∈ Orb(IN) for all sufficiently large k. It follows that Orb(v) accumulates on
z from the interior of K and we can find k > 0 such that f k(v) ∈ (x, z). But [x, z] is a wandering
interval, so Orb(v) cannot accumulate on z which contradicts z ∈ ω(v).

Let {yn}∞n=0 be a backward orbit branch of y with a subsequence {yni}∞i=0 such that
limi→∞ yni = z. Since z ∈ Int(OrbI j) it follows from lemma 11 that yn ∈ Orb(I j) for all j, n � 0.
Therefore {yn}∞n=0 ⊂ Q. For every n � 1, denote φ(yn) = rn. Then by theorem 10 property
(b) φ−1(rn) are connected, pairwise disjoint sets, each containing an element sn ∈ S. Since
yn ∈ φ−1(rn), we have limi→∞ sni = z. But S is a closed set and z /∈ S, which is impossible.
Therefore sα(y) ∩ (Q\S) = ∅ and sα(y) ∩ Q ⊂ S. �

Corollary 12. A sα-limit set contains at most one solenoidal set.

Proof. Let Orb(I0) ⊃ Orb(I1) ⊃ . . . and Orb(I′0) ⊃ Orb(I′1) ⊃ . . . be nested sequences of
cycles of intervals generating two solenoidal sets Q =

⋂
Orb(In) and Q′ =

⋂
nOrb(I′n). If

sα(y) ∩ Q �= ∅ and sα(y) ∩ Q′ �= ∅ then, by theorem 6, y ∈ Q ∩ Q′. Since two solenoidal sets Q
and Q′ are either identical or disjoint we have Q = Q′. Then the only solenoidal set contained
in sα(y) is S = Q ∩ Rec( f ). �

3.2. Basic sets

This section is devoted to the proof of theorem 7.
Let f be a continuous map acting on an interval I. We say that an endpoint y of I is accessible

if there is x ∈ Int(I) and n ∈ N such that f n(x) = y. If y is not accessible, then it is called
non-accessible. The following proposition is derived from [21, proposition 2.8].

Proposition 13 [21] . Let f be a topologically mixing continuous map acting on an interval
I. Let x ∈ I and ε > 0 be such that [x − ε, x + ε] ⊂ I and any endpoints of I in [x − ε, x + ε]
are accessible. Then for every non degenerate interval U ⊂ I, there exists an integer N such
that f n(U) ⊃ [x − ε, x + ε], for all n � N.

An m-periodic transitive map of a cycle of intervals is a transitive map g : M → M, where
M ⊂ R is a finite union of pairwise disjoint compact intervals I, g(I), . . . , gm−1(I), and gm(I) = I.

7423



Nonlinearity 34 (2021) 7415 J Hantáková and S Roth

We write End(M) for the endpoints of the connected components of M and refer to these points
simply as endpoints of M. The set of exceptional points of g is defined

E :=M\
⋂
U

∞⋃
n=1

gn(U),

where U ranges over all relatively open nonempty subsets of M. It is known that E is finite; it
can contain some endpoints and at most one non-endpoint from each component of M. If gm|I
is topologically mixing, then E =

⋃m−1
i=0 Ei, where Ei is the set of non-accessible endpoints of

gm|gi(I) by proposition 13. If gm|I is transitive but not mixing, then by [21, proposition 2.16]
there is an m-periodic orbit c0, c1, . . . , cm−1 of points such that ci ∈ Int(gi(I)), g2m|[ai,ci] and
g2m|[ci ,bi] are topologically mixing interval maps, where gi(I) = [ai, bi], for i = 0, . . . , m − 1.
Then E =

⋃m−1
i=0 Ei, where Ei is the union of the sets of non-accessible endpoints of g2m|[ai,ci]

and g2m|[ci ,bi].
By [21, lemma 2.32], every point in E is periodic and therefore g(E) = E. By the definition

of non-accessible points, g−1(E) ∩ M = E.
From [18, proposition 3.10] it follows that sα(x) ⊇ M for all x ∈ M\E. On the other hand,

if x ∈ E, then its sα-limit set is disjoint from the interior of M\E by lemma 11. Therefore we
have another characterization of E using sα-limit sets,

E = {x ∈ M : sα(x) � M}. (1)

We use m-periodic transitive maps of cycles of intervals as models for maps acting on basic
sets. We recall again Blokh’s definition. If M is a cycle of intervals for the map f : [0, 1] → [0, 1],
then we set

B(M, f ) = {x ∈ M : for any relative neighbourhood U of x in M we have Orb(U) = M},

and if B(M, f) is infinite, then it is a basic set for f.

Theorem 14 [4, theorem 4.1]. Let I be an m-periodic interval for f, M = Orb(I) and
B = B(M, f ) be a basic set. Then there is a transitive m-periodic map g : M′ → M′ and a
monotone map φ : M → M′ such that φ semiconjugates f|M to g and φ(B) = M′. Moreover, for
any x ∈ M′, 1 � #{φ−1(x) ∩ B} � 2 and Int(φ−1(x)) ∩ B = ∅, and so φ−1(x) ∩ B ⊂ ∂φ−1(x).
Furthermore, B is a perfect set.

Lemma 15. Let B be a basic set, M the smallest cycle of intervals for f which contains B,
and φ : (M, f) → (M′, g) the semiconjugacy to the m-periodic transitive map g given by theorem
14. Let E be the set of exceptional points of the map g acting on M′. Suppose y ∈ M and
φ(y) /∈ E ∪ End(M′). Then sα(y) ⊃ B.

Proof. Let x ∈ B. There is ε > 0 such that φ|(x,x+ε) is not constant and φ((x, x + ε)) ∩
End(M′) = ∅ or φ|(x−ε,x) is not constant and φ((x − ε, x)) ∩ End(M′) = ∅. Otherwise x has a
neighbourhood N such that φ|N is constant which is in a contradiction with x ∈ B by theorem
14. We can assume φ|(x,x+ε) is not constant and φ((x, x + ε)) ∩ End(M′) = ∅, and denote
V = (x, x + ε). Then U = φ(V) is a non-degenerate interval in M′. Since φ(y) /∈ E ∪ End(M′),
there is δ > 0 such that (φ(y) − δ,φ(y) + δ) ⊂ M′ and (φ(y) − δ,φ(y) + δ) ∩ E = ∅. The set E
equals the union of non-accessible endpoints of a topologically mixing map gm (resp. g2m) act-
ing on the components of M′, therefore we can apply the proposition 13 to the map gm (resp.
g2m) acting on the component I ⊂ M′ such that (φ(y) − δ,φ(y) + δ) ⊂ I. There is an N > 0
such that gN(U) ⊃ (φ(y) − δ,φ(y) + δ). But φ( f N(V)) = gN(U), so φ(y) is in φ( f N(V)). Since
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φ is monotone this means either y ∈ f N(V) or φ(y) is an endpoint of the interval φ( f N(V)).
But we have seen that it is not an endpoint. Therefore y ∈ f N(V) and we can find y1 ∈ V
and N1 = N such that f N1 (y1) = y. Notice that φ(y1) /∈ E since gN1(φ(y1)) = φ(y) /∈ E and
g−N1(E) ∩ M′ = E; and φ(y1) /∈ End(M′) since y1 ∈ V and φ(V) ∩ End(M′) = ∅. By the same
procedure, we can find y2 ∈ (x, x + ε/2) ∩ M and N2 ∈ N such that f N2 (y2) = y1. By repeat-
ing this process we construct a sequence {yn}∞n=1 converging to x which is a subsequence of a
backward orbit branch of y. Since x ∈ B was arbitrary, this shows B ⊂ sα(y). �

Corollary 16. For every basic set B, there is y ∈ B such that sα(y) ⊃ B.

Proof. Let M,φ, g, M′, E be as in the previous proof. Since the map φ|B is at most 2-to-1 and
E is a finite set, there are uncountably many points y ∈ B such that φ(y) /∈ E ∪ End(M′). The
result follows by lemma 15. �

Before we proceed to the proof of theorem 7 we need to recall the definition of a prolon-
gation set and its relation to basic sets. Let M be a cycle of intervals. Let the side T be either
the left side T = L or the right side T = R of a point x ∈ M and WT(x) be a one-sided neigh-
bourhood of x from the T-hand side, i.e. WT (x) contains for some ε > 0 the interval (x, x + ε)
(resp. (x − ε, x)) when T = R (resp. T = L). We do not consider the side T = R (resp. T = L)
when x is a right endpoint (resp. left endpoint) of a component of M. Now let

PT
M(x) =

⋂
WT (x)

⋂
n�0

⋃
i�n

f i(WT(x) ∩ M),

where the intersection is taken over the family of all one-sided neighbourhoods WT (x) of x.
We will write PT (x) instead of PT

[0,1](x). The following auxiliary lemmas 17–19 are taken from
[4].

Lemma 17 [4, lemma 2.2] . Let x ∈ [0, 1]. Then PT(x) is a closed invariant set and only one
of the following possibilities holds:

• There exists a wandering interval WT (x) with pairwise disjoint forward images and
PT(x) = ω(x).

• There exists a periodic point p such that PT (x) = Orb(p).
• There exists a solenoidal set Q such that PT(x) = Q.
• There exists a cycle of intervals M such that PT(x) = M.

There is a close relation between prolongation sets and basic sets. If M is a cycle of intervals
for f then we define

E(M, f ) = {x ∈ M : there is a side T of x such that PT
M(x) = M},

and, for x ∈ E(M, f ), we call this side T a source side of x. By [4, theorem 4.1] if there
exists the basic set B = B(M, f ) then E(M, f ) = B. In particular, if E(M, f ) is infinite then
E(M, f ) = B(M, f ) (see the discussion on page 48 in [4]).

Lemma 18 [4, lemma 4.5] . Let M be a cycle of intervals. If E(M, f ) is a finite set then
E(M, f ) = Orb(p) where p is a periodic point. If E(M, f ) is infinite then E(M, f ) = B(M, f ).

The next property of basic sets follows from step B7 on page 47 in [4]:

Lemma 19 [4] . Let B(M, f) be a basic set. Then for any x ∈ B(M, f) with a source side T
and any one-sided neighbourhood from the T-hand side WT(x), we have WT(x) ∩ B(M, f) �= ∅.
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Proof of theorem 7.

(a) Let φ and g be the maps given in theorem 14 and E be the set of exceptional points
of the map g acting on M′. Since φ|B is an at most 2-to-1 map, φ(α(y) ∩ B) is an infi-
nite subset of M′. But E ∪ End(M′) is a finite set, so we can find a point z ∈ α(y) ∩ B
such that φ(z) /∈ E ∪ End(M′) and therefore z /∈ φ−1(E ∪ End(M′)). The set φ−1(E ∪
End(M′)) is a union of finitely many, possibly degenerate, closed intervals in M. Since
z ∈ (α(y) ∩ B)\φ−1(E ∪ End(M′)), there is a pre-image y′ ∈ M of y, y = f k(y′), for some
k � 0, and simultaneously y′ /∈ φ−1(E ∪ End(M′)), which implies φ(y′) /∈ E ∪ End(M′).
Then y ∈ M by the invariance of M. By lemma 15 applied to y′, sα(y′) ⊃ B. But the
containment sα(y) ⊃ sα(y′) is clear from the definition of sα-limit sets, and so sα(y) ⊃ B.

(b) Let {yi}∞i=0 be the backward orbit branch of y accumulating on x. Since x is not a peri-
odic point, it is not contained in {yi}∞i=0 more then one time and we can assume that
{yi}∞i=0 accumulates on x from one side T . Consider the prolongation set PT(x). Clearly
{yi}∞i=0 ⊂ PT(x). Since PT(x) is closed and invariant, x and Orb(x) belong to PT(x), we see
that PT(x) contains both periodic and non-periodic points. By lemma 17, there is only one
possibility PT (x) = M, where M is a cycle of intervals. The other possibilities are ruled
out—Orb(p), where p is a periodic point and ω(x), where x is a preperiodic point, can
not contain a non-periodic point; and a solenoidal set Q can not contain a periodic point.
Since PT (x) = M contains {yi}∞i=0 it must contain a one-sided neighbourhood of x from
the T-hand side and therefore PT

M(x) = PT(x) = M. Let E(M, f ) = {z ∈ M : there is a side
S of z such that PS

M(z) = M }. Since x ∈ E(M, f ) and x is not periodic, by lemma 18,
E(M, f ) = B(M, f ) and T is a source side of x in B(M, f ). Let φ and g be the maps given
in theorem 14 and E be the set of exceptional points of the map g acting on M′. By lemma
19, B(M, f ) accumulates on x from the T-hand side and thus the map φ is not constant
on some one-sided neighbourhood of x from the T-hand side WT(x) (otherwise we can
find a point y ∈ B(M, f ) ∩ WT(x) such that y ∈ Int(φ−1(φ(x))) which is in the contradic-
tion with the properties of φ from theorem 14). Since {yi}∞i=0 accumulates on x from the
T-hand side and φ is not constant on WT (x), we can find j > 0 such that y j ∈ WT(x) and
φ(y j) /∈ E ∪ End(M′). Then sα(y j) ⊃ B(M, f ) by lemma 15, and sα(y) ⊃ sα(y j) since y j

is a preimage of y. We conclude that sα(y) ⊃ B(M, f ). �

We record here one corollary which we will need several times in the rest of the paper.

Corollary 20. If sα(x) contains infinitely many points from a transitive cycle M, then x ∈ M
and sα(x) ⊇ M.

Proof. In this case M is itself a basic set, so we may apply theorem 7. �

4. General properties of special α-limit sets for interval maps

4.1. Isolated points are periodic

Unless an ω-limit set is a single periodic orbit, its isolated points are never periodic [23].
The opposite phenomenon holds for the sα-limit sets of an interval map.

Theorem 21. Isolated points in a sα-limit set for a continuous interval map are periodic.

Proof. Let z ∈ sα(y) such that z is neither periodic nor preperiodic. Then z is a point of
an infinite maximal ω-limit set, i.e. a basic set or a solenoidal set. This follows from Blokh’s
decomposition theorem, thatΛ1( f ) is the union of periodic orbits, solenoidal sets and basic sets,
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and from theorem 5, z ∈ SA( f ) ⊂ Λ1( f ). According to [15, lemma 1], when sα(y) contains a
point z, it contains its orbit Orb(z) as well. If z is in a basic set B then, Orb(z) ⊂ B ∩ sα(y)
is infinite and by theorem 7 (a), B ⊂ sα(y). Then the point z is not isolated in sα(y) since B
is a perfect set. If z is in a solenoidal set Q =

⋂
n Orb(In) then, by theorem 6, sα(y) ∩ Q = S.

Again, the point z is not isolated in sα(y) since S is a perfect set.
Let z ∈ sα(y) such that z is a preperiodic point. By theorem 7 (b), there is a basic set B such

that z ∈ B ⊂ sα(y). Then the point z is not isolated in sα(y) since B is a perfect set. �

In the previous proof, we have shown that if a point z ∈ sα(y) is not periodic then sα(y)
contains either a minimal solenoidal set S or a basic set B. In both cases, sα(y) has to be
uncountable. Therefore we have the following corollary.

Corollary 22. A countable sα-limit set for a continuous interval map is a union of periodic
orbits.

4.2. The interior and the nowhere dense part of a special α-limit set

A well-known result by Sharkovsky says that each ω-limit set of an interval map is either a
transitive cycle of intervals or a closed nowhere dense set [24]. What can we say in this regard
for sα-limit sets of interval maps? When Int(sα(x)) is nonempty, Kolyada, Misiurewicz, and
Snoha showed that M = Intsα(x) is a cycle of intervals containing x, see [18, proposition 3.6].
We strengthen this result by showing that the non-degenerate components of sα(x) are in fact
closed, and the rest of sα(x) is nowhere dense. We also get some amount of transitivity.

The following lemma is simple and we leave the proof to the reader.

Lemma 23. Let M be a cycle of intervals for f of period k and let K be any of its components.
Then

(a) f |M is transitive if and only if f k|K is transitive.
(b) If L ⊂ K is a cycle of intervals for f k, then

⋃
i<k f i(L) is a cycle of intervals for f .

(c) For x ∈ K and y ∈ K\End(K), we have y ∈ sα(x, f ) if and only if y ∈ sα(x, f k|K).

Theorem 24. A sα-limit set for a continuous interval map f is either nowhere dense, or it
is the union of a cycle of intervals M for f and a nowhere dense set. Moreover, M is either a
transitive cycle, or it is the union of two transitive cycles.

Proof. Consider a limit set sα(x) for an interval map f : [0, 1] → [0, 1]. Let M be the union
of the non-degenerate components of sα(x). If M = ∅ then sα(x) is nowhere dense. Otherwise
M must be a finite or countable union of closed intervals, and since M contains the interior of
the closure of the sα-limit set we know that sα(x)\M is nowhere dense.

Let K be any component of M. By theorem 5 we have K ⊂ Per( f ), and therefore periodic
points are dense in K. Let n � 1 be minimal such that f n(K) ∩ K �= ∅. Since f n(K) is connected
and K is a component of the invariant set sα(x), we know that f n(K) ⊆ K. Since periodic
points are dense in K we must have f n(K) = K. Therefore Orb(K) is a cycle of intervals, and
by lemma 11 we get x ∈ Orb(K). Since this holds for every component K of M, we must have
Orb(K) = M, i.e. M is a cycle of intervals and x ∈ M.

From now on we take K to be the component of M containing x. Put g = f n|K . Then
g : K → K is an interval map with a dense set of periodic points. There is a structure theorem

7427



Nonlinearity 34 (2021) 7415 J Hantáková and S Roth

for interval maps with a dense set of periodic points [21, theorem 3.9]3 which tells us that K is
a union of the transitive cycles and periodic orbits of g,

K =
(⋃

{L : L is a transitive cycle for g}
)
∪ Per(g)

By lemma 23, sα(x, g) contains a dense subset of K. By corollary 20 each transitive cycle
L ⊆ K for g must contain x. Since transitive cycles have pairwise disjoint interiors, g has at
most two transitive cycles. If their union is not K, then K must contain a non-degenerate interval
of periodic points of g. But by an easy application of lemma 11, no sα-limit set can contain a
dense subset of an interval of periodic points. Therefore K is the union of one or two transitive
cycles for g. By lemma 23, M is the union of one or two transitive cycles for f .

Finally, if L is one of the (at most two) transitive cycles for f that compose M, then by
corollary 20 we have sα(x) ⊇ L. Therefore M ⊆ sα(x). �
Remark 25. If sα(x) contains a cycle of intervals M, then sα(x) is in fact a closed set, but
we are not yet ready to prove this fact. See theorem 39 below.

4.3. Transitivity and points with sα(x) = [0, 1]

Let f : [0, 1] → [0, 1] be an interval map. We say that the point x has a full sα-limit set if
sα(x) = [0, 1]. Kolyada, Misiurewicz, and Snoha proved that when f is transitive, all points
x ∈ [0, 1] with at most three exceptions have a full sα-limit set. Conversely, they conjectured
that if at least two points x ∈ [0, 1] have full sα-limit sets, then f is transitive. The conjecture
was not quite right; the correct result is as follows:

Theorem 26. A continuous interval map f : [0, 1] → [0, 1] is transitive if sα(xi) = [0, 1]
for at least three distinct points x1, x2, x3.

Proof. Suppose that f is not transitive. We will prove that at most two points have a full
sα-limit set. Suppose there is at least one point x with sα(x) = [0, 1]. By theorem 24 there are
two transitive cycles L, L′ for f such that [0, 1] = L ∪ L′, and by corollary 20 every point with
a full sα-limit set belongs to L ∩ L′. We will show that the cardinality of L ∩ L′ is at most two.

Let A1, A2, . . . , An be the components of L, numbered from left to right in [0, 1]. Let σ :
{1, . . . , n} → {1, . . . , n} be the cyclic permutation defined by f (Ai) = Aσ(i). If n � 3 then there
must exist i such that |σ(i) − σ(i + 1)| � 2, so there is some Aj strictly between Aσ(i), Aσ(i+1).
Let B be the component of L′ between Ai and Ai+1, see figure 3. By the intermediate value
theorem, f (B) ⊃ A j. This contradicts the invariance of L′. Therefore L has at most two compo-
nents. For the same reason L′ has at most two components. Moreover, L, L′ cannot both have
two components; otherwise the middle two of those four components have a point in common,
but their images do not, again see figure 3.

There are two cases remaining. L, L′ can have one component each, and then L ∩ L′ has
cardinality one. Otherwise, one of the cycles, say L, has two components, while L′ has only
one, and then L ∩ L′ has cardinality two. �

In the course of the proof we have also shown the following result:

Corollary 27. If a continuous map f : [0, 1] → [0, 1] has one or two points with full sα-limit
sets, but not more, then [0, 1] is the union of two transitive cycles of intervals.

3 In fact, [21, theorem 3.9] tells us that all the transitive cycles for g have period at most 2, and the periodic orbits not
contained in transitive cycles also have period at most 2. Some of this extra information can be shown quite easily; it
comes up again in our proof of theorem 26.
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Figure 3. Diagrams for the proof of theorem 26.

Figure 4. Maps for which sα(x) = [0, 1] for only 1 or 2 points x.

Corollary 27 corrects the second part of conjecture 3 (originally [18, conjecture 4.14]) to
allow for two points with a full sα-limit set.4 Both possibilities from the corollary are shown
in figure 4. One of the interval maps shown has exactly one point with a full sα-limit set, and
the other has exactly two.

4.4. Special α-limit sets containing a common open set

Now we study the sα-limit sets that contain a given transitive cycle of intervals. We get a
sharpening of theorem 7 in the case when B = M, i.e. when our basic set is itself a transitive
cycle of intervals.

Let M ⊂ [0, 1] be a transitive cycle of intervals for f. For the reader’s convenience, we recall
some definitions from section 3.2. We write End(M) for the endpoints of the connected com-
ponents of M and refer to these points simply as endpoints of M. The main role in our analysis
is played by the set of exceptional points of M

E :=M\
⋂
U

∞⋃
n=1

f n(U),

where U ranges over all relatively open nonempty subsets of M. It is known that E is finite;
it can contain some endpoints and at most one non-endpoint from each component of M. It
is also known that E and M\E are both invariant under f, see [21]. Endpoints of M in E are
called non-accessible endpoints, as explained in section 3.2. Recall from equation (1) that
E = {x ∈ M : sα(x) � M}.

Theorem 28. Let M be a transitive cycle of intervals for f : [0, 1] → [0, 1] and let E be its
set of exceptional points.

4 Incidentally, when there is exactly one point with a full sα-limit set, the conclusion of the conjecture holds as stated
in [18]: there is c ∈ (0, 1) such that such that f|[0,c] and f|[c,1] are both transitive.
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Figure 5. An example where three distinct sα-limit sets contain a common open interval.

(a) Each point x ∈ M\ (E ∪ End(M)) has the same sα-limit set.
(b) At most three distinct sα-limit sets of f contain M.

We will see in the course of the proof that if sα(x′) ⊇ M is distinct from the sα-limit set
described in part (a), then x′ belongs to a periodic orbit contained in End(M). Since there are
at most two such periodic orbits in End(M) we get part (b).

Before giving the proof we discuss some consequences of this theorem.

Corollary 29. At most three distinct special alpha-limit sets of a continuous map f can
contain a given nonempty open set.

Proof. Let U be a nonempty open set in [0, 1]. If a sα-limit set of f contains U, then by
theorem 24, U contains a whole subinterval from some transitive cycle M. Applying corollary
20, we see that any sα-limit set which contains U also contains M. By theorem 28 there are at
most three such sα-limit sets. �

This corollary corrects conjecture 4 (originally [18, conjecture 4.10]), in which it was con-
jectured that two sα-limit sets which contain a common open set must be equal. For compari-
son, note that if two ω-limit sets of an interval map contain a common open set, then they are in
fact equal, since an ω-limit set with nonempty interior is itself a transitive cycle [24]. We also
remark that the number three in corollary 29 cannot be improved, as is shown by the following
example.

Example 30. Let f : [0, 1] → [0, 1] be an interval map for which [0, 1
3 ] is a full two-

horseshoe, [ 1
3 , 2

3 ] is a full three-horseshoe, and [ 2
3 , 1] is a full two-horseshoe, as shown in

figure 5. Then 1
2 belongs to only one of the three transitive invariant intervals for f and

sα( 1
2 ) = [ 1

3 , 2
3 ]. But both 1

3 and 2
3 are accessible endpoints of adjacent transitive intervals and

so sα( 1
3 ) = [0, 2

3 ] and sα( 2
3 ) = [ 1

3 , 1].
In what follows it is necessary to allow for a weaker notion of a cycle of intervals for f . An

interval is called non-degenerate if it contains more than one point. If U is a non-degenerate
interval (not necessarily closed) such that U, f (U), . . . , f n−1(U) are pairwise disjoint non-
degenerate intervals and f n(U) ⊆ U (not necessarily equal), then we will call Orb(U) a weak
cycle of intervals of period n. The next lemma records one of the standard ways to produce a
weak cycle of intervals. Similar lemmas appear in [4] and several other papers, but since we
were unable to find the exact statement we needed, we chose to give our own formulation here.
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Lemma 31. If a subinterval U contains three distinct points from some orbit of f, then
Orb(U) =

⋃∞
i=0 f i(U) is a weak cycle of intervals for f.

Proof. Let x, f n(x), f m(x) be three distinct points in U, 0 < n < m. Clearly Orb(U) is invari-
ant. Since the intervals U, f n(U) both contain f n(x) we see that U ∪ f n(U) is connected, i.e.
it is an interval. Then also f n(U) ∪ f 2n(U) is connected, and so on inductively. Therefore
the set A =

⋃∞
j=0 f jn(U) is connected. Then Orb(U) =

⋃n−1
i=0 f i(A) has at most n connected

components. Let B ⊇ A be the component of Orb(U) containing U, and let k � n be mini-
mal such that B ∩ f k(B) �= ∅. Then f k(B) is a connected subset of Orb(U), so f k(B) ⊆ B. For
0 � i < j < k if f i(B) ∩ f j(B) �= ∅, then f i+k− j(B) ∩ f k(B) �= ∅, so f i+k− j(B) ∩ B �= ∅, con-
tradicting the choice of k. This shows that B, f (B), . . . , f k−1(B) are pairwise disjoint. It remains
to show that they are all non-degenerate. Clearly all three points x, f n(x), f m(x) are in B.
From the disjointness of B, f (B), . . . , f k−1(B) it follows that n, m are multiples of k. And since
x, f n(x), f m(x) are distinct we get n = j1k, m = j2k with 0 < j1 < j2. If any f i(B) is a single-
ton, i � k, then so also is f k(B). Then using B ⊇ f k(B) ⊇ f 2k(B) ⊇ . . . , we see that all the sets
f jk(B), j � 1, are the same singleton. But in that case f j1k(B) = { f n(x)}, f j2k(B) = { f m(x)}
are not the same singleton, which is a contradiction. �
Lemma 32. Let N be a weak cycle of intervals for f and M a transitive cycle of intervals.
Let E be the set of exceptional points for M. If N ∩ M is nonempty, then the following hold:

(a) Either N ⊇ M\E or else N ∩ M is a periodic orbit contained in End(M), and
(b) The period of N is at most twice the period of M.

Proof. Let n, m be the periods of N, M, respectively. Let Ni, M j, be the components of N, M
with the temporal ordering, so f (Ni) ⊂ Ni+1 mod n for all i < n and f (M j) = M j+1 mod m for all
j < m.

Suppose first that N ∩ M is infinite. Then N contains a non-degenerate interval U ⊂ M.
We have N ⊇ Orb(U) ⊇ M\E, where the first containment comes from the invariance of N
and the second from the definition of the exceptional set E. Since E contains at most one
non-endpoint of each component M j, it follow that each component M j meets at most two
components Ni. So in this case n � 2m.

For the rest of the proof we suppose that N ∩ M is finite. We no longer need transitivity
and the sets N, M will play symmetric roles. Clearly each nonempty intersection Ni ∩ M j is at
common endpoints. This shows that N ∩ M ⊆ End(M). It also shows that each component Ni

contains at most two points from M, and conversely each component M j contains at most two
points from N.

Claim 1. Each component Ni contains the same number of points of M. Conversely, each
component M j contains the same number of points of N. Suppose first that some Ni contains
two distinct points a, b from M. Then a, b belong to distinct components of M, and therefore
f (a), f (b) also belong to distinct components of M. But they both belong to Ni+1 mod n. Con-
tinuing in this way we see that each each component of N contains two points from M. Now
suppose instead that each component of N contains at most one point from M. Surely some Ni

contains at least one point a ∈ M. Then Ni+1 mod n contains the point f (a) ∈ M. Continuing in
this way we see that each component Ni contains exactly 1 point from M. Moreover, the whole
argument still works if we reverse the roles of N and M. This concludes the proof of claim 1.

Claim 2. The intersection N ∩ M is a periodic orbit. Suppose first that each component
of N contains two points from M. We reuse an argument from the proof of theorem 26. Let
A1, A2, . . . , Am be the components of M in the spatial order, i.e. numbered from left to right
in [0, 1]. Let σ : {1, . . . , m}→ {1, . . . , m} be the cyclic permutation defined by f (Ai) ⊆ Aσ(i).
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If m � 3 then there must exist i such that |σ(i) − σ(i + 1)| � 2, so there is some A j strictly
between Aσ(i), Aσ(i+1). Let Nk be the component of N which intersects both Ai and Ai+1.
By the intermediate value theorem, f (Nk) ⊃ A j. This contradicts the fact that M ∩ N is finite.
Therefore M has only two components, and N has only one, i.e. N = N1. The two endpoints of
N1 belong to A1, A2, respectively, and are therefore interchanged by f . So in this case M ∩ N
is a periodic orbit of period 2.

The symmetric situation arises if each component of M contains two points from N. Then
N has two components and M has only 1, and again M ∩ N is a periodic orbit of period 2.

Now suppose that each Ni contains exactly one point from M, and each M j contains exactly
one point from N. Then m = n and we may assume the components are indexed such that
Ni ∩ M j is nonempty if and only if i = j. Let xi be the unique point of intersection of Ni and
Mi. Since these intersection points are unique we get f (xi) = xi+1 mod n for all i. Thus N ∩ M
is a periodic orbit of period m = n. �

Proof of theorem 28. We have already seen that the set of exceptional points in M may be
characterized as E = {x ∈ M : sα(x) � M}. Combined with lemma 11 this shows that

sα(x) ⊇ M ⇐⇒ x ∈ M\E.

Our task is to compare the sα-limit sets of the various points x ∈ M\E. Since they all contain
M it is enough to check whether or not they coincide outside of M. For any point y ∈ [0, 1] let
us write sαBa sin(y) = {z : y ∈ sα(z)}.

Step 1: if x ∈ M\E and y ∈ sα(x)\M, then there is a weak cycle of intervals N for f such
that x ∈ N ⊆ sαBa sin(y). To prove this claim, let (xi) be a backward orbit branch of x
accumulating on y. The sequence (xi) cannot contain y twice, for otherwise y would be a
periodic point containing x in its orbit, contradicting the invariance of M. Therefore there
is a subsequence (xi j) which converges to y monotonically from one side. We will suppose
xi j ↘ y from the right. The proof when xi j ↗ y from the left is similar.
For k = 1, 2, . . . let Uk = (y, y + 1

k ). Then Uk contains the points xi j for large enough j.
By lemma 31, the set Vk = Orb(Uk) is a weak cycle of intervals. Since Vk is invariant and
contains points xi for arbitrarily large natural numbers i, we must have the whole back-
ward orbit branch (xi) contained in each Vk. Moreover, we have nesting V1 ⊇ V2 ⊇ . . ..
Letting vk denote the period (i.e. the number of connected components) of Vk this implies
v1 � v2 � . . .. But each Vk contains the point x ∈ M, so by lemma 32 (b) each vk � 2m,
where m is the period of M. A bounded increasing sequence of natural numbers is
eventually constant. So fix k′ such that vk′ = vk′+1 = . . ..
For each k let V0

k be the connected component of Vk which contains Uk. Choose some
i such that xi ∈ V0

k′ , xi > y. For k � k′, Vk is a weak cycle of intervals contained in Vk′

and with the same number of components. It follows that V0
k is the only component of Vk

which meets V0
k′ . Therefore V0

k must contain xi as well. In particular, setting δ = xi − y
we find that

∀ε>0, Orb((y, y + ε)) ⊇ (y, y + δ).

Now let N = Orb((y, y + δ)) =
⋂

ε>0 Orb((y, y + ε)). It follows easily that N\{y} ⊆
sαBa sin(y). For if z ∈ N, z �= y, then taking ε1 < min(δ, |z − y|) we find z1 ∈ (y, y + ε1)
and n1 � 1 such that f n1 (z1) = z. Then taking ε2 < z1 − y we find z2 ∈ (y, y + ε2) and
n2 � 1 such that f n2(z2) = z1. Continuing inductively, we get a subsequence of a backward
orbit branch of z which accumulates on y.
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Since (y, y + δ) contains xi j for sufficiently large j, lemma 31 also implies that N is a weak
cycle of intervals, and since it is forward invariant we have x ∈ N. This concludes step 1.

Step 2: if x, x′ ∈ M\E and y ∈ sα(x)\M, then sα(x) ⊆ sα(x′). To prove this claim, fix an arbi-
trary point y ∈ sα(x). We need to show that y ∈ sα(x′) as well. If y ∈ M then there is
nothing to prove, since M ⊂ sα(x′). So suppose y /∈ M. By step 1 there is a weak cycle
of intervals N such that x ∈ N ⊆ sαBa sin(y). Now we apply lemma 32 (a), noting that
M ∩ N contains the point x /∈ End(M). Therefore M\E ⊆ N. We now have x′ ∈ M\E ⊆
N ⊆ sαBa sin(y), from which it follows that y ∈ sα(x′). This concludes step 2.

Step 3: each point in M\(E ∪ End(M)) has the same sα-limit set. Suppose x, x′ ∈ M\(E ∪
End(M)). Then we may apply step 2 to get both containments sα(x) ⊆ sα(x′) and sα(x′) ⊆
sα(x). This concludes step 3 and the proof of theorem 28 (a). From now on we will refer
to this common sα-limit set as S.

Step 4: if the sα-limit set of x′ contains M and is distinct from S, then x′ belongs to a peri-
odic orbit contained in End(M). The hypothesis M ⊆ sα(x′) implies that x′ ∈ M\E. Fix
x ∈ M\(E ∪ End(M)) and apply step 2 to conclude that S = sα(x) ⊆ sα(x′). Our hypoth-
esis is that this containment is strict. So choose y ∈ sα(x′)\sα(x). Clearly y /∈ M. Apply-
ing step 1 to x′ we get a weak cycle of intervals N such that x′ ∈ N ⊆ sαBa sin(y).
Moreover x /∈ N since y /∈ sα(x). Now M ∩ N contains x′ but not x, so we may apply
lemma 32 (a) and conclude that M ∩ N is a periodic orbit contained in End(M). This
concludes step 4.

Step 5: at most three distinct sα-limit sets of f contain M. One of these sets is S from step
3. By step 4, the only other sets to consider are the sα-limit sets of those periodic points
whose whole orbits are contained in End(M). Since M is a cycle of intervals it is clear that
End(M) contains at most two periodic orbits. And from the definitions it is clear that all
points in a periodic orbit have the same sα-limit set. This concludes step 5 and the proof
of theorem 28 (b). �

4.5. Comparison of α-limit sets with special α-limit sets

One motivation for studying sα-limit sets is that they provide more information about α-limit
sets, since there is always the containment sa(x) ⊂ α(x). For transitive interval maps this con-
tainment is in fact an equality sα(x) = α(x) for all x ∈ [0, 1] (this can be deduced from [18,
proposition 3.10] or the theorem below). The question then arises whether this is the typical
situation, or perhaps typically sα(x) = α(x) at least for ‘most’ points x.

If (X, f ) is a topological dynamical system and W ⊂ X is open and wandering (for all
n � 1, f n(W ) ∩ W = ∅), then each backward orbit branch visits W at most once, so W is dis-
joint from all sα-limit sets of f . But a wandering set can contain α-limit points. In example
34 below we use this kind of wandering behaviour to show that for the generic interval map
f : [0, 1] → [0, 1] (in the topology of uniform convergence) there is a whole interval of points
x ∈ [0, 1] for which α(x, f ) �= sα(x, f ). We show in theorem 33 that if there are no wandering
intervals then α(x, f ) = sα(x, f ) for all x ∈ [0, 1].

Theorem 33. Let f : [0, 1] → [0, 1] be a continuous map. If Ω(f) = [0, 1] then α(x) = sα(x)
for all x ∈ [0, 1].

Proof. By [29, theorem 1] the set Ω( f )\Rec( f ) is at most countable and since Rec( f )
is a closed set we have Per( f ) = [0, 1]. Thus f has a dense set of periodic points. By
[21, theorem 3.9] (see also the discussion on page 40 in [21]) every non-periodic point of
f belongs to the interior of some transitive cycle of intervals L. Fix x ∈ [0, 1]. We will show
that α(x) ⊆ sα(x). Let y ∈ α(x). If y is periodic then by theorem 8 y ∈ sα(x). Suppose that y
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is not periodic and let L be the transitive cycle of intervals for f with y ∈ Int(L) where inte-
rior is taken relative to [0, 1]. Let {xi}∞i=1 be a preimage sequence of x with some subsequence
xi j → y as j →∞. The points from {xi}∞i=1 are all distinct since x is not periodic and thus there
are infinitely many preimages of x in L. In particular, one of the preimages is a non-exceptional
point of L and y ∈ L ⊂ sα(x) by equation (1). �

Let C0([0, 1]) be the complete metric space of all maps f : [0, 1] → [0, 1] with the usual uni-
form metric d( f , g) = supx∈[0,1]| f (x) − g(x)|. If some comeager subset of maps in C0([0, 1])
all have some property, then we call that property generic.

Example 34. Let ξ : [0, 9] → [0, 9] be the ‘connect-the-dots’ map with ξ(0) = 0, ξ(1) = 7,
ξ(2) = ξ(5) = 4, ξ(6) = ξ(8) = 7, ξ(9) = 9, and which is linear (affine) on each of the inter-
vals [0, 1], [1, 2], [2, 5], [5, 6], [6, 8], and [8, 9]. Every map in C0([0, 1]) has a fixed point.
By perturbation, we can replace that fixed point with a small invariant interval on which
we insert a miniature homeomorphic copy of ξ. Call the resulting map f and let A, C, W
denote the images under the homeomorphism of [5, 6], [3, 8], and [1, 2], respectively, so that
A ⊂ f (A) = f (C) = f (W ) ⊂ C. These containments are stable under further perturbation, that
is, for all g sufficiently close to f the three intervals g(A), g(C), g(W ) all contain A and are
contained in C. It follows that A ⊂ gn(W ) ⊂ C for all n = 1, 2, . . . . Then each x ∈ A has g-
preimages of arbitrarily high order in W , so by compactness α(x, g) ∩ W �= ∅. But since W
is disjoint from Ω(g), it is disjoint from all sα-limit sets of g, see theorem 5. This shows
that α(x, g) �= sα(x, g) for all x in the non-degenerate interval A. We have identified an open
dense set of maps g ∈ C0([0, 1]) for which the set {x|α(x, g) �= sα(x, g)} contains a whole
interval.

5. On special α-limit sets which are not closed

5.1. Points in the closure of a special α-limit set

We start section 5 with two theorems which are important for understanding any non-closed
sα-limit sets of an interval map. Theorem 35 relates the closure of a sα-limit set to the
three kinds of maximal ω-limit sets. Theorem 36 determines precisely which points do or
do not have a closed sα-limit set, and which points from the closure are not present in the
limit set. In section 5.2 we apply these results to establish some topological properties of non-
closed sα-limit sets for interval maps, showing that they are always uncountable, nowhere
dense, and of type Fσ and Gδ . In section 5.3 we address the question of which interval maps
have all of their sα-limit sets closed. Most importantly, this holds in the piecewise monotone
case. In section 5.4 we give a concrete example of an interval map with a non-closed sα-limit
set.

Recall that a generating sequence is any nested sequence of cycles of intervals Orb(I0) ⊃
Orb(I1) ⊃ . . . for an interval map f with periods tending to infinity. In light of the discussion
at the beginning of section 3.1 we may define a maximal solenoidal set as the intersection
Q =

⋂
Orb(In) of a generating sequence. Recall that a solenoidal ω-limit set is an infinite ω-

limit set containing no periodic points, and a solenoidal ω-limit set is always contained in a
maximal solenoidal set. Recall also that the Birkhoff centre of f is the closure of the set of
recurrent points.

Theorem 35. Let f be a continuous interval map, let x ∈ sα(y), and suppose that any of the
following conditions holds:

(a) x is periodic,
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(b) x belongs to a basic set B, or
(c) x is a recurrent point in a solenoidal ω-limit set.

Then x ∈ sα(y).

Theorem 36. Let f : [0, 1] → [0, 1] be a continuous interval map and y ∈ [0, 1]. The set
sα(y) is not closed if and only if y belongs to a maximal solenoidal set Q which contains a
nonrecurrent point from the Birkhoff centre of f. In this case

sα(y)\sα(y) = Q ∩
(
Rec( f )\Rec( f )

)
.

The rest of section 5.1 is devoted to the proofs of these two theorems. For theorem 35 the
main idea is that sα(y) ⊂ α(y), so we can apply theorems 6, 7, and 8. However, some extra
care is needed for preperiodic points. Recall that x is preperiodic for f if x /∈ Per( f ) but there
exists n � 1 such that f n(x) ∈ Per( f ).

Lemma 37. Let f be a continuous interval map. If x �= f(x) = f 2(x) and x ∈ sα(y), then
x ∈ sα(y).

Proof. We may suppose without loss of generality that x < f (x). A set U is called a right-
hand neighbourhood (resp. left-hand neighbourhood) of x if it contains an interval (x, x + ε)
(resp. (x − ε, x)) for some ε > 0. By hypothesis either x ∈ sα(y), or every right-hand neigh-
bourhood of x contains points from sα(y), or every left-hand neighbourhood of x contains
points from sα(y). In the first case there is nothing to prove. The remaining two cases will be
considered separately.

Suppose that every right-hand neighbourhood of x contains points from sα(y). We will con-
struct inductively a sequence of points yn → x and times kn > 0 such that f k0 (y0) = y and
f kn(yn) = yn−1 for n � 1. We also construct points an ∈ sα(y) and open intervals Un � an

that are compactly contained (i.e. their closure is contained) in (x, f (x)). The points an will
decrease monotonically to x, the intervals Un will be pairwise disjoint, and the inequalities
sup Un < yn−1 < sup Un−1 will hold for all n � 1.

For the base case, choose any point a0 ∈ sα(y) with x < a0 < f (x). Choose a small open
interval U0 � a0 which is compactly contained in (x, f (x)). There exists y0 ∈ U0 and k0 > 0
such that f k0 (y0) = y. Now we make the induction step. Suppose that x < yn−1 < sup Un−1

and choose an ∈ sα(y) with x < an < min{yn−1, inf Un−1, x + 1
n}. Choose a small open inter-

val Un � an compactly contained in (x, f (x)) with sup Un < min{yn−1, inf Un−1}. By theorem
5 we know that an is a non-wandering point, so there exist b, c ∈ Un and kn > 0 such that
f kn(b) = c. Thus f kn([x, b]) contains both f (x), c, but c < yn−1 < f (x), so by the intermedi-
ate value theorem there is yn ∈ (x, b) with f kn(yn) = yn−1. Clearly yn < sup Un, so we are
ready to repeat the induction step. This completes the proof in the case when every right-hand
neighbourhood of x contains points from sα(y).

Now suppose that every left-hand neighbourhood of x contains points from sα(y). Consider
the set

W =
⋂
ε>0

Wε, where Wε =
∞⋃

t=1

f t((x − ε, x]).

For ε > 0 the set Wε is invariant for f . It is connected because the intervals f t((x − ε, x]) all
contain the common point f (x). Now choose a point a ∈ sα(y) ∩ (x − ε, x). Since a is non-
wandering there are points b, c ∈ (x − ε, x) such that f t(b) = c for some t > 0. Thus c ∈ Wε,
so by connectedness we get [x, f (x)] ∈ Wε. Since these properties hold for arbitrary ε, we see
that W is invariant, connected, and contains [x, f (x)].

7435



Nonlinearity 34 (2021) 7415 J Hantáková and S Roth

We claim that W contains a left-hand neighbourhood of x. Assume to the contrary
that x = min W. By continuity there is a point z > f (x) such that f ([ f (x), z]) ⊂ (x, 1].
Again by continuity there is a point w < x such that f ([w, x]) ⊂ (x, z). Fix ε > 0 arbitrary.
Put U = (max{w, x − ε}, x). Choose a ∈ sα(y) ∩ U. Since a is non-wandering there are points
b, c ∈ U such that f s(b) = c for some s > 0. But f (b) > x, so there is some t � 1 such that
f t(b) > x and f t+1(b) < x. Since W is invariant, f t(b) /∈ W. Therefore f t(b) > z, so it fol-
lows that z ∈ Wε. Since ε > 0 was arbitrary, this shows that z ∈ W. Again fix ε > 0 arbitrary
and let U, a, b, c, s be as they were before. We have f (b) ∈ (x, z) ⊂ W and W is invariant, so
f s(b) = c ∈ W, contradicting the assumption that x = min W.

Finally, we construct inductively a monotone increasing sequence of points yn → x and a
sequence of times kn > 0 such that f k0 (y0) = y and f kn (yn) = yn−1 for n � 1. Let δ > 0 be such
that W contains the left-hand neighbourhood (x − δ, x). For the base case we find a ∈ sα(y) ∩
(x − δ, x). Then there is y0 ∈ (x − δ, x) and k0 > 0 such that f k0 (y0) = y. For the induction
step, suppose we are given yn−1 ∈ (x − δ, x). Choose a positive number ε < min{|x − yn|, 1

n}.
Since (0, δ) ⊂ W ⊂ Wε, we see from the definition of W that there exist yn ∈ (x − ε, x] and
kn > 0 such that f kn (yn) = yn−1. Clearly yn �= x, since yn−1 �= f (x). Therefore yn ∈ (x − δ, x)
and the induction can continue. �

Proposition 38. Let f be a continuous interval map. If x is preperiodic and x ∈ sα(y), then
x ∈ sα(y).

Proof. Find n such that x �= f n(x) = f 2n(x) and apply [18, proposition 2.9], which says
sa(y, f ) =

⋃n−1
j=0sα( f j(y), f n). Since the closure of a finite union is the union of the clo-

sures, we find j such that x ∈ sα( f j(y), f n). By lemma 1, x ∈ sα( f j(y), f n). Again applying
[18, proposition 2.9] we conclude x ∈ sα(y, f ). �

Proof of theorem 35. Let x ∈ sα(y). Since α(y) is a closed set containing sα(y), we have
x ∈ α(y) as well. If x is periodic, then by theorem 8, x ∈ sα(y). If x is a recurrent point in a
solenoidal ω-limit set, then by theorem 6 we again have x ∈ sα(y). If x belongs to a basic set
B, then it must be periodic, preperiodic, or have Orb(x) infinite. In the periodic case theorem
8 applies. In the preperiodic case proposition 38 shows that x ∈ sα(y). And when Orb(x) is
infinite, then it must be contained in both B and α(y) since those sets are both invariant. So by
theorem 7 we again have x ∈ sα(y). �

Proof of theorem 36. Suppose first that sα(y) is not closed. Pick any point x ∈
sα(y)\sα(y). By theorem 5 we have x ∈ Rec( f ) and in particular x ∈ Λ1( f ). Letω(z) be a max-
imal ω-limit set of f containing x. By theorem 35, x is not recurrent and ω(z) is a solenoidal
ω-limit set. Then ω(z) is contained in some maximal solenoidal set Q. By theorem 6 we know
that y ∈ Q. But Q also contains x, so we have shown that y belongs to a maximal solenoidal set
which contains a nonrecurrent point from the Birkhoff centre. Now if x′ is any other point from
sα(y)\sα(y), then by the same argument, x′ is a nonrecurrent point in the Birkhoff centre and
belongs to a maximal solenoidal set Q′ which also contains y. Since two maximal solenoidal
sets are either disjoint or equal, we get Q = Q′. This shows that

sα(y)\sα(y) ⊆ Q ∩
(
Rec( f )\Rec( f )

)
.

To prove the converse part of the theorem, suppose that Q is any maximal solenoidal set for
f which contains a nonrecurrent point from the Birkhoff centre, and fix y ∈ Q. We will show
that sα(y) is not closed, and that
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sα(y)\sα(y) ⊇ Q ∩
(
Rec( f )\Rec( f )

)
.

To that end, let x be any point from Q ∩ (Rec( f )\Rec( f )). Choose a generating sequence
Orb(I0) ⊃ Orb(I1) ⊃ . . . with Q =

⋂
Orb(In). Without loss of generality we may assume that

x ∈ In for each n. Since x is not recurrent we have x /∈ sα(y) by theorem 6. To finish the proof
it suffices to show that x ∈ sα(y). We do so by finding periodic points arbitrarily close to x
which are in the α-limit set of y, and then applying theorem 8.

Let K be the connected component of Q containing x. By theorem 10 we know that the
singleton components of Q are recurrent points, and in the non-degenerate components of Q,
only the endpoints can appear in ω-limit sets. Since x is in an ω-limit set but is not recurrent,
we know that K is a non-degenerate interval with x as one of its endpoints. Without loss of
generality we may assume that x is the left endpoint of K and write K = [x, b].

Again using theorem 10 (and the fact that the set SRec referred to there is perfect) we know
that each component of Q has at least one recurrent endpoint, and the endpoint of a component
is recurrent if and only if it is the limit of points of other components of Q. Since x is not
recurrent, we know that b is. We conclude that Q does not accumulate on x from the left and it
does accumulate on b from the right.

Since x is in the Birkhoff centre x ∈ Rec( f ) = Per( f ) and K contains no periodic points,
we know that the periodic points of f accumulate on x from the left. In particular, x is not the
left endpoint of [0, 1]. That means we can find non-empty left-hand neighbourhoods of x in
[0, 1], i.e. open intervals with right endpoint x.

Since Q does not accumulate on x from the left, we can find a left-hand neighbourhood
of x which contains no points from Q, and then there must be some n such that In does not
contain that left-hand neighbourhood. It follows that x = min(Q ∩ In). At this moment we do
not know if x is the left endpoint of In or not, only that it is the left-most point of Q in In.

Let m be the period of the cycle of intervals Orb(In) and let g = f m. Then In is an invariant
interval for g. Also f and g have the same periodic points (but not necessarily with the same
periods). Since gi(x) ∈ In for all i and x ∈ Q is neither periodic nor preperiodic, there must be
i � 2 such that gi(x) is not an endpoint of In. By continuity there is δ > 0 such that gi((x −
δ, x]) ⊂ In. Then by invariance we get

g j((x − δ, x]) ⊂ In for all j � i. (2)

Choose an arbitrary positive real number ε < δ. Choose a periodic point p in (x − ε, x). Let
k be the period of p under the map g. Then gik(p) = p and by (2) gik(p) ∈ In. This shows that
p ∈ In. (Incidentally, we see that x is not the left endpoint of In.)

The set of fixed points of gk is closed, so let p′ be the largest fixed point of gk in the interval
[p, x]. Let h be the map h = gk = f mk. We know that h(x) is an element of Q in In, and therefore
it lies to the right of x. We also know h(x) /∈ [x, b] because no component of Q returns to itself.
So the order of our points is p′ = h(p′) < x < b < h(x), and the graph of h|(p′ ,x] lies above the
diagonal, since there are no other fixed points there, see figure 6.

Since Q accumulates on b from the right we can find n′ > n such that one of the compo-
nents L of Orb(In′ , f ) lies between b and h(x). By the intermediate value theorem, h([p′, x])
contains L.

Let U be any right-hand neighbourhood of p′, that is U = (p′, z) with z − p′ > 0 as small as
we like. We consider the orbit of U. Since the graph of h lies above the diagonal on (p′, x] we
get a monotone increasing sequence (h j(z))l

j=0 with l � 1 minimal such that hl(z) � x (if there
is no such l, then h j(z) converges to a fixed point of h in the interval [z, x], which contradicts
the choice of p′). Then hl+1(U) ⊃ L. In particular, Orb(U, f ) ⊃ Orb(L, f ) ⊃ Orb(In′ , f ) ⊃ Q.
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Figure 6. The graph of h|In . Since Orb(L, f ) ⊃ Q and each right-hand neighbourhood of
p′ eventually covers L, we see that p′ ∈ α(y). Note: we do not claim that h is monotone
on (p′, x], only that the graph stays above the diagonal.

We see that for every right-hand neighbourhood U of p′ there is a point y′ ∈ U and a time
t such that f t(y′) = y. As the neighbourhood U shrinks, the value of t must grow without
bound, because p′ is periodic. This shows that p′ ∈ α(y) = α(y, f ). By theorem 8 it follows that
p′ ∈ sα(y).

Since p′ was chosen from the ε-neighbourhood (x − ε, x) and ε > 0 can be arbitrarily small,
we conclude that x ∈ sα(y). This completes the proof. �

5.2. Properties of a non-closed special α-limit set

As an application of theorems 36 and 35, we get the following results.

Theorem 39. If sα(y) is not closed, then it is uncountable and nowhere dense.

Proof. Suppose sα(y) is not closed. By theorem 36 we have y ∈ Q for some solenoidal set
Q =

⋂
Orb(In). By theorem 6 we know that sα(y) contains Q ∩ Rec( f ). This set is perfect

[4, theorem 3.1], and therefore uncountable.
Let M be a transitive cycle of intervals for f . If Q ∩ M �= ∅, then by lemma 32, each cycle

of intervals Orb(In) has period at most twice the period of M. This contradicts the fact that the
periods of the cycles of intervals tend to infinity. Therefore Q does not intersect any transitive
cycle of intervals M for f . In particular, y does not belong to any transitive cycle of intervals
M. By corollary 20 we conclude that sα(y) does not contain any transitive cycle. By theorem
24 it follows that sα(y) is nowhere dense. �

A subset of a compact metric space X is called Fσ if it is a countable union of closed sets,
and Gδ if it is a countable intersection of open sets. These classes of sets make up the second
level of the Borel hierarchy. Closed sets and open sets make up the first level of the Borel
hierarchy and they are always both Fσ and Gδ. The next result shows that the sα-limit sets of
an interval map can never go past the second level of the Borel hierarchy in complexity.

Theorem 40. Each sα-limit set for a continuous interval map f is both Fσ and Gδ .

Proof. We write Bas( f ) for the union of all basic ω-limit sets of f and Sol( f ) for the union
of all solenoidal ω-limit sets of f . We continue to write Per( f ) for the union of all periodic
orbits of f .
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To prove that sα(y) is of type Fσ we express it as the following union

sα(y) = (sα(y) ∩ Per( f )) ∪ (sα(y) ∩ Bas( f )) ∪ (sα(y) ∩ Sol( f )) ,

and show that each of the three sets in the union is of type Fσ.
The set Per( f ) =

⋃
n{x : f n(x) = x} is clearly of type Fσ . By theorem 35, sα(y) ∩ Per( f )

is a relatively closed subset of Per( f ), and is therefore of type Fσ .
Since an interval map has at most countably many basic sets [4, lemma 5.2], their union

Bas( f ) is of type Fσ . By theorem 35, we know that sα(y) ∩ Bas( f ) is a relatively closed subset
of Bas( f ), and is therefore of type Fσ.

By theorem 6 and corollary 12, we know that sα(y) ∩ Sol( f ) is either the empty set, or a
single minimal solenoidal set S, and minimal solenoidal sets are closed. Closed sets are trivially
of type Fσ .

To prove that sα(y) is of type Gδ it is enough to show that sα(y)\sα(y) is at most countable.
By theorem 36 we know that this set is of the form

sα(y)\sα(y) = Q ∩ (Rec( f )\Rec( f ))

for some maximal solenoidal set Q. But by theorem 10 the only points in Q which can be
in the Birkhoff centre but not recurrent are endpoints of non-degenerate components of Q.
Since Q ⊂ [0, 1] has at most countably many non-degenerate components, this completes
the proof. �

5.3. Maps which have all special α-limit sets closed

In [18] it was proved that all sα-limit sets of f are closed if Per( f ) is closed. This is a very
strong condition; it implies in particular that f has zero topological entropy. In this section we
give necessary and sufficient criteria to decide if all sα-limit sets of f are closed. We show
in particular that this is the case for piecewise monotone maps. Note that an interval map
f : [0, 1] → [0, 1] is called piecewise monotone if there are finitely many points 0 = c0 < c1

< · · · < cn = 1 such that for each i < n, the restriction f |[ci,ci+1] is monotone, i.e. non-
increasing or non-decreasing.

Theorem 41. Let f : [0, 1] → [0, 1] be a continuous interval map. The following are equiv-
alent:

(a) For some y ∈ [0, 1], sα(y) is not closed.
(b) The attracting centre Λ2( f ) is not closed.
(c) The attracting centre is strictly contained in the Birkhoff centre Λ2( f ) � Rec( f ).
(d) Some solenoidal ω-limit set of f contains a non-recurrent point in the Birkhoff centre.

Proof of theorem 41. (a) ⇒ (b): suppose there is a point y ∈ [0, 1] with sα(y) not
closed. Choose x ∈ sα(y)\sα(y). By theorem 36 we know that x is a non-recurrent point in
a solenoidal set. By theorem 6 it follows that no sα-limit set of f contains x. This shows that
x ∈ SA( f )\SA( f ). Thus SA( f ) is not closed. But Λ2( f ) = SA( f ) by theorem 5.

(b) ⇒ (c): this follows immediately from the containments Rec( f ) ⊂ Λ2( f ) ⊂ Rec( f ) in
theorem 5.

(c) ⇒ (d): suppose SA( f ) = Λ2( f ) �= Rec( f ). Then we can find x ∈ Rec( f )\SA( f ). By
theorem 5 we know that x ∈ Λ1( f ). Because x is in an ω-limit set, it must belong to a periodic
orbit, a basic set, or a solenoidal ω-limit set.
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Each periodic orbit is contained in the sα-limit set of any one of its points. Each basic set is
also contained in a sα-limit set by corollary 16. Since we supposed that x is not in any sα-limit
set, we must conclude that x is not in a periodic orbit or a basic set.

Now we know that x belongs to a solenoidal ω-limit set. Since x is not in any sα-limit set
we may use theorem 5 to conclude that x is not recurrent.

(d) ⇒ (a): suppose a solenoidal ω-limit set ω(z) contains a non-recurrent point x in the
Birkhoff centre x ∈ Rec( f ). Since ω(z) is solenoidal it has a generating sequence, i.e. a
nested sequence of cycles of intervals Orb(I0) ⊃ Orb(I1) ⊃ . . . with ω(z) ⊆ Q =

⋂
n Orb(In).

By theorem 36 for any y ∈ Q the set sα(y) is not closed. �

Corollary 42. If f is a piecewise monotone continuous interval map, then all sα-limit sets
of f are closed.

Proof. By [4, lemma PM2] each point in a solenoidal ω-limit set for a piecewise monotone
map f is recurrent, so condition (d) of theorem 41 can never be satisfied. �

We remark that in general the conditions of theorem 41 may be difficult to verify. Even
condition (d) is difficult, since the non-recurrent points in a solenoidal ω-limit set need not
belong to the Birkhoff centre. For an example, see [3]. But for maps with zero topological
entropy, the whole picture simplifies considerably. For the definitions of topological entropy
and Li–Yorke chaos we refer the reader to any of the standard texts in topological dynamics,
e.g. [21].

Corollary 43. Let f : [0, 1] → [0, 1] be a continuous interval map with zero topological
entropy. Then all sα-limit sets of f are closed if and only if Rec( f ) is closed.

Proof. For a continuous interval map f with zero topological entropy, the set of recurrent
points is equal to Λ2( f ) by [29]. Now apply theorem 41. �

Corollary 44. Suppose f : [0, 1] → [0, 1] is not Li–Yorke chaotic. Then all sα-limit sets of f
are closed.

Proof. When f is not Li–Yorke chaotic, Steele showed that Rec( f ) is closed [25,
corollary 3.4]. Moreover, it is well known that such a map has zero topological entropy, see
e.g. [21]. Now apply corollary 43. �

5.4. Example of a non-closed special α-limit set

In 1986 Chu and Xiong constructed a map f : [0, 1] → [0, 1] with zero topological entropy
such that Rec( f ) is not closed [10]. This example appeared six years before the definition of
sα-limit sets [15], but by corollary 43 it provides an example of a continuous interval map
whose sα-limit sets are not all closed.

In this section we give a short direct proof that one of the sα-limit sets of Chu and Xiong’s
map f is not closed. Here are the key properties of the map f from [10].

(a) There is a nested sequence of cycles of intervals [0, 1] = M0 ⊃ M1 ⊃ M2 ⊃ . . . for f ,
where Mn = Orb(Jn) has period 2n.

(b) For each n ∈ N the interval Jn is the connected component of Mn which appears farthest
to the left in [0, 1].

(c) For each n ∈ Nwe can express Jn = An ∪ Jn+1 ∪ Bn ∪ Kn+1 ∪ Cn as a union of five closed
non-degenerate intervals with disjoint interiors appearing from left to right in the order
An < Jn+1 < Bn < Kn+1 < Cn.
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Figure 7. A map with a sα-limit set which is not closed.

(d) For each n ∈ N the map f 2n
: Jn → Jn has the following properties:

(1) f 2n |An : An → An ∪ Jn+1 ∪ Bn is an increasing linear bijection,
(2) f 2n |Jn+1 : Jn+1 → Kn+1 is surjective,
(3) f 2n |Bn : Bn → Kn+1 ∪ Bn ∪ Jn+1 is a decreasing linear bijection,
(4) f 2n |Kn+1 : Kn+1 → Jn+1 is an increasing linear bijection, and
(5) f 2n |Cn : Cn → Bn ∪ Kn+1 ∪ Cn is an increasing linear bijection.

(e) The nested intersection J∞ =
⋂∞

n=0Jn is a non-degenerate interval J∞ = [x, y].

The graph of the map f : [0, 1] → [0, 1] is shown in figure 7. Chu and Xiong showed that
the left endpoint x of J∞ is not recurrent, but it is a limit of recurrent points. We give a short
direct proof that sα(x) is not closed.

Theorem 45. Let f be the continuous interval map defined in [10] and let x be the left
endpoint of J∞ as defined above. Then x ∈ sα(x)\sα(x), and therefore sα(x) is not closed.

Proof. Fix n ∈ N and let an be the left endpoint of the interval An. Property (d) tells us
that f 2n

: An → An ∪ Jn+1 ∪ Bn is linear, say, with slope λn. By property (e) we have x ∈ Jn+1.
Therefore there is a backward orbit branch {xi}∞i=0 of x such that xk·2n = an +

x−an
λk

n
for all

k ∈ N. This shows that an ∈ sα(x). But n ∈ N was arbitrary. If we let n →∞, then an → x.
This shows that x ∈ sα(x).

Now we will show that x /∈ sα(x). Let {xi}∞i=0 be any backward orbit branch of x. Let
Q =

⋂∞
n=0Mn. We distinguish two cases. First suppose that xi ∈ Q for all i. For any given

i � 1 we can choose n with 2n > i. Since xi ∈ Mn, f i(xi) ∈ Jn, and Mn is a cycle of intervals
of period 2n, we know that xi /∈ Jn. Since Jn is the left-most component of Mn in [0, 1], it
follows that xi > y > x (recall that J∞ =

⋂
Jn = [x, y] is non-degenerate). Since this holds

for all i � 1 we see that the backward orbit branch does not accumulate on x.
Now suppose there is i0 with xi0 /∈ Q. For each i � i0 there is n(i) ∈ N such that

xi ∈ Mn(i)\Mn(i)+1. Since f (xi+1) = xi and each Mn is invariant, we get n(i + 1) � n(i).
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A non-increasing sequence of natural numbers must eventually reach a minimum, say,
n(i1) = n(i1 + 1) = · · · = n. For i � i1, xi /∈ Mn+1, so in particular xi /∈ Jn+1. But by prop-
erties (c) and (e) we know that Jn+1 is a neighbourhood of x. This shows that this backward
orbit branch does not accumulate on x either. �

6. Open problems

Only one problem concerning sα-limit sets of interval maps in [18] remains open:

Problem 46 [18]. Characterize all subsets A of [0, 1] for which there exists a continuous
map f : [0, 1] → [0, 1] and a point x ∈ [0, 1] such that sα(x, f ) = A.

We have seen that even for interval maps, sα-limit sets need not be closed. If we want to
work with closed limit sets, then there are several possible solutions. The first one, suggested
to us by Snoha, is to answer the following question: what are some sufficient conditions on a
topological dynamical system (X, f ) so that all of its sα-limit sets are closed? In this regard
we state one conjecture which we were not able to resolve.

Conjecture 47. If f : [0, 1] → [0, 1] is continuously differentiable, then all sα-limit sets of
f are closed.

Another possibility is to ask whether the ‘typical’ continuous interval map has all sα-limit
sets closed. Let C0([0, 1]) be the complete metric space of all maps f : [0, 1] → [0, 1] with the
usual uniform metric d( f , g) = supx∈[0,1]| f (x) − g(x)|. If some comeager subset of maps in
C0([0, 1]) all have some property, then we call that property generic.

Problem 48. Is the property of having all sα-limit sets closed a generic property in
C0([0, 1])?

Another possible solution is to work with the closures of sα-limit sets. Therefore we propose
the following definition.

Definition 49. Let (X, f ) be a discrete dynamical system (i.e. a continuous self-map on a
compact metric space) and let x ∈ X. The β-limit set of x, denoted β(x) or β(x, f ), is the small-
est closed set such that d(xn, β(x)) → 0 as n →∞ for every backward orbit branch {xn}∞n=0 of
the point x.

The letter β here means ‘backward’, since β-limit sets serve as attractors for backward orbit
branches. It is clear from the definition that β(x) = sα(x).

Proposition 50. If (X, f) is a discrete dynamical system and x ∈ X, then β(x) is closed
and strongly invariant, i.e. f(β(x)) = β(x). Additionally, β(x) is nonempty if and only if
x ∈

⋂∞
n=0 f n(X). In particular, β(x) is nonempty for every x ∈ X when f is surjective.

Proof. By [18, corollary 2.7] we have f (sα(x)) = sα(x). Taking closures, we get
f (β(x)) = β(x). Additionally, β(x) is nonempty if and only if sα(x) is. But by
[18, proposition 2.3] we have sα(x) �= ∅ if and only if x ∈

⋂∞
n=0 f n(X). �

We can simplify problem 46 by working with β-limit sets, since they are always closed.

Problem 51. Characterize all subsets A ⊆ [0, 1] for which there exists a continuous map
f : [0, 1] → [0, 1] and a point x ∈ [0, 1] such that β(x, f ) = A.

If X is a compact metric space, then the space K(X) consisting of all nonempty compact
subsets of X can be topologized with the Hausdorff metric and it is again compact. The map
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X � x �→ ω(x, f ) ∈ K(X) associated to a dynamical system (X, f ) is usually far from con-
tinuous, but its Baire class can be useful, see e.g. [25]. Therefore we propose the following
question.

Problem 52. Of what Baire class (if any) is the function [0, 1] � x �→ β(x, f ) ∈ K([0, 1])
when f is a surjective continuous interval map?

Hero used sα-limit sets to characterize the attracting centre Λ2( f ) of a continuous interval
map f , and some work has been done to extend his results to trees and graphs [15, 26, 27]. We
conjecture that for graph maps, the β-limit sets can be used to characterize the Birkhoff centre
Rec( f ) as follows:

Conjecture 53. Let f : X → X be a graph map, and let x ∈ X. The following are equivalent:

(a) x ∈ Rec( f )
(b) x ∈ β(x)
(c) There exists y ∈ X such that x ∈ β(y).

The coexistence of periodic orbits for interval maps was studied by Sharkovsky [22]. A
special case of his theorem, proved independently by Li and Yorke, says that if f : [0, 1] →
[0, 1] has a periodic orbit of period three, then it has periodic orbits of all periods [19].

This suggests the problem of studying the coexistence of periodic orbits within special α-
limit sets.5 In this spirit, we offer one conjecture and one open problem.

Conjecture 54. Let f : [0, 1] → [0, 1] and x ∈ [0, 1]. If sα(x) contains a periodic orbit of
period 3, then for every positive integer n, sα(x) contains a periodic orbit of period n or 2n.

Problem 55. For which subsets A ⊆ N is there a map f : [0, 1] → [0, 1] and a point x ∈
[0, 1] such that A is the set of periods of all periodic orbits of f contained in sα(x)?

In support of conjecture 54, we show that the conclusion holds for n = 1.

Lemma 56. Let f : [0, 1] → [0, 1] and x ∈ [0, 1]. If sα(x) contains a periodic orbit of period
3, then it contains a periodic orbit of period 1 or 2 as well.

Proof. Let sα(x) contain the periodic orbit {a, b, c} for the interval map f with a < b < c.
We may assume without loss of generality that f (a) = b, f (b) = c, and f (c) = a. By con-
tinuity we may choose a closed interval U = [b − ε, b + ε] with ε > 0 small enough that
f 2(U) < U < f (U), that is to say, max f 2(U) < min U < max U < min f (U). Now find
x1 ∈ U and n1 � 1 such that f n1 (x1) = x. By the intermediate value theorem we can find
x2 ∈ (max U, min f (U)) such that f (x2) = x1. Again, by the intermediate value theorem we
can find x3 ∈ (x1, x2) such that f (x3) = x2. In the next step we find x4 ∈ (x3, x2) such that
f (x4) = x3. Continuing inductively we find a whole sequence (xi) such that f (xi+1) = xi,
i � 1, arranged in the following order,

x1 < x3 < x5 < · · · < · · · < x6 < x4 < x2.

Since a bounded monotone sequence of real numbers has a limit, we may
put x−∞ = limi→∞ x2i+1 and x+∞ = limi→∞ x2i+2, and we have x−∞ � x+∞. Then
f (x−∞) = lim f (x2i+1) = lim x2i = x+∞ and similarly f (x+∞) = x−∞. This shows that {x+∞, x−∞}

5 Or equivalently, within β-limit sets, since by theorem 8 a periodic orbit of an interval map f is contained in sα(x) if
and only if it is contained in β(x).
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is a periodic orbit contained in sα(x). The period is 2 if these points are distinct and 1 if they
coincide. �

Example 57. Let f : [0, 5] → [0, 5] be the ‘connect-the-dots’ map with f (0) = 1, f (1) = 5,
f (4) = 2, f (5) = 0, and which is linear (affine) on each of the intervals [0, 1], [1, 4], and [4,
5]. Then sα(0) contains the period-three orbit {0, 1, 5} and the period-two orbit {2, 4}, but not
the unique period-one orbit {3}.

Example 58. Let f : [0, 8] → [0, 8] be the ‘connect-the-dots’ map with f (0) = 4, f (4) = 8,
f (5) = 3, f (8) = 0, and which is linear (affine) on each of the intervals [0, 4], [4, 5], and
[5, 8]. Then sα(0) contains the period-three orbit {0, 4, 8}, the period-four orbit {1, 5, 3, 7}
and the period-one orbit { 14

3 }, but not the unique period-two orbit {2, 6}.
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Abstract. We construct an infinite-dimensional compact metric space X , which is a closed
subset of S×H, where S is the unit circle and H is the Hilbert cube, and a skew-
product map F acting on X such that (X, F) is Li–Yorke sensitive but possesses at
most countable scrambled sets. This disproves the conjecture of Akin and Kolyada that
Li–Yorke sensitivity implies Li–Yorke chaos [Akin and Kolyada. Li–Yorke sensitivity.
Nonlinearity 16, (2003), 1421–1433].

1. Introduction
Li–Yorke sensitivity and Li–Yorke chaos are well-known properties of dynamical systems,
where by a dynamical system we mean a phase space X endowed with an evolution map
T . We require that the phase space (X, d) is a compact metric space and the evolution map
is a continuous surjective mapping T : X→ X .

The definition of Li–Yorke sensitivity is a combination of sensitivity and Li–Yorke
chaos. Li–Yorke chaos was introduced in 1975 by Li and Yorke in [8]. A dynamical system
is Li–Yorke chaotic if there is an uncountable scrambled set. A set S is scrambled if any
two distinct points x, y ∈ S are proximal (i.e. trajectories of x and y are arbitrarily close
for some times) but not asymptotic, which means that

lim inf
n→∞

d(T n(x), T n(y))= 0 and lim sup
n→∞

d(T n(x), T n(y)) > 0.

The initial idea of sensitivity goes back to Lorenz [9], but it was firstly used in
topological dynamics by Auslander and Yorke in [2] and popularized later by Devaney
in [5]. A map T is sensitive if there is ε > 0 such that, for each x ∈ X and each δ > 0, there
is y ∈ X with d(x, y) < δ and n ∈ N such that d(T n(x), T n(y)) > ε. By Huang and Ye
in [6], T is sensitive if and only if there is ε > 0 with the property that any neighbourhood
of any x ∈ X contains a point y such that trajectories of x and y are separated by ε for
infinitely many times, that is,

lim sup
n→∞

d(T n(x), T n(y)) > ε.
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Inspired by the above results, Akin and Kolyada introduced Li–Yorke sensitivity in [1].
A map T is Li–Yorke sensitive if there is ε > 0 with the property that any neighbourhood of
any x ∈ X contains a point y proximal to x , such that trajectories of x and y are separated
by ε for infinitely many times. Thus,

lim inf
n→∞

d(T n(x), T n(y))= 0 and lim sup
n→∞

d(T n(x), T n(y)) > ε.

Akin and Kolyada proved, among other things, that weak mixing systems are Li–Yorke
sensitive and stated five conjectures concerning Li–Yorke sensitivity. Three of them were
disproved in [3] and [4], one was confirmed recently in [10]. Only one problem remained
open until now, as follows.

Question 1. Are all Li–Yorke sensitive systems Li–Yorke chaotic?

This question was also included in the list of important open problems in contemporary
chaos theory in topological dynamics in [7].

We show that the answer is negative. We construct an infinite-dimensional compact
metric space X , which is a closed subset of S×H, where S is the unit circle and H is
the Hilbert cube, and a skew-product map F , which is a combination of a rotation on
S and a contraction on H, such that (X, F) is Li–Yorke sensitive but possesses at most
countable scrambled sets. The mapping F can be continuously extended to get a connected
dynamical system with the same properties, see Remark 1.

We recall here some notation used throughout the paper. A pair of points (x, y) in X2

is asymptotic if limn→∞ d(T n(x), T n(y))= 0. A pair of points (x, y) in X2 is proximal if
lim infn→∞ d(T n(x), T n(y))= 0; if (x, y) is not proximal then it is called distal. A pair of
points (x, y) in X2 is scrambled if it is proximal but not asymptotic. A pair of points (x, y)
in X2 is scrambled with modulus ε if it is proximal and lim supn→∞ d(T n(x), T n(y))≥ ε.
A system (X, T ) is minimal if every point x ∈ X has a dense orbit {T n(x)}∞n=0. A system
is transitive if, for every pair of open, non-empty subsets U, V ⊂ X , there is a positive
integer n ∈ N such that U ∩ T n(V ) 6= ∅. A system (X, T ) is weakly mixing if the product
system (X × X, T × T ) is transitive.

2. Main result
Here we state the main result and outline of its proof. Technical details of the proof can be
found in the form of lemmas and claims in the last section.

THEOREM 1. There is a Li–Yorke sensitive dynamical system which is not chaotic in the
Li–Yorke sense.

Proof. Let X0 be the unit circle S= R/Z equipped with the metric d0(x, y)=min{|x −
y|, 1− |x − y|} and, for i ≥ 1, X i = N ∪ {∞} equipped with the metric di (x, y)=
|(1/x)− (1/y)|, where 1/∞= 0. Then

∏
∞

i=0 X i with the product topology is a compact
space. The product topology is equivalent to the metric topology induced by the metric
D(x, y)=

∑
∞

i=0 (di (xi , yi )/2i ). Let Y = {x ∈
∏
∞

i=0 X i : {xi }
∞

i = 1 is non-decreasing}. Y
is a closed subset of

∏
∞

i=0 X i and therefore it is a compact metric space. Notice that, for
i ≥ 1, X i can be embedded into the unit interval [0, 1] equipped with the natural topology,
so Y can be identify with a closed subset of S×H, where H is the Hilbert cube.
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Let F : Y → Y be a mapping defined for a point x = (x0, x1, x2, . . .) in Y by F(x)=
( f0(x), f1(x), f2(x), . . .), where

f0(x)=
(

x0 +

∞∑
i = 1

1
2i ·

1
xi

)
mod 1, (1)

fi (x)= xi + 1 for i ≥ 1, (2)

where ∞+ 1=∞. F is a continuous mapping, since fi is continuous, for every i ≥ 0.
First, we will show that (F, Y ) is Li–Yorke sensitive. It is enough to show that, for a given
x = (x0, x1, x2, . . .) ∈ Y and U ∈ Nbx , there is y = (y0, y1, y2, . . .) ∈U such that

lim inf
n→∞

D(Fn(x), Fn(y))= 0 and lim sup
n→∞

D(Fn(x), Fn(y))≥ 1
2 .

Case I. {xi }
∞

i = 1 is a non-decreasing sequence containing at least one ∞. Since {xi }
∞

i = 1
is non-decreasing, there is M ∈ N such that xi is finite, for i < M , and xi =∞, for i ≥
M . The neighbourhood U is defined by U = V ∩ Y , where V is a neighbourhood of x
in
∏
∞

i=0 X i . Let V = V0 × V1 × V2 × . . . , where Vi is a neighbourhood of xi such that
Vi = X i for all but finitely many i ≥ 0. Let K ∈ N, sufficiently large to satisfy K ∈ Vi , for
i ≥ M , and simultaneously K ≥ xM−1. We define the point y as follows:

yi =xi for 0≤ i < M, (3)

yi =K for i ≥ M. (4)

It is easy to see that y belongs to U . By Claim 1 in the next section, (x, y) is scrambled
with modulus 1

2 .
Case II. {xi }

∞

i = 1 is a non-decreasing sequence of finite numbers. The neighbourhood U
is defined by U = V ∩ Y , where V is a neighbourhood of x in

∏
∞

i=0 X i . Without loss
of generality, suppose V = V0 × V1 × V2 × · · · , where V0 = (x0 − δ, x0 + δ), for some
δ > 0, and, for i > 0, Vi is a neighbourhood of xi such that Vi = X i for all but finitely
many i . Let M ∈ N such that 2−M < δ and simultaneously Vi = X i , for i ≥ M . We define
the point y as follows:

y0 =

(
x0 + 1−

∞∑
i = 1

1
2i+M δi

)
mod 1, (5)

yi =xi for 0< i < M, (6)

yi =∞ for i ≥ M, (7)

where

δi =


0 if xi+M = xM ,( xi+M−xM−1∑

j = 0

1
xM + j

)
mod 1 otherwise.

It is easy to see that
∑
∞

i = 1 (1/2
i+M )δi ≤ 2−M and y belongs to U . By Claim 2, (x, y)

is scrambled with modulus 1
2 .

Notice that, in both cases, one point of the pair (x, y) has ∞ coordinates while the
other has all coordinates finite. By Claim 3, if xi and yi are finite, for all i ≥ 1, then
limn→∞ D(Fn(x), Fn(y)) exists and (x, y) is not a scrambled pair. Therefore in each
scrambled set S ⊂ Y , there is at most one z ∈ S such that zi is finite, for i ≥ 1. We finish
our proof by finding an injection between S\{z} and N.
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Let lx =min{i : xi =∞}. Then the mapping ι : S\{z} → N defined by ι(x)= lx is
injective. We proceed by assuming the opposite. Let x 6= y in S\{z} such that l = lx = ly .
Since {xi }

∞

i = 1 and {yi }
∞

i = 1 are non-decreasing,

xi <∞∧ yi <∞ for 0< i < l, xi = yi =∞ for i ≥ l. (8)

By Claim 4, limn→∞ D(Fn(x), Fn(y)) exists, which contradicts (x, y) being a scrambled
pair. �

Remark 1. The mapping F can be continuously extended to get a connected dynamical
system with the same properties. Let X0 be the unit circle S= R/Z equipped with the
metric d0(x, y)=min{|x − y|, 1− |x − y|} and, for i ≥ 1, X i be the unit interval [0, 1]
equipped with the natural topology. Then

∏
∞

i=0 X i equipped with the product topology is
S×H, where H is the Hilbert cube. The product topology is equivalent to the metric
topology induced by the metric D(x, y)=

∑
∞

i=0 (di (xi , yi )/2i ). Let Z = {x ∈ S×H :
{xi }
∞

i = 1 is non-increasing}. Z is a closed and pathwise connected subset of S×H.
Let x = (x0, x1, x2, . . .) be a point in Z . We will express every xi ∈ X i\{0} = (0, 1],

for i ≥ 1, as xi = 1/ki + ti · |(1/(ki − 1))− (1/ki )|, where ti ∈ (0, 1] and ki ∈ N\{1}. Let
G : Z→ Z be a mapping defined by G(x)= (g0(x)g1(x), g2(x), . . .), where

g0(x)=
(

x0 +

∞∑
i = 1

1
2i · xi

)
mod 1

and, for i ≥ 1,

gi (x)=

0 if xi = 0,
1

ki + 1
+ ti ·

∣∣∣∣ 1
ki
−

1
ki + 1

∣∣∣∣ otherwise.

Then G is a continuous extension of F and (G, Z) is a Li–Yorke sensitive but not Li–Yorke
chaotic system.

Remark 2. The mapping F is not minimal (it is even not transitive). In the case of minimal
maps, we still have the following open question.

Question 2. Are all Li–Yorke sensitive minimal systems Li–Yorke chaotic?

Remark 3. Y is an infinite-dimensional space. We can examine the relation between Li–
Yorke sensitivity and Li–Yorke chaos for low-dimensional dynamical systems. It is known
that in the case of graph mappings (in particular, interval mappings) Li–Yorke sensitivity
implies Li–Yorke chaos, since, for graph mappings, the existence of a single scrambled
pair implies the existence of an uncountable scrambled set. But this is not true for other
classes of dynamical systems—shifts, maps on dendrites, triangular maps of the square.

Question 3. Are all Li–Yorke sensitive shifts/maps on dendrites/triangular maps of the
square Li–Yorke chaotic?

3. Proofs
LEMMA 1. Let p ∈ N, m ∈ N and ε > 0. There are sequences {vn}

∞

n=1 and {un}
∞

n=1 such
that

for every n ∈ N,
(

1
2p

vn−1∑
j = 0

1
m + j

)
mod 1< ε, (9)
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and

for every n ∈ N,
∣∣∣∣( 1

2p

un−1∑
j = 0

1
m + j

)
mod 1−

1
2

∣∣∣∣< ε. (10)

Lemma 1 follows by the simple fact that the harmonic series is divergent while its
increment tends to 0. Therefore the nth partial sum of harmonic series modulo 1 is ε-close
to any number from [0, 1) for infinitely many n.

LEMMA 2. For any i ∈ N, let {δn
i }
∞

n=1 be a sequence of positive numbers not greater than
1, such that limn→∞ δ

n
i = 0. Then

lim
n→∞

∞∑
i = 1

1
2i δ

n
i = 0.

Proof. For every ε > 0, there is k ∈ N such that ε > 2−k+1. Since limn→∞ δ
n
i = 0, for

every i ∈ N, there is N ∈ N such that, for n ≥ N and i ≤ k, δn
i < 2−k . We can estimate, for

n ≥ N ,
∞∑

i = 1

1
2i δ

n
i <

k∑
i = 1

1
2i δ

n
i +

∞∑
i=k+1

1
2i < (1− 2−k) · 2−k

+ 2−k < ε. �

LEMMA 3. Let k ∈ N, r ∈ N. Then

lim
n→∞

n−1∑
j = 0

(
1

k + j
−

1
k + r + j

)
=

r−1∑
j = 0

1
k + j

.

Proof. The sums telescope. For sufficiently large n,

n−1∑
j = 0

(
1

k + j
−

1
k + r + j

)
=

r−1∑
j = 0

1
k + j

−

n−1∑
j=n−r

1
k + r + j

,

where the second term on the right-hand side tends to 0 for n→∞. �

CLAIM 1. x and y defined in (3) and (4) are a scrambled pair with modulus 1
2 .

Proof. Denote the i th coordinate of Fn(x) by xn
i . The first members of the sequences

{xn
0 }
∞

n=1 and {yn
0 }
∞

n=1 are

x0 7→

(
x0 +

M−1∑
i = 1

1
2i

1
xi

)
mod 1 7→

(
x0 +

M−1∑
i = 1

1
2i

1
xi
+

M−1∑
i = 1

1
2i

1
xi + 1

)
mod 1 . . . ,

y0 = x0 7→

(
x0 +

M−1∑
i = 1

1
2i

1
xi
+

∞∑
i=M

1
2i

1
K

)
mod 1

7→

(
x0 +

M−1∑
i = 1

1
2i

1
xi
+

∞∑
i=M

1
2i

1
K
+

M−1∑
i = 1

1
2i

1
xi + 1

+

∞∑
i=M

1
2i

1
K + 1

)
mod 1 . . . .
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The following equations are with modulus 1 whenever necessary. Since d0(xn
0 , yn

0 )≤

|xn
0 − yn

0 |, where

|xn
0 − yn

0 | =

∞∑
i=M

n−1∑
j = 0

1
2i

1
K + j

= 2−M+1
·

n−1∑
j = 0

1
K + j

(11)

and
di (xn

i , yn
i )= 0 for 0< i < M, di (xn

i , yn
i )=

1
K + n

for i ≥ M,

we can estimate

D(Fn(x), Fn(y))≤ 2−M+1
·

n−1∑
j = 0

1
K + j

+

∞∑
i=M

1
2i

1
K + n

.

Let ε > 0. By (9) in Lemma 1, there is {vn}
∞

n=1 such that(
2−M+1

·

vn−1∑
j = 0

1
K + j

)
mod 1< ε for n ≥ 1.

By Lemma 2 and since limn→∞ (1/(K + n))= 0, we have
∑
∞

i=M (1/2i )(1/(K + vn))

< ε, for sufficiently large v. Therefore limv→∞ D(Fvn (x), Fvn (y)) < 2ε and
lim infn→∞ D(Fn(x), Fn(y))= 0. Similarly, by (10) in Lemma 1, there is {un}

∞

n=1 such
that

∣∣(2−M+1 ∑un−1
j = 0 (1/(K + j))

)
mod 1− 1

2

∣∣< ε, for sufficiently large n. Therefore,

by (11), d0(x
un
0 , yun

0 ) >
1
2 − ε and lim supn→∞ D(Fn(x), Fn(y))≥ 1

2 . �

CLAIM 2. x and y defined in (5)–(7) are a scrambled pair with modulus 1
2 .

Proof. Denote the i th coordinate of Fn(x) by xn
i . The first members of the sequences

{xn
0 }
∞

n=1 and {yn
0 }
∞

n=1 are

x0 7→

(
x0 +

∞∑
i = 1

1
2i

1
xi

)
mod 1 7→

(
x0 +

∞∑
i = 1

1
2i

1
xi
+

∞∑
i = 1

1
2i

1
xi + 1

)
mod 1 . . . ,

y0 =

(
x0 + 1−

∞∑
i = 1

1
2i+M δi

)
mod 1

7→

(
x0 + 1−

∞∑
i = 1

1
2i+M δi +

M−1∑
i = 1

1
2i

1
xi

)
mod 1

7→

(
x0 + 1−

∞∑
i = 1

1
2i+M δi +

M−1∑
i = 1

1
2i

1
xi
+

M−1∑
i = 1

1
2i

1
xi + 1

)
mod 1 . . . .

Notice that, for sufficiently large n,

δi +

n−1∑
j = 0

1
xi+M + j

=

n−1∑
j = 0

1
xM + j

+ γ n
i , (12)
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where

γ n
i =


0 if xi+M = xM ,( xi+M−1∑

j=xM

1
n + j

)
mod 1 otherwise.

The following equations are with modulus 1 whenever necessary. Since

d0(xn
0 , yn

0 ) ≤ |x
n
0 − yn

0 | =

∞∑
i = 1

1
2i+M δi +

∞∑
i=M

n−1∑
j = 0

1
2i

1
xi + j

=

∞∑
i = 1

1
2i+M

(
δi +

n−1∑
j = 0

1
xi+M + j

)
+

n−1∑
j = 0

1
2M

1
xM + j

(12)
=

∞∑
i=0

1
2i+M

( n−1∑
j = 0

1
xM + j

+ γ n
i

)
+

n−1∑
j = 0

1
2M

1
xM + j

= 2−M+1
·

n−1∑
j = 0

1
xM + j

+

∞∑
i=0

1
2i+M γ

n
i

and
di (xn

i , yn
i )= 0 for 0< i < M, di (xn

i , yn
i )=

1
xi + n

for i ≥ M,

we can estimate

D(Fn(x), Fn(y))≤ 2−M+1
·

n−1∑
j = 0

1
xM + j

+

∞∑
i=0

1
2i+M γ

n
i +

∞∑
i=M

1
2i

1
xi + n

.

Let ε > 0. By (9) in Lemma 1, there is {vn}
∞

n=1 such that(
2−M+1

·

vn−1∑
j = 0

1
xM + j

)
mod 1< ε for n ≥ 1.

By Lemma 2 and since limn→∞ γ
n
i = 0 and limn→∞ (1/(xi + n))= 0, for i ≥ 1, we have

∞∑
i=0

1
2i+M γ

vn
i < ε and

∞∑
i=M

1
2i

1
xi + vn

< ε,

for sufficiently large n. Therefore limv→∞ D(Fvn (x), Fvn (y)) < 3ε and
lim infn→∞ D(Fn(x), Fn(y))= 0. Similarly, by (10) in Lemma 1, there is {un}

∞

n=1
such that ∣∣∣∣(2−M+1

un−1∑
j = 0

1
xM + j

)
mod 1+

∞∑
i=0

1
2i+M γ

un
i −

1
2

∣∣∣∣< 2ε,

for sufficiently large n. Therefore d0(x
un
0 , yun

0 ) >
1
2 − 2ε and lim supn→∞ D(Fn(x),

Fn(y))≥ 1
2 . �

CLAIM 3. If xi and yi are finite, for all i ≥ 1, then limn→∞ D(Fn(x), Fn(y)) exists and
(x, y) is not a scrambled pair.
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Proof. Let ri = |xi − yi |. The following equations are with modulus 1 whenever
necessary. Observe that, by Lemma 3,

lim
n→∞

∞∑
i=1

xi≤yi

1
2i

n−1∑
j = 0

(
1

xi + j
−

1
yi + j

)
= lim

n→∞

∞∑
i=1

xi≤yi

1
2i

n−1∑
j = 0

(
1

xi + j
−

1
xi + ri + j

)

=

∞∑
i=1

xi≤yi

1
2i

ri−1∑
j = 0

1
xi + j

(13)

and, similarly,

lim
n→∞

∞∑
i=1

xi>yi

1
2i

n−1∑
j = 0

(
1

yi + j
−

1
xi + j

)
=

∞∑
i=1

xi>yi

1
2i

ri−1∑
j = 0

1
yi + j

. (14)

Since

|xn
0 − yn

0 | =

∣∣∣∣x0 − y0 +

∞∑
i = 1

1
2i

n−1∑
j = 0

(
1

xi + j
−

1
yi + j

)∣∣∣∣
=

∣∣∣∣x0 − y0 +

∞∑
i=1

xi≤yi

1
2i

n−1∑
j = 0

(
1

xi + j
−

1
yi + j

)

−

∞∑
i=1

xi>yi

1
2i

n−1∑
j = 0

(
1

yi + j
−

1
xi + j

)∣∣∣∣ (15)

and

di (xn
i , yn

i )=

∣∣∣∣ 1
xi + n

−
1

yi + n

∣∣∣∣ for i ≥ 1,

it follows, by Lemma 2 and by limn→∞ |(1/(xi + n))− (1/(yi + n))| = 0, that

lim
n→∞

D(Fn(x), Fn(y)) = lim
n→∞

d0(xn
0 , yn

0 )+ lim
n→∞

∞∑
i = 1

1
2i

∣∣∣∣ 1
xi + n

−
1

yi + n

∣∣∣∣
= min{ lim

n→∞
|xn

0 − yn
0 |, 1− lim

n→∞
|xn

0 − yn
0 |},

where, by equations (13)–(15),

lim
n→∞

|xn
0 − yn

0 | =

∣∣∣∣x0 − y0 +

∞∑
i=1

xi≤yi

1
2i

ri−1∑
j = 0

1
xi + j

−

∞∑
i=1

xi>yi

1
2i

ri−1∑
j = 0

1
yi + j

∣∣∣∣.
Therefore limn→∞ D(Fn(x), Fn(y)) exists, which contradicts (x, y) being a scrambled
pair. �

CLAIM 4. For x and y defined in (8), limn→∞ D(Fn(x), Fn(y)) exists and (x, y) is not
a scrambled pair.
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Proof. Let ri = |xi − yi |, for 0< i < l. By a calculation similar to that in Claim 3,

lim
n→∞

D(Fn(x), Fn(y)) = lim
n→∞

d0(xn
0 , yn

0 )+ lim
n→∞

l−1∑
i = 1

1
2i

∣∣∣∣ 1
xi + n

−
1

yi + n

∣∣∣∣
= min{ lim

n→∞
|xn

0 − yn
0 |, 1− lim

n→∞
|xn

0 − yn
0 |},

where

lim
n→∞

|xn
0 − yn

0 | =

∣∣∣∣x0 − y0 +

l−1∑
i=1

xi≤yi

1
2i

ri−1∑
j = 0

1
xi + j

−

l−1∑
i=1

xi>yi

1
2i

ri−1∑
j = 0

1
yi + j

∣∣∣∣.
Therefore limn→∞ D(Fn(x), Fn(y)) exists, which contradicts (x, y) being a scrambled
pair. �
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a b s t r a c t

The paper solves a question posed by Oprocha on the existence of invariant distributionally
chaotic scrambled sets. We show, among other things, that a continuous map f acting on
compact metric space (X, d) with a weak specification property, fixed point, and infinitely
manymutually distinct periods has a dense Mycielski (i.e., c dense set of type Fσ ) invariant
distributionally scrambled set. As a consequence, we describe a class of maps with a
distributionally scrambled invariant set of full Lebesgue measure in the case when X is
a k-dimensional cube.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In 2005, it was proved by Du that an interval map f has positive topological entropy if and only if some of its iterates
have an invariant Li–Yorke scrambled set [1]. Thus we get a new characterization of a class of interval maps with positive
topological entropy, and this shows that invariant scrambled sets are of great interest. In 2010, Balibrea et al. considered
invariant Li–Yorke chaos in [2] and constructed adenseMycielski invariant ϵ-scrambled set. Another result about pointswith
trajectories forming scrambled sets can be found in [3]. One of the most important extensions of the concept of Li–Yorke
chaos is distributional chaos, introduced in [4]. Recently, Oprocha proved that if f is a continuous turbulent map of unit
interval f : I → I then there exists a distributionally scrambled set D such that f (D) ⊂ D and the distributional chaos is
uniform [5]. His method cannot be extended to the mapping of a general compact metric space, so he stated following open
question.

Question. Does every map f with the specification property and a fixed point contain a distributionally scrambled set such that
f (D) ⊂ D?

The aim of this article is to prove that the answer is positive (but with some additional assumption about the set of periodic
points) and also to study the topological size of such sets.

1.1. Terminology

Let (X, d) be a compact metric space. Let us denote C(X) the set of continuous self-maps acting on X . Let f ∈ C(X). Point
x is periodic if f n(x) = x with period n > 1 but f i(x) ≠ x for all 0 < i < n. Point x is said to be fixed if f (x) = x. We define
the forward orbit of x, denoted by Orb+

f (x), as the set {f n(x) : n ≥ 0}.
By I we denote the compact unit interval [0, 1]. By the k-dimensional unit cube we mean the set Ik, where k ≥ 1. The

Lebesgue measure on Ik will be denoted by λ. By a perfect set we mean a compact set without isolated points. By Cantor set
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we mean a nonempty, perfect, and totally disconnected set. We say that a set D ⊂ X is invariant if f (D) ⊂ D. The Mycielski
set is defined as a countable union of Cantor sets.

A function f mapping a compact metric space (X, d) into itself has the strong specification property (briefly SSP) if, for
any δ > 0, there is a positive integer K(δ) such that, for any integer s ≥ 2, any set {y1, y2, . . . , ys} of s points of X , and any
sequence 0 = j1 ≤ k1 < j2 ≤ k2 · · · < js ≤ ks of 2s integers with jm+1 − km ≥ K(δ) for m = 0, . . . , s − 1, there is a point x
in X such that

f n(x) = x, (1)
where n = K(δ) + ks and for each positive integerm ≤ s and all integers iwith jm ≤ i ≤ km

d(f i(x), f i(ym)) < δ. (2)
A function f hasweak specification property (brieflyWSP) if f fulfills the above-mentioned conditions only for the special case
s = 2. Because we do not need the full force of this notation to obtain our result, we can omit the periodicity condition (1)
and denote this version of specification property by WSP∗. Actually, there are many various kinds of specification property
(for example the generalized specification property in [6]).

For a pair (x, y) of points in X , define the lower distribution function generated by f , x, and y as

Φx,y(δ) = lim inf
n→∞

1
n
#{0 < j < n; d(f j(x), f j(y)) < δ},

and the upper distributional function as

Φ∗

x,y(δ) = lim sup
n→∞

1
n
#{0 < j < n; d(f j(x), f j(y)) < δ},

where #A denotes the cardinality of the set A.
A pair of points (x, y) ∈ X2 is called distributionally chaotic of type 1 (briefly DC1) if

Φ∗

x,y ≡ 1 and Φx,y(δ) = 0, for some 0 < δ ≤ diam X .

A set containing at least two points is called a distributionally scrambled set of type 1 (briefly a D1-scrambled set) if any pair
of its distinct points is distributionally chaotic of type 1. We say that a continuous map from the unit cube Ik into itself
exhibits invariant distributional chaos of type 1 almost everywhere (briefly invariant DC1 a.e.) if there exists a distributionally
scrambled set D ⊂ Ik of type 1 such that λ(D) = 1 and f (D) ⊂ D.

1.2. Distributionally scrambled invariant sets in a compact metric space

In this section we will show how an invariant distributionally scrambled set can be constructed. We will use the
specification property because there is a close relation between distributional chaos and the specification property (see
for example [6]).

Theorem 1. Let (X, d) be a compact metric space, #X > 1, and let f : X → X be a continuous mapping with WSP∗ which has a
fixed point and infinitely many periodic points with mutually different periods. Then there is a point x ∈ X such that (f i(x), f j(x))
is a DC1 pair for all i ≠ j, i.e., the forward orbit of x is a D1-scrambled set.

Remark. The assumption about fixed point is natural: if x belongs to an invariant scrambled set, then (x, f (x)) is proximal.
By the compactness of X there is an increasing sequence ki and a point p ∈ X such that limi→∞ f ki(x) = p and
d(f ki(x), f ki(f (x))) = 0, which by continuity of f implies that f (p) = p.

In the previous theorem we obtained a countable D1-scrambled invariant set. Another interesting question is how large
can this set be.

Theorem 2. Let (X, d) be a compact metric space, #X > 1, and let f : X → X be a continuous mapping with WSP∗ which has
a fixed point and infinitely many periodic points with mutually different periods. Then there is a dense invariant D1-scrambled
Mycielski set.

Remark. Let Ik be the k-dimensional unit cube and D ⊂ Ik be a dense union of perfect sets. Then D is homeomorphic to a
set of full Lebesgue measure. An appropriate homeomorphism is obtained by application of the Oxtoby–Ulam theorem [7].
A similar method was used by Oprocha and Štefánková in [8].

Theorem 3 (Oxtoby, Ulam). Let B ⊂ Ik and suppose that there exists a sequence {Sn}∞n=1 of perfect sets Sn such that ∪
∞

n=1 Sn is
dense in Ik. Then there exists a homeomorphism h : Ik → Ik such that h|∂ Ik = id and λ(h(B)) = 1.

Corollary. Every map f ∈ C(Ik) with WSP∗, fixed point, and infinitely many periodic points with mutually different periods is
conjugate to some map g ∈ C(Ik) which exhibits invariant DC1 a.e.

Proof. The map g is obtained by application of Theorems 2 and 3. It was proved in [9] that the image of a D1-scrambled set
via conjugacy remains D1-scrambled and also that the image of an invariant set remains invariant. �
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2. Proofs

Proof of Theorem 1. Denote by p the fixed point and by {qi}∞i=1 the set of periodic points with different periods. Let {aj}∞j=1
be the sequence

p, q1, p, q1, q2, p, q1, q2, q3, p, q1, q2, q3, q4, p, . . . ,

and δi =
δ

2i
for any i ≥ 1, where δ > 0 is arbitrary. Let Ki be K(δi), for i ≥ 1, from the definition of WSP∗. We can construct

an increasing sequence of integers 0 = j1 < k1 < j2 < k2 < j3 < k3 < · · · such that ji+1 − ki > Ki, for any i ≥ 1, and

lim
i→∞

ki
ji

= ∞.

We now go through the recursive procedure.
Stage 1. Let v ∈ X be an arbitrary point. Apply the definition ofWSP∗ with δ = δ1, y1 = v, y2 = a1, and integers j1, k1, j2, k2
to obtain a point x that satisfies

d(f i(x), f i(v)) < δ1, for j1 ≤ i ≤ k1,

d(f i(x), f i(a1)) < δ1, for j2 ≤ i ≤ k2. (3)

Denote this point x1. Since f and its iterates are by compactness of X uniformly continuous, there is δj(1) ≤ δ2 such that
every point x in the closed ball B(x1, δj(1)) with center in x1 and radius δj(1) also satisfies (3).
Stage n, for n ≥ 2. Apply the definition of WSP∗ with δ = δj(n−1), y1 = xn−1, y2 = an, and integers j1, kn, jn+1, kn+1 to obtain
a point x that satisfies

d(f i(x), f i(xn−1)) < δj(n−1), for j1 ≤ i ≤ kn,

d(f i(x), f i(an)) < δj(n−1), for jn+1 ≤ i ≤ kn+1. (4)

Denote this point by xn, and find a number δj(n) ≤ δn+1 such that every point x in the closed ball B(xn, δj(n)) satisfies (4) and
also B(xn, δj(n)) ⊂ B(xn−1, δj(n−1)). By this recursive procedure we get a nested sequence {B(xn, δj(n))} of nonempty closed
sets. There is therefore at least one point x ∈ ∩

∞

n=1 B(xn, δj(n)), and by (4), for every n ≥ 1,

d(f i(x), f i(an)) < δn, for jn+1 ≤ i ≤ kn+1. (5)

We claim that this x is the wanted point. Let z = f l(x), y = f m(x), suppose that l > m, and denote ∆ = l − m. Because
asn = p, where sn =

n
j=1 j, for every n ≥ 1, we get

d(f i(x), p) < δsn , for jsn+1 ≤ i ≤ ksn+1,

and hence

d(f i(y), f i(z)) < 2δsn , for jsn+1 − m ≤ i ≤ ksn+1 − m − ∆.

It follows that

#{0 ≤ i ≤ ksn+1; d(f i(y), f i(z)) < 2δsn} ≥ ksn+1 − jsn+1 − ∆.

Since limn→∞ δsn = 0, it is easy to see that Φ∗
y,z ≡ 1 for all y ≠ z. Let us proceed with the lower distributional function. We

can find periodic point qr such that |qr | > ∆, where |qr | denotes the period of qr . Let

ϵr = min
i,j∈{0,1,...,|qr |−1}

i≠j

d(f i(qr), f j(qr)).

Because asn = qr , where sn = r +
n+r−1

j=1 j, for every n ≥ 1, we get

d(f i(x), f i(qr)) < δsn , for jsn+1 ≤ i ≤ ksn+1,

and hence

d(f i(y), f i(z)) > ϵr − 2δsn , for jsn+1 − m ≤ i ≤ ksn+1 − m − ∆.

It follows that

#{0 ≤ i ≤ ksn+1; d(f i(y), f i(z)) < ϵr − 2δsn} ≤ jsn+1 + ∆.

Since Φy,z is left-continuous, we get Φy,z(ϵr) = limn→∞ Φy,z(ϵr − 2δsn) = 0. �

Before proving Theorem 2, we need the following lemma.

Lemma 1. There is a Cantor set B ⊂ {0, 1}N such that, for any distinct α = {α(i)}∞i=1 and β = {β(i)}∞i=1 in B, the set

{j ∈ N; α(j) ≠ β(j)} is infinite. (6)
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Proof. By Lemma 5.4 in [4] there is an uncountable Borel set B ⊂ {0, 1}N with the desired property. The result follows from
the Alexandrov–Hausdorff theorem [10]. �

Proof of Theorem 2. Let α ∈ B, where B is the set from Lemma 1. Let {a(α)
j }

∞

j=1 be the sequence

p, q1, b
(α)
1 , p, q1, q2, b

(α)
2 , p, q1, q2, q3, b

(α)
3 , p, q1, q2, q3, q4, b

(α)
4 , p, . . . , (7)

with the same notation as in Theorem 1, where {b(α)
j }

∞

j=1 is the sequence defined in the following way:

b(α)
j = p if α(j) = 0,

b(α)
j = q1 if α(j) = 1.

By the recursive procedure from Theorem 1 we get a point x(α) such that, for every n ≥ 1,

d(f i(x(α)), f i(a(α)
n )) < δn, for jn+1 ≤ i ≤ kn+1.

Denote C = {x(α)
; α ∈ B} and D̂ = ∪

∞

i=0 f
i(C). We claim that D̂ is a D1-scrambled set. If y, z ∈ D̂ then there are l,m ∈ N0

and α, β ∈ B such that

y = f l(x(α)) and z = f m(x(β)).

Case 1. If α = β , l ≠ m then, as in the proof of Theorem 1, (y, z) is a DC1 pair.

Case 2. If α ≠ β , then suppose that l ≥ m and denote ∆ = l−m. By (7), there is a sequence of integers {sn}∞n=1 such that, for
every n ≥ 1, asn = p, and therefore

d(f i(y), p) < δsn ∧ d(f i(z), p) < δsn ,

for all jsn+1 − m ≤ i ≤ ksn+1 − m − ∆. Thus it follows that Φ∗
y,z ≡ 1.

Because α ≠ β and α, β ∈ B, there is a subsequence {bjk}
∞

k=1 ⊂ {bj}∞j=1 such that, for every k ≥ 1,

b(α)
jk

= p ∧ b(β)

jk
= q1 or b(α)

jk
= q1 ∧ b(β)

jk
= p.

By (7), there is a sequence of integers {sn}∞n=1 such that, for every n ≥ 1, asn = bjk , and therefore

d(f i(y), f i(b(α)
jk

)) < δsn ∧ d(f i(z), f i(b(β)

jk
)) < δsn ,

for all jsn+1 − m ≤ i ≤ ksn+1 − m − ∆. Then Φy,z(ϵ) = 0, where ϵ = mini∈{0,1,...,|q1|−1} d(p, f i(q1)).
Let h : B → C be a bijection such that, for all α ∈ B,

h(α) = x(α).

To prove that h is a homeomorphism, it is sufficient to show that h is continuous. Let {αm}
∞

m=1 be a converging sequence in
B, i.e. limm→∞ αm = α; then, for an arbitrary i > 0, there is m0 such that, for all m > m0, the first i members of sequences
αm and α are equal. Therefore also the first imembers of {a(αm)

j }
∞

j=1 and {a(α)
j }

∞

j=1 are equal, and both xα and xαm belong to the
same {B(xi, δj(i))} from the recursive procedure. This exactly means that limm→∞ xαm = xα; hence h is a homeomorphism
and C is a Cantor set. Since C is D1-scrambled, the mapping f i|C : C → f i(C) is one-to-one and f i|C is a homeomorphism for
every i ≥ 1. Thus D̂ is a union of Cantor sets, but it is not dense in X . From Theorem 1, for every α ∈ B, x(α)

∈ B(v, δ), where
v ∈ X and δ > 0 are arbitrary, and hence C ⊂ B(v, δ). Let {Gi}

∞

i=1 denote a countable base of the topology of X consisting of
open balls. Let B(v, δ) = G1 to obtain a Cantor D1-scrambled set C1. If ∪

∞

i=0 f
i(C1) ≠ X , let v ∈ X and δ > 0 be the center

and radius of the first open ball Gk such that Gk ∩ (∪∞

i=0 f
i(C1)) = ∅ to obtain a Cantor set C2 ⊂ Gk. We must change the

construction of the sequence {aj}∞j=1 to guarantee that the union

∞
i=0

k∈{1,2}

f i(Ck)

remains D1-scrambled set as follows:

x(α,1)
∈ C1 ⇔ {a(α,1)

j }
∞

j=1 = p, q1, b
(α)
1 , q1, p, q1, q2, b

(α)
2 , q1, p, q1, q2, q3, b

(α)
3 , q1, p, q1, q2, q3, q4, b

(α)
4 , q1, p, . . . ,

x(α,2)
∈ C2 ⇔ {a(α,2)

j }
∞

j=1 = p, q1, b
(α)
1 , q2, p, q1, q2, b

(α)
2 , q2, p, q1, q2, q3, b

(α)
3 , q2, p, q1, q2, q3, q4, b

(α)
4 , q2, p, . . . .

By induction we obtain ∪
∞

i,k=0 f
i(Ck), which is invariant, dense, and D1-scrambled. �
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This article investigates the relation between the distributional chaos and the existence
of a scrambled triple. We show that for a continuous mapping f acting on a compact
metric space ðX; dÞ, the possession of an infinite extremal distributionally scrambled set
is not sufficient for the existence of a scrambled triple. We also construct an invariant
Mycielski set with an uncountable extremal distributionally scrambled set without any
scrambled triple.
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1. Introduction

The first definition of chaotic pairs appeared in the paper [5]. One of the most important

extensions of the concept of Li–Yorke chaos is distributional chaos introduced in [6].

This extended definition is much stronger – there are many mappings which are chaotic

in the sense of Li–Yorke but not distributionally chaotic. Another way how to extend the

Li–Yorke chaos is looking on dynamics of tuples instead of dynamics of pairs. In 2005,

[9] introduced the notation of n-chaos, for n $ 2. The classical Li–Yorke chaos is just

2-chaos in this sense. Since Xiong [8] and Smı́tal [7] constructed some interval maps

with zero topological entropy which are Li–Yorke chaotic, the Li–Yorke chaos is not a

sufficient condition for positive topological entropy. But interval maps with zero

topological entropy never contain scrambled triples [3] and hence existence of a

scrambled triple implies positive topological entropy. Consequently we can find a

dynamical system which is Li–Yorke chaotic but contains no scrambled triple. The

natural question was if there is a dynamical system which is distributionally chaotic but

contains no distributionally scrambled triple. Example in [4] contains no distributionally

scrambled triple but still there were some scrambled triples (in the sense of Li–Yorke)

and therefore another open problem appeared – is there a distributionally chaotic

dynamical system without any scrambled triple? In this paper, we construct a dynamical

system which possesses an infinitely countable extremal distributionally scrambled set

but without any scrambled triple. We show the existence of a non-compact dynamical

system which possesses an uncountable extremal distributionally scrambled set and has

no scrambled triple. But the following question remains open: In a compact dynamical

system, does the existence of uncountable distributionally scrambled set imply the

existence of a scrambled triple?
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2. Terminology

Let ðX; dÞ be a non-empty compact metric space. Let us denote by ðX; f Þ the topological
dynamical system, where f is a continuous self-map acting on X. We define the forward

orbit of x, denoted by Orbþ
f ðxÞ as the set ff nðxÞ : n $ 0}. A non-empty closed invariant

subset Y , X defines naturally a subsystem ðY; f Þ of ðX; f Þ. For n $ 2, we denote

by ðX n; f ðnÞÞ the product system ðX £ X £ · · · £ X; f £ f £ · · · £ f Þ and put DðnÞ ¼

fðx1; x2; . . . ; xnÞ [ X n : xi ¼ xj for some i – j}. By a perfect set we mean a non-empty

compact set without isolated points. A Cantor set is a non-empty, perfect and totally

disconnected set. A set D , X is invariant if f ðDÞ , D. A Mycielski set is defined as a

countable union of Cantor sets.

Definition 1. A tuple ðx1; x2; . . . ; xnÞ [ X n is called n-scrambled if

lim inf
k!1

max
1#i,j#n

dðf kðxiÞ; f
kðxjÞÞ ¼ 0 ð1Þ

and

lim sup
k!1

min
1#i,j#n

dðf kðxiÞ; f
kðxjÞÞ . 0: ð2Þ

A subset S of X is called n-scrambled if every n-tuple ðx1; x2; . . . ; xnÞ [ SnnDðnÞ
is

n-scrambled. The system ðX; f Þ is called n-chaotic if there exists an uncountable n-

scrambled set.

Definition 2. For an n-tuple ðx1; x2; . . . ; xnÞ of points in X, define the lower distribution

function generated by f as

Fðx1;x2; ... ;xnÞðdÞ ¼ lim inf
m!1

1

m
# 0 , k , m; min

1#i,j#n
dðf kðxiÞ; f

kðxjÞÞ , d

 !

;

and the upper distributional function as

F*
ðx1;x2; ... ;xnÞ

ðdÞ ¼ lim sup
m!1

1

m
# 0 , k , m; max

1#i,j#n
dðf kðxiÞ; f

kðxjÞÞ , d

 !

;

where #A denotes the cardinality of set A.

A tuple ðx1; x2; . . . ; xnÞ [ X n is called distributionally n-scrambled if

F*
ðx1;x2; ... ;xnÞ

; 1 and Fðx1;x2; ... ;xnÞðdÞ ¼ 0; for some 0 , d # diam X:

A subset S of X is called distributionally n-scrambled if every n-tuple ðx1; x2; . . . ; xnÞ [
SnnDðnÞ

is distributionally n-scrambled. The system ðX; f Þ is called distributionally n-

chaotic if there exists an uncountable distributionally n-scrambled set.

Definition 3. A subset S of X is called extremal distributionally n-scrambled if every

n-tuple ðx1; x2; . . . ; xnÞ [ SnnDðnÞ is distributionally n-scrambled with Fðx1;x2; ... ;xnÞðdÞ ¼ 0,

for any d , diamX:
Let A ¼ f0; 1; . . . ; n2 1}; n $ 2 be a finite alphabet and Sn a set of all infinite

sequences on A, that is, for u [ Sn, u ¼ u1u2u3 . . . , where ui [ A for all i $ 1. We define

J. Doleželová1170
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a metric on Sn by

dðu; vÞ ¼
X1

i¼1

dðui; viÞ

2i
;

where

dðui; viÞ ¼
0; ui ¼ vi

1; ui – vi:

(

The shift transformation is a continuous map s : Sn ! Sn given by sðuÞi ¼ uiþ1. The

dynamical system ðSn;sÞ is called the one-sided shift on n symbols. Any closed subset

X , Sn invariant for s is called a subshift of ðSn;sÞ.

Any finite string B of some u [ Sn is called a word (or a block) and the length of B is

denoted by jBj. Let B ¼ b1 . . . bn and G ¼ g1· · ·gn be words. Denote by BG ¼

b1· · ·bng1· · ·gn and for the case of S2 denote by "B the binary complement of B.

TheMorse block Mi is defined inductively such thatM0 ¼ 0, andMi ¼ Mi21
"Mi21, for

all i . 0. The Morse sequence m [ S2 is the limit of the Morse blocks, i.e.

m ¼ limi!1Mi. This sequence m generates the infinite Morse minimal set M ¼

clfm;sðmÞ;s2ðmÞ; . . . } and it is known that, for all words B , m, the sequence m

contains no block BBb, where b is the first element of block B (cf. [2]). Denote this

property by P

m has property P , ’6 BBb , m: ð3Þ

3. Scrambled and distributionally scrambled n-tuples

We will show that the existence of an infinitely countable extremal distributionally

scrambled set does not imply the existence of a scrambled triple. Then we construct a non-

compact dynamical system with an uncountable extremal distributionally scrambled set

without any scrambled triple.

Lemma 1. Let fai}
1
i¼1 be a strictly increasing sequence of positive integers such that, for

every n $ 1, an and n have the same parity. Then the point x ¼ Ma1Ma2Ma3 · · · is contained

in the Morse minimal set.

Proof. Since an and anþ1 have different parity, for every n $ 1, the Morse block Manþ1

ends with Man

Manþ1
¼ Man

"Man
"ManMan · · · "Man : ð4Þ

We construct a sequence fmk}
1
k¼1, such that every mk [ f0; 1}N starts with blocks

Ma1Ma2Ma3 · · ·Mak , in the following way:

m1 ¼ m ¼ Ma1
"Ma1

"Ma1Ma1
"Ma1Ma1Ma1

"Ma1 · · ·;

Journal of Difference Equations and Applications 1171
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We rewrite m using (4)

m ¼ Ma2
"Ma2

"Ma1Ma1Ma1
"Ma1 · · ·Ma1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

"Ma2

Ma2
"Ma2Ma2Ma2

"Ma2 · · ·

and setm2 ¼ s3)2a222a1 ðmÞ; since jMan j ¼ 2an :We can proceed similarly for an arbitrary k,

m ¼ Mak
"Mak

"Mak21
Mak21

Mak21
"Mak21

· · · "Mak22
Mak22

Mak22
"Mak22

· · · "Mak22
Mak22

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

"Mak21

Mak21

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

"Mak

Mak · · ·;

and set mk ¼ s rk ðmÞ; where rk ¼ 3)2ak 2
Pk21

i¼1 2ai : Since s rk ðmÞ starts with blocks

Ma1Ma2Ma3 · · ·Mak , where rk ¼ 3)2an 2
Pk21

i¼1 2ai , for all n . 1, the point x ¼

limk!1s
rk ðmÞ is contained in the Morse minimal set. A

Theorem 1. There exists a dynamical system X with an infinite extremal distributionally

scrambled set but without any scrambled triple.

Proof. For k [ N, let Wk be the set of positive integers of the form 2n)ð2k2 1Þ; n $ 1:
Obviously, W1;W2;W3; . . . is a decomposition of the set 2N of even integers.

Let fan}
1
n¼1 be a sequence in N. Then

lim
n!1

ðan 2 an21Þ ¼ 1 implies lim
n!1

Pn21
i¼1 2ai

2an
¼ 0: ð5Þ

The formula follows easily since, for every large n,

Pn21
i¼1 2ai

2an
#

2)2an21 2 1

2an
,

2

2an2an21
:

We construct the point x i as a sequence of blocks

Ma1M
i
a2
Ma3M

i
a4
Ma5M

i
a6
Ma7M

i
a8
· · ·;

where

Mi
aj

¼
Maj ; if j # W i

"Maj ; if j [ W i:

8

<

:

Let i be a fixed positive integer. Then the first complementary block "Maj appears in the

construction of x i for j ¼ 2)ð2i2 1Þ;

x i ¼ Ma1Ma2Ma3Ma4Ma5 · · ·Ma2)ð2i21Þ21
"Ma2)ð2i21Þ

· · ·:

and the sequence fx i}
1

i¼1 converges. Since we can choose the sequence fan}
1
n¼1 so that, for

every n $ 1, an and n have the same parity,

J. Doleželová1172
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lim
i!1

x i ¼ x; ð6Þ

where x is the point constructed in Lemma 1.

Let D ¼ fx i}
1

i¼1: We claim that D is a distributionally 2-scrambled set and X ¼

clð
S1

i¼0s
iðDÞÞ is the wanted dynamical system.

I. D is an extremal distributionally 2-scrambled set

Let ðx i; x jÞ [ D2 be a pair of distinct points. For simplicity denote sk ¼
Pk

n¼1 2
an ,

where jMan j ¼ 2an . Let l be a fixed positive integer and e ¼ 1=2l. Since ðx iÞn ¼ ðx jÞn if

s2k , n # s2kþ1, for any k . 0, we have dðsnðx iÞ;snðx jÞÞ , e for all s2k , n , s2kþ1 2 l.

By (5),

lim
k!1

2a2kþ1 2 l

2a2kþ1 þ s2k
¼ 1;

so it is easy to see that F*
x i;x jðeÞ ¼ 1, for arbitrary small e , and hence F*

x i;x j ; 1.

On the other hand, there is a sequence flk}
1
k¼1 , W i <W j such that ðx iÞn ¼ ðx jÞn if

slk21 , n # slk , for any integer k. Since ðx iÞm ¼ ðx jÞm, for m ¼ 1; 2; . . . r, implies

dðx i; x jÞ $
Pr

m¼1ð1=2
mÞ and ðsnðx iÞÞm ¼ ðsnðx jÞÞm, for all slk21 , n , slk 2 r and

m ¼ 1; 2; . . . r, it follows dðsnðx iÞ;snðx jÞÞ $
Pr

m¼1ð1=2
mÞ for all slk21 , n , slk 2 r.

Because

lim
k!1

slk21

slk21 þ 2alk 2 r
¼ 0;

it is easy to see thatFx i;x jð
Pr

m¼1ð1=2
mÞÞ ¼ 0, for arbitrary large r, and henceFx i;x j ðdÞ ¼ 0,

for any 0 , d , 1:

II.
S1

i¼0 s
iðDÞ has no scrambled triples

Let ðx i; x j; x kÞ [ D3nDð3Þ. Since

Mi
2n ¼ M

j
2n or Mi

2n ¼ Mk
2n or M

j
2n ¼ Mk

2n;

and M2n21 is the common block for all x i; x j; x k and every n . 1, we can assume

lim
n!1

minfdðsnðx iÞ;snðx jÞÞ; dðsnðx iÞ;snðx kÞÞ; dðsnðx kÞ;snðx jÞÞ} ¼ 0

and consequently, condition (2) is not satisfied and snðDÞ has no scrambled triples, for any

n $ 0. By the same argument, ðx i; x j; xÞ is never a scrambled triple, where x ¼ limi!1x
i.

It follows that any potential scrambled triple in X must contain some pair spðuÞ;sqðvÞ,

where p , q and u; v [ D. To prove that for such tuple condition (1) is not fulfilled, it is

sufficient to show that

lim inf
k!1

dðs kðspðuÞÞ;s kðsqðvÞÞÞ . 0; ð7Þ

where p , q and u; v [ D: Assume the contrary – let lim infk!1dðs
kðspðuÞÞ;

s kðsqðvÞÞÞ ¼ 0 and denote r ¼ q2 p . 0. Then we can find an infinite subsequence

fkn}
1
n¼1 such that both s kn ðspðuÞÞ and s knðsqðvÞÞ begin with the same block Gn of length

14r and obviously these blocks can be found also in sequence u and, shifted by r, in v. For
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sufficiently large n, Gn is in the sequence u either contained in some Morse block or is on

the edge of two following Morse blocks, but at least the first 7r digits or the last 7r digits of

block Gn are contained in a single Morse block. Denote this block MðuÞ
aj
, where MðuÞ

aj
is

either Maj or "MajÞ, depending on u and j, and these 7r consecutive digits of Gn by

G ¼ gu1g
u
2· · ·g

u
7r. This G appears in v shifted by r, so we can conclude that the first 6r digits

gv1g
v
2· · ·g

v
6r ofG in v are inMðvÞ

aj
. The blockMðvÞ

aj
is either the same Morse block asMðuÞ

aj
or its

binary complement. In the first case, gu1 ¼ gv1 ¼ gurþ1 ¼ gvrþ1 ¼ gu2rþ1 ¼ · · · ¼ gu5rþ1 and

similarly for gu2; . . . ; gur and therefore we obtained a block BBBBBB which is impossible

since MðuÞ
aj

is a Morse block and has property P in (3). In the second case, gu1 ¼ gv1 ¼

"gurþ1 ¼ "gvrþ1 ¼ "g" u2rþ1 ¼ gu2rþ1 ¼ · · · ¼ gu4rþ1 and similarly for gu2; . . . ; gu2r and therefore we
obtained a block BBB which is a contradiction with MðuÞ

aj
is a Morse block.

III. If y [ Xn
S1

i¼0 s
iðDÞ, then there exists a non-negative integer n such that snðyÞ is

contained in the Morse minimal set M.

Suppose the contrary. By [2], the points of Morse minimal sets are characterized by the

property P in (3) and therefore we can find two blocks B1B1b1 and B2B2b2 which appear in

different places of y, where b1 denotes the first element of B1 and b2 denotes the first

element of B2. Let the last element of B1B1b1 be on the k1-th position in y, the last element

of B2B2b2 be on the k2-th position in y and k2 . k1 þ 2)jB2j. Since y is contained in the

closure of
S1

i¼0s
iðDÞ, there are sequences fxmi}

1
i¼1 and fni}

1
i¼1 such that

y ¼ lim
i!1

sniðxmiÞ;

and suppose all sequences sni ðxmi Þ have the same first k2 symbols. Let j be an integer such

that 2aj . k2. We can observe that ni is bounded by
Pj21

l¼1 2
al for all i . 0 – for larger ni,

either B1B1b1 or B2B2b2 would be part of a single Morse block. Hence there is a non-

negative integer N and a subsequence fxmik }
1
k¼1 such that y ¼ limi!1s

ni

ðxmiÞ ¼ limi!1s
Nðxmik Þ ¼ sNðxÞ, where the last identity follows by (6). By Lemma 1,

y ¼ sNðxÞ [ M and this is a contradiction with assumptions.

IV. X has no scrambled triples.

By [1] the Morse minimal set is an almost distal system, i.e. all pairs in this set are

either distal or asymptotic. Hence by II and (7) the only potential scrambled triples are

ðx i; x j; yÞ, where y [ Xn
S1

i¼0s
iðDÞ and x i; x j [ D. By the previous step, it is sufficient to

show that ðx i; x j; yÞ is not a scrambled triple, where y [ M. Since y [ M and x [ M by

Lemma 1, the pair ðx; yÞ is either distal or asymptotic:

(a) ðx; yÞ is a distal pair. Sequences x; x i; x j are exactly the same except or blocks Mi
al

and Mj
al
where l [ W i <W j and it holds Mi

al
¼ "M

j

al
, for l [ W i <W j. Therefore

ðx i; x j; yÞ is not proximal.

(b) ðx; yÞ is an asymptotic pair. The triple ðx i; x j; xÞ is not scrambled by II, therefore

ðx i; x j; yÞ is not scrambled.

A

To prove Theorem 2, we need the next lemma:

Lemma 2. There is a Cantor set B , f0; 1}N such that, for any distinct a ¼ faðiÞ}
1
i¼1 and

b ¼ fbðiÞ}
1
i¼1 in B, the set

J. Doleželová1174
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fj [ N;aðjÞ – bðjÞ} is infinite: ð8Þ

Proof. Let h : f0; 1}N ! f0; 1}N be a mapping such that

hða1a2a3a4a5 . . . Þ ¼ a1a1a2a1a2a3a1a2a3a4· · ·:

Since h is clearly a continuous bijection onto some subset B , f0; 1}N, it is sufficient to
show that any pair of distinct points a ¼ faðiÞ}

1
i¼1 and b ¼ fbðiÞ}

1
i¼1 in B satisfies (8). But

if there is i for which aðiÞ – bðiÞ, then, by construction of h, this non-equality must be

repeated on infinitely many places. A

Theorem 2. There exists an invariant Mycielski set X , S2 with an uncountable extremal

distributionally 2-scrambled set but without any scrambled triple.

Proof. We will denote byM0
i the Morse blockMi and byM

1
i the binary complement ofMi.

Let a ¼ faðiÞ}
1
i¼1 be a point of Bwhere B is the set from Lemma 2. Let fan}

1
n¼1 be a strictly

increasing sequence of positive integers with limn!1an 2 an21 ¼ 1. We construct a point

xa as a sequence of blocks

Ma1

a1
M0

a2
Ma2

a3
M0

a4
Ma3

a5
M0

a6
Ma4

a7
· · ·:

Let D ¼ fxa;a [ B}. We claim that D is an extremal distributionally 2-scrambled set and

X ¼
S1

i¼0s
iðDÞ is the wanted Mycielski set. Since part of the proof is similar to steps I and

II of the proof of Theorem 1, we show only a shortened explanation:

I. D is an extremal distributionally 2-scrambled set

Let ðu; vÞ [ D2 be a pair of distinct points. For simplicity denote si ¼
Pi

j¼1 2
aj . Let l

be a fixed integer and e ¼ 1=2l. Since ui ¼ vi if s2k21 , i # s2k, for any k . 0, we have

dðs iðuÞ;s iðvÞÞ , e for all s2k21 , i , s2k 2 l. By (5),

lim
k!1

2a2k 2 l

2a2k þ s2k21

¼ 1;

so it is easy to see that F*
u;vðeÞ ¼ 1, for arbitrary small e , and hence F*

u;v ; 1.

On the other hand, there is a sequence flk}
1
k¼1 such that ui ¼ "vi if slk21 , i # slk , for

any integer k. Since um ¼ "vm, for m ¼ 1; 2; . . . r, implies dðu; vÞ $
Pr

m¼1ð1=2
rÞ and it

follows dðs iðuÞ;s iðvÞÞ $
Pr

m¼1ð1=2
rÞ for all slk21 , i , slk 2 r and m ¼ 1; 2; . . . r.

Because

lim
k!1

slk21

slk21 þ 2alk 2 r
¼ 0;

it is easy to see Fu;vð
Pr

m¼1ð1=2
mÞÞ ¼ 0, for arbitrary large r, and hence Fu;vðdÞ ¼ 0, for

any 0 , d , 1:

II. X has no scrambled triples

Journal of Difference Equations and Applications 1175
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Let ðxa; xb; xgÞ [ D3nDð3Þ. Since ai;bi; gi [ f0; 1}, for any integer i,

M
ai

2i21 ¼ M
bi

2i21 or M
ai

2i21 ¼ M
gi
2i21 or M

bi

2i21 ¼ M
gi
2i21;

and M0
2i is the common block for all xa; xb; xg, we can assume

lim
k!1

min fdðs kðxaÞ;s kðxbÞÞ; dðs kðxaÞ;s kðxgÞÞ; dðs kðxgÞ;s kðxbÞÞ} ¼ 0

and consequently, condition (2) is not satisfied and D has no scrambled triples. For the

same reason s iðDÞ has no scrambled triples, for any i . 0. It follows that any potential

scrambled triple in Xmust contain some pair spðuÞ;sqðvÞ, where p , q and u; v [ D. The

fact that for such tuple condition (1) is not fulfilled, can be proven in a similar way to the

second step of the proof of the previous theorem.

III. X is a Mycielski set

Let h : B! D be a bijection such that, for all a [ B,

hðaÞ ¼ x ðaÞ:

To prove that h is homeomorphism, it is sufficient to show that h is continuous. Let

fam}
1
m¼1 be a converging sequence in B, i.e. limm!1am ¼ a. Then for an arbitrary i . 0

there is an m0 such that, for all m . m0, the first i members of the sequences am and a are

equal. Therefore also the first 2a1 þ 2a1 þ 2a2 þ · · · þ 2að2i21Þ members of xam and xa are

equal and this exactly means limm!1x
am ¼ xa, hence h is homeomorphism and D is a

Cantor set. Since D is a distributionally 2-scrambled, the mapping s ijD : D! s iðDÞ is

one-to-one and s ijD is homeomorphism for every i $ 1. Thus X is the union of Cantor

sets. A

Remark. There are some scrambled triples ðxa; xb; xÞ in the closure of X, where x [

clðXÞnX and depends on the parity of fan}
1
n¼1. If an and n have the same parity, then there

exist a and b such that ðxa; xb; xÞ is scrambled, where x ¼ "Ma1
"Ma2

"Ma3
"Ma4 . . . .
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D
o
w

n
lo

ad
ed

 b
y
 [

S
il

es
ia

n
 U

n
iv

er
si

ty
 a

t 
O

p
av

a]
 a

t 
0
1
:1

0
 0

1
 J

u
ly

 2
0
1
4
 



[6] B. Schweizer and J. Smı́tal, Measures of chaos and a spectral decomposition of dynamical
systems on the interval, Trans. Amer. Math. Soc. 344 (1994), pp. 737–754.

[7] J. Smı́tal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986),
pp. 269–282.

[8] J. Xiong, A chaotic map with topological entropy zero, Acta Math. Sci. 6 (1986), pp. 439–443.
[9] J. Xiong, Chaos in topological transitive systems, Sci. China A 48 (2005), pp. 929–939.

Journal of Difference Equations and Applications 1177

D
o
w

n
lo

ad
ed

 b
y
 [

S
il

es
ia

n
 U

n
iv

er
si

ty
 a

t 
O

p
av

a]
 a

t 
0
1
:1

0
 0

1
 J

u
ly

 2
0
1
4
 



   



Distributional chaos and factors
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1. Introduction

Semi-conjugacy is used as a common tool for proving topological chaos or positive

topological entropy. The usual technique is to find a semi-conjugacy p with a chaotic

system and transfer the chaos to the extension. By continuity of p, the topological entropy

of the extension is not smaller than the entropy of factor system. Unfortunately, semi-

conjugacy may not automatically guarantee the distributional chaos, which was introduced

in [3]. Authors in [1,2,4] developed several techniques for proving distributional chaos via

semi-conjugacy, usually using a symbolic space as the factor space. Example in [2] shows

the existence of distributionally chaotic factor which is semi-conjugated to the system

with no three-points distributionally scrambled sets. The aim of this study is to improve

this result and find a distributionally chaotic factor which has an extension without any

distributionally scrambled pair.

2. Terminology

Let ðX; dÞ be a non-empty compact metric space. Let us denote by ðX; f Þ the topological
dynamical system, where f is a continuous self-map acting on X. We define the forward

orbit of x, denoted by Orbþ
f ðxÞ as the set ff nðxÞ : n $ 0}. Let ðX;FÞ and ðY; f Þ be

dynamical systems on compact metric spaces. A continuous map p : X ! Y is called a

semi-conjugacy between f and F if p is surjective and p+f ¼ F+p. In this case, we can

say that ðY; f Þ is a factor of the system ðX;FÞ, equivalently ðX;FÞ is an extension of the

system ðY ; f Þ.

Definition 1. A pair ðx1; x2Þ [ X 2 with x1 – x2 is called scrambled if

lim inf
k!1

d f kðx1Þ; f
kðx2Þ

 !

¼ 0 ð1Þ

and

lim sup
k!1

d f kðx1Þ; f
kðx2Þ

 !

. 0: ð2Þ

q 2015 Taylor & Francis
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A subset S of X is called scrambled if every pair of distinct points in S scrambled. The

system ðX; f Þ is called chaotic if there exists an uncountable scrambled set.

Definition 2. For a pair ðx1; x2Þ of points in X, define the lower distribution function

generated by f as

Fðx1;x2ÞðdÞ ¼ lim inf
m!1

1

m
# 0 , k , m; d f kðx1Þ; f

kðx2Þ
 !

, d
# $

;

and the upper distributional function as

F*
ðx1;x2Þ

ðdÞ ¼ lim sup
m!1

1

m
# 0 , k , m; d f kðx1Þ; f

kðx2Þ
 !

, d
# $

;

where #A denotes the cardinality of the set A.

A pair ðx1; x2Þ [ X 2 is called distributionally scrambled of type 1 if

F*
ðx1;x2Þ

ðdÞ ¼ 1; for every 0 , d # diam X

and

Fðx1;x2Þð1Þ ¼ 0; for some 0 , 1 # diam X;

distributionally scrambled of type 2 if

F*
ðx1;x2Þ

ðdÞ ¼ 1; for every 0 , d # diam X

and

Fðx1;x2ÞðdÞ , F*
ðx1;x2Þ

ðdÞ; for every d [ ða; bÞ; where 0 # a , b # diam X;

distributionally scrambled of type 3 if

Fðx1;x2ÞðdÞ , F*
ðx1;x2Þ

ðdÞ; for every d [ ða; bÞ; where 0 # a , b # diam X:

The dynamical system ðX; f Þ is distributionally chaotic of type i (DCi for short), where

i ¼ 1; 2; 3, if there is an uncountable set S , X such that any pair of distinct points from S

is distributionally scrambled of type i.

3. Distributional chaos and factors

We will show the existence of a system without any distributionally scrambled pair which

is semi-conjugated to a distributionally chaotic factor. This system is three-dimensional

union of countably many homocentric cylinders with unit height and converging radius.

First, we state the following technical lemma about rotation on circle. Let I be the unit

closed interval k0; 1l and S ¼ R=Z be the unit circle. Let u [ S and v [ S be determined

by normed angles fu [ I and fv [ I. These points rotate along the circle by different

J. Doleželová-Hantáková2
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angles ru [ I, respectively, rv [ I, i.e.

fu 7! ðfu þ ruÞ mod 1

fv 7! ðfv þ rvÞ mod 1:
ð3Þ

We denote the relative angle of rotation by Dr ¼ ru 2 rvj j and assume that the metric on S

is rða;bÞ ¼ min a2 bj j; 12 a2 bj jf g.

Lemma 1. For every number d . 0 and every integer p . 2=Dr, the following estimation

holds:

1

p
# 0 , i , p; rððfu þ iruÞ mod 1; ðfv þ irvÞ mod 1Þ , df g , 3d:

Proof. Because rððfu þ iruÞ mod 1; ðfv þ irvÞ mod 1Þ ¼ rðfu; ðfv þ iDrÞ mod 1Þ, it is

sufficient to show

1

p
#f0 , i , p; rðfu; ðfv þ iDrÞ mod 1Þ , d} , 3d:

The expression p)Dr
% &

determines the number of turns that the point v makes along the

circle by rotation through the angle Dr after p iterations, where ½x+ denotes the integer

part of x. The maximal number of iterations i during one turn, for which

rðfu; ðfv þ iDrÞ mod 1Þ , d., is 2d/Dr. It follows

1

p
# 0 , i , p; rðfu; ðfv þ iDrÞ mod 1Þ , df g ,

1

p
½p)Dr+

2d

Dr
þ

2d

Dr

' (

, 2d þ
2d

pDr
:

Because p . 2=Dr, we can estimate the second term by d, i.e. ð2d=pDrÞ , d. A

Theorem 1. There exists a DC1 dynamical system ðY; f Þ which is semi-conjugated to an

extension ðX;FÞ which possess no distributionally scrambled pair (of type 1 or 2).

Proof. The space X is defined

X ¼ 22
1

k

' (

cos 2pf; 22
1

k

' (

sin 2pf

) *

: k [ N;f [ I

+ ,'

[

f½2 cos 2pf; 2 sin 2pf+ : f [ I}

(

£ I;

where I is the unit interval. Each point u ¼ ru cos 2pfu; ru sin 2pfu; zu
% &

in X is

determined by its angle fu [ I, radius

ru [ 22
1

k
: k [ N

+ ,

[

f2}

and height zu [ I.

Journal of Difference Equations and Applications 3
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The space is endowed with max-metric

dðu; vÞ ¼ max f ru 2 rv ;j jzu 2 zvj j; rðfu;fvÞ}; ð4Þ

where rðfu;fvÞ ¼ min f fu 2 fv ; 12j jfu 2 fvj j}. We define the mapping F : X ! X as

identity on the limit cylinder X0 ¼ 2 cos 2pf; 2 sin 2pf
% &

: f [ I
# $

£ I,

½2 cos 2pf; 2 sin 2pf; z+ 7! ½2 cos 2pf; 2 sin 2pf; z+;

and as a composition of rotation and continuous mapping gk on inner cylinders,

22
1

k

' (

cos 2pf; 22
1

k

' (

sin 2pf; z

) *

7! 22
1

k þ 1

' (

cos 2pðf þ Cðk; zÞÞ;

)

22
1

k þ 1

' (

sin 2p ðf þ Cðk; zÞÞ; g
k
ðzÞ

*

:

Let hj jj j ¼ sup fhðxÞ : x [ I} be the uniform norm. To define gk : I ! I and

C : N £ I ! I, let fri}
1

i¼1 ¼ Qjð0;1Þ be a sequence of all rationals in ð0; 1Þ, and m1 ,

m2 , m3 , . . . an increasing sequence of integers which we specify later. Then

g
k
¼

hl if m3lþ1 # k , m3lþ2

Id if m3lþ2 # k , m3lþ3 k; l [ N0

h21
l if m3lþ3 # k , m3lþ4

8

>

>

<

>

>

:

; ð5Þ

where hl : I ! I is a continuous strictly increasing mapping with three fixed points 0; 1; rl
and

lim
l!1

j hl 2 Idj jj ¼ 0; hlðxÞ , x for x [ ð0; rlÞ; hlðxÞ . x for x [ ðrl; 1Þ:

The sequence fmi}
1

i¼1 is defined in the following way:

m3lþ2 2 m3lþ1 ¼ m3lþ4 2 m3lþ3 ¼ nl;

where nl is integer satisfying

h
nl
l 0; rl 2

1

l

2 3' (

, k0;
1

l
Þ ^ h

nl
l rl þ

1

l
; 1

2 3' (

, ð12
1

l
; 1l: ð6Þ

Notice that hnll is a continuous bijection, hence we can find 1l for which

jx2 yj .
1

l
) jhnll ðxÞ 2 h

nl
l ðyÞj . 1l:

Simultaneously fmi}
1

i¼1 can be chosen such that

m3lþ3 2 m3lþ2 .
2l

1l
; ð7Þ

lim
l!1

m3lþ1

m3lþ2

¼ lim
l!1

m3lþ3

m3lþ4

¼ 1;

lim
l!1

m3lþ2

m3lþ3

¼ 0:
ð8Þ

J. Doleželová-Hantáková4
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For example, the sequence defined inductively by m1 ¼ 0 and

m3lþ2 ¼ m3lþ1 þ nl;

m3lþ3 ¼ m3lþ2 þ 2l
1l

4 5

)2l)nl)nlþ1;

m3lþ4 ¼ m3ðlþ1Þþ1 ¼ m3lþ3 þ nl;

satisfies these requirements. The angle of rotation C : N £ I ! I is defined as

Cðk; zÞ ¼
z if 1 # k , m4

z=l if m3lþ1 # k , m3lþ4 l [ N:

(

The factor space Y is simply X with fixed f ¼ 0 i.e. for each point x [ X;

pðxÞ ¼ pð½rx cos 2pfx; rx sin 2pfx; zx+Þ ¼ ½rx; 0; zx+:

To simplify the notation, we skip the second zero coordinate and treat Y as a two-

dimensional space. The space Y is union of converging sequence of unit fibres and the

limit fibre,

Y ¼ 22
1

k
: k [ N

+ ,

£ I < f2} £ I:

Then the system ðX;FÞ is semi-conjugated with skew-product map f : Y ! Y , which is

identity on the limit fibre,

½2; z+ 7! ½2; z+;

and which is gk on inner fibres,

22
1

k
; z

) *

7! 22
1

k þ 1
; gkðzÞ

) *

; k [ N:

(i) The factor system (Y,f) is DC1.We show that set S ¼ f1} £ I is a distributionally

scrambled set, i.e. for any pair ðu; vÞ [ S2 with u – v;

F*
ðu;vÞ ; 1 and Fðu;vÞð1Þ ¼ 0; for some 0 , 1 , 1: ð9Þ

Suppose u2
. v2, where x2 denotes the second coordinate of a point x. Since

fri}
1

i¼1 is dense in I, we can find a subsequence frsk}
1

k¼1 such that

u2
, rsk 2

1

sk

and

v2 , rsk 2
1

sk

for every k. By (6), dðf iðuÞ; f iðvÞÞ , 1
sk
, for m3skþ2 # i , m3skþ3, and therefore, by
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(8), F*
ðu;vÞ ; 1.

We can find another subsequence frqk}
1

k¼1
such that

u2
. rqk þ

1

qk

and

v2 , rqk 2
1

qk
;

for every k. By (6), dðf iðuÞ; f ið½1; 1+ÞÞ , 1
qk

and simultaneously dðf iðvÞ;
f ið½1; 0+ÞÞ , 1

qk
, for m3qkþ2 # i , m3qkþ3. Since f preserves the distance between

the endpoints of any fibre, dðf ið½1; 1+Þ; f ið½1; 0+ÞÞ ¼ 1, for i $ 0, we can conclude,

by (8), Fðu;vÞð1Þ ¼ 0; for any 1 , 1:
(ii) ðX;FÞ has no distributionally scrambled pair (of type 1 or 2).

We claim F*
ðu;vÞ , 1 for any pair of distinct points in X. Let X0 be the limit cylinder

X0 ¼ f½2 cos 2pf; 2 sin 2pf+ : f [ I} £ I and $X ¼ XnX0. Consider five possible cases:

(a) ðu; vÞ [ $X with zu ¼ zv ¼ z; ku ¼ kv ¼ k; fu – fv:
The angle of rotation is the same for both u and v,Cðku; zuÞ ¼ Cðkv; zvÞ ¼ Cðk; zÞ,
hence, by (4),

dðFðuÞ;FðvÞÞ ¼ rðfu þ Cðk; zÞ;fv þ Cðk; zÞÞ ¼ rðfu;fvÞ ¼ dðu; vÞ:

F is isometric in this case and F*
ðu;vÞ – 1.

(b) ðu; vÞ [ $X with zu ¼ zv ¼ z; ku – kv:
Consider the image ðF NðuÞ;F NðvÞÞ instead of ðu; vÞ, where N is the first integer

for which zF N ðuÞ – zF N ðvÞ and reduce this case to d).

(c) ðu; vÞ [ $X with zu – zv; ku ¼ kv ¼ k:
Without loss of generality suppose k ¼ 1 (otherwise consider the pre images

ðF2kðuÞ;F2kðvÞÞ) and let L be an integer such that zu 2 zvj j . 1=L. It is sufficient
to show that there is 0 , d , 1=3, for which

1

m3lþ3 2m3lþ2

# m3lþ2 , i, m3lþ3; dðF
iðuÞ;F iðvÞÞ , d

# $

, 3d; for any L# l:

Since d is max-metric, it is sufficient to prove

1

m3lþ3 2 m3lþ2

# m3lþ2 , i , m3lþ3; rðfF iðuÞ;fF iðvÞÞ , d
# $

, 3d:

By the definition of 1L,

jx2 yj .
1

L
) jhnLL ðxÞ 2 h

nL
L ðyÞj . 1L:

Since h
nL
L ðzuÞ 2 h

nL
L ðzvÞ

7

7

7

7 . 1L, and h
nL
L ðzuÞ 2 h

nL
L ðzuÞ

7

7

7

7 is the minimal distance

between trajectories of u and v between times m3Lþ1 and m3Lþ4 (see the definition

of gk in (5)), it follows

min
3Lþ1,k#3Lþ4

jgk+gk21+ . . . +g3Lþ1ðzuÞ 2 gk+gk21+ . . . +g3Lþ1ðzvÞj . 1L: ð10Þ

J. Doleželová-Hantáková6
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Denote the relative angle of rotation of points with height zu and zv in the k-the

cylinder by

DCkðzu; zvÞ ¼ Cðk; zuÞ 2Cðk; zvÞj j ¼
zu 2 zvj j

L

for m3Lþ1 # k , m3Lþ4: By (10),

DCkðgk+gk21+ . . . +g3Lþ1ðzuÞ;gk+gk21+ . . . +g3Lþ1ðzvÞÞ .
1L

L
; for m3Lþ1 # k, m3Lþ4:

Since

m3Lþ3 2 m3Lþ2 .
2L

1L

we can use Lemma 1 and conclude, for any d . 0,

1

m3Lþ3 2 m3Lþ2

# m3Lþ2 , i , m3Lþ3; rðfF iðuÞ;fF iðvÞÞ , d
# $

, 3d:

We obtain the result for any l . L using the same argument, since for every l . L,

zu 2 zvj j . 1
l
.

(d) ðu; vÞ [ $X with zu – zv; ku – kv:
Without loss of generality suppose ku ¼ 1 and kv ¼ p. If zu 2 zvj j . 1=L, then

by case b)

# m4Lþ2 þ p , i , m4Lþ3 2 p; rðfF iðuÞ;fF iðvÞÞ , d
# $

, 3d)ðm3Lþ3 2 m3Lþ2Þ

and hence

1

m3Lþ3 2 m3Lþ2

# m3Lþ2 , i , m3Lþ3; rðfF iðuÞ;fF iðvÞÞ , d
# $

, 3d þ
2p

m3Lþ3 2 m3Lþ2

, 1;

for sufficiently large L.

(e) u [ $X and v [ X0

Since v [ X0 is fixed and fv ¼ fFðvÞ, we can find another point in $X,

w ¼ 22 1
ku

4 5

cos 2pfv; 22 1
ku

4 5

sin 2pfv; 0
h i

, which is also fixed under

rotation. Therefore

rðfFðuÞ;fFðvÞÞ ¼ rðfFðuÞ;fFðwÞÞ

and we can apply case a) or c) to investigate the pair ðu;wÞ instead of ðu; vÞ.

A

Remark. Notice that the distributional functions for projected pair ðu; vÞ in factor space Y

are greater or equal than the corresponding distributional function for the pair

ðp21ðuÞ;p21ðvÞÞ in X, because X is equipped with max-metric. Nevertheless the upper

Journal of Difference Equations and Applications 7
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distributional function remains positive even in the extension, F*
ðp21ðuÞ;p21ðvÞÞ

ðdÞ . 0, for

any pair in I £ f1} and d . 0. By (9), Fðp21ðuÞ;p21ðvÞÞðdÞ # Fðu;vÞd ¼ 0; hence

Fðp21ðuÞ;p21ðvÞÞ , F*
ðp21ðuÞ;p21ðvÞÞ

and the system ðX;FÞ is distributionally chaotic of type 3. This fact implies an open

question: Is there a DC3 system which is semi-conjugated to an extension without any

distributionally scrambled pairs of type 3?
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The aim of the paper is to correct and improve some results concerning distributional chaos of
type 3. We show that in a general compact metric space, distributional chaos of type 3, denoted
DC3, even when assuming the existence of an uncountable scrambled set, is a very weak form
of chaos. In particular, (i) the chaos can be unstable (it can be destroyed by conjugacy), and
(ii) such an unstable system may contain no Li–Yorke pair. However, the definition can be
strengthened to get DC2 1

2 which is a topological invariant and implies Li–Yorke chaos, similarly
as types DC1 and DC2; but unlike them, strict DC2 1

2 systems must have zero topological entropy.

Keywords : Distributional chaos; Li–Yorke chaos; distal chaotic system.

1. Introduction

The study of chaotic pairs in dynamics goes back
to Li and Yorke [1975], who studied pairs of points
with the property that their orbits neither approach
each other asymptotically, nor do they eventually
separate from each other by any fixed positive dis-
tance. Schweizer and Smı́tal [1994] introduced the
related concept of a distributionally chaotic pair,
which means, roughly speaking, that the statisti-
cal distribution of distances between the orbits does
not converge. Distributional chaos was later divided
into three types, DC1, DC2, and DC3, see [Balibrea
et al., 2005].

The relations between the three versions of dis-
tributional chaos, and the relation between distribu-
tional chaos and Li–Yorke chaos are investigated by
many authors, see e.g. [Balibrea et al., 2005; Wang
et al., 2008, 2014; Oprocha, 2009]. One can easily see
from the definitions that DC1 implies DC2 and DC2
implies DC3. On the other hand, there are exam-
ples which show that DC1 is stronger than DC2
and DC2 is stronger than DC3 (see [Balibrea et al.,
2005; Wang et al., 2008]). It is also obvious that

either DC1 or DC2 implies Li–Yorke chaos. More-
over, there are Li–Yorke chaotic continuous maps
of the interval with zero topological entropy; by
[Schweizer & Smı́tal, 1994], such maps cannot be
distributionally chaotic. This shows that Li–Yorke
chaos need not imply any of the three versions of
distributional chaos.

We focus on the properties of the weakest form
of distributional chaos, DC3. Unlike its stronger rel-
atives, DC3 chaos does not imply Li–Yorke chaos,
and DC3 chaos is not an invariant of topological
conjugacy. In a weak sense, these two results were
already stated in [Balibrea et al., 2005, Theorems 1
and 2]. However, it should be noticed that the distri-
butional chaos in [Balibrea et al., 2005] was defined
as the existence of a single distributionally scram-
bled pair, but nowadays it is generally assumed
that distributional chaos means the existence of an
uncountable distributionally scrambled set. More-
over, the proof of [Balibrea et al., 2005, Theorem 2]
is unfortunately in error — the authors constructed
a conjugacy which destroys a DC3 pair, but they
overlooked many other DC3 pairs which persist.

‡Author for correspondence
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Our first goal, then, is to give stronger statements
and correct proofs of these two theorems.

Our second goal is to strengthen the definition
of the DC3 pair in such a way that it is preserved
under conjugacy and implies Li–Yorke chaos — we
denote the new definition by DC21

2 . The only dif-
ference between DC21

2 and DC3 is the following: a
pair (x, y) is DC3 iff the lower and upper distribu-
tion functions satisfy Φ(δ) < Φ∗(δ), for every δ in
some interval I. We say a pair (x, y) is DC21

2 iff
Φ(0) < Φ∗(0), where the distribution functions at 0
are defined as limits of their values as δ → 0+. We
also provide an example which shows that DC21

2
is essentially weaker than DC2. This example pos-
sesses no DC2 pair; hence, by results in [Downarow-
icz & Lacroix, 2014], its topological entropy must be
zero.

Another strengthened distributional chaos,
denoted by DC11

2 , was introduced in [Downarow-
icz & Lacroix, 2014]. DC11

2 chaos is stronger than
DC2 and is implied by positive topological entropy.

The paper is organized as follows: the first and
second sections are introductory. In the third sec-
tion we show the error in [Balibrea et al., 2005]
and simultaneously prove that even the presence
of an uncountable DC3 scrambled set does not
imply Li–Yorke chaos. The fourth section proves
(with two new examples) that both the existence
of a DC3 pair and the existence of an uncount-
able DC3 scrambled set are not conjugacy invari-
ants. The fifth section introduces our new definition
of DC21

2 .

2. Terminology

Let (X, d) be a nonempty compact metric space. A
pair (X, f), where f is a continuous self-map acting
on X, is called a topological dynamical system. The
orbit of a point x ∈ X is the set {fn(x) : n ≥ 0}.
Let (X, f) and (Y, g) be dynamical systems on com-
pact metric spaces. A continuous map π : X → Y
is a conjugacy between f and g if π is one-to-one
and onto and π ◦ f = g ◦ π.

Definition 2.1. A pair of two different points
(x1, x2) ∈ X2 is scrambled or Li–Yorke if

lim inf
k→∞

d(fk(x1), fk(x2)) = 0 (1)

and

lim sup
k→∞

d(fk(x1), fk(x2)) > 0. (2)

A subset S of X is scrambled if every pair of dis-
tinct points in S is scrambled. The system (X, f)
is Li–Yorke chaotic if there exists an uncountable
scrambled set. We call a pair (x1, x2) ∈ X2 proxi-
mal if (1) holds (otherwise we say (x1, x2) ∈ X2 is
distal). If (2) does not hold, i.e.

lim sup
k→∞

d(fk(x1), fk(x2)) = 0,

we say that (x1, x2) ∈ X2 is asymptotic. A pair of
points is scrambled simply if it is proximal but not
asymptotic. A dynamical system (X, f) is distal if
every pair of distinct points in X is distal.

Definition 2.2. For a pair (x1, x2) of points in X,
define the lower distribution function generated by
f as

Φ(x1,x2)(δ) = lim inf
m→∞

1
m

#{0 ≤ k ≤ m;

d(fk(x1), fk(x2)) < δ}
and the upper distribution function as

Φ∗
(x1,x2)

(δ) = lim sup
m→∞

1
m

#{0 ≤ k ≤ m;

d(fk(x1), fk(x2)) < δ},
where #A denotes the cardinality of the set A.

A pair (x1, x2) ∈ X2 is called distributionally
scrambled of type 1 (or a DC1 pair) if

Φ∗
(x1,x2)

(δ) = 1, for every 0 < δ ≤ diam X

and

Φ(x1,x2)(ε) = 0, for some 0 < ε ≤ diam X,

distributionally scrambled of type 2 (or a DC2 pair)
if

Φ∗
(x1,x2)

(δ) = 1, for every 0 < δ ≤ diam X

and

Φ(x1,x2)(ε) < 1, for some 0 < ε ≤ diam X

and distributionally scrambled of type 3 (or a DC3
pair) if

Φ(x1,x2)(δ) < Φ∗
(x1,x2)

(δ),

for every δ in some interval (a, b),
where 0 ≤ a < b ≤ diam X.

A subset S of X is distributionally scrambled of type
i (or a DCi set), where i = 1, 2, 3, if every pair of
distinct points in S is a DCi pair. The dynamical
system (X, f) is distributionally chaotic of type i

1650235-2
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(a DCi system), where i = 1, 2, 3, if there is an
uncountable distributionally scrambled set S ⊂ X
of type i.

Let X,Y be compact metric spaces and X × Y
be equipped with the product topology. Then a con-
tinuous map F : X × Y → X × Y is a skew-product
mapping if it has the form F ((x, y)) = (f(x), gx(y)).
Then f : X → X is called the base map and the
maps gx : Y → Y are called fiber maps.

3. Distal DC3 System

The main goal of this section is to prove that DC3
chaos does not imply Li–Yorke chaos. We will prove
this statement in the strongest possible sense — we
present a system with an uncountable DC3 set but
without any Li–Yorke pairs.

Theorem 1. There exists a distal dynamical sys-
tem which is DC3 chaotic. Thus, DC3 chaos does
not imply Li–Yorke chaos.

Proof. Our proof analyzes a distal system first
introduced in [Balibrea et al., 2005], in which the
authors mistakenly claimed (without any proof)
that there are no DC3 pairs.

Definition of the System: Consider the skew
product mapping

F : Ω × S
1 → Ω × S

1, (ω, θ) �→ (τ(ω), θ + p(ω)),

where Ω = {0, 1}N is the Cantor space, S
1 = R/Z

is the unit circle, τ : Ω → Ω is the binary adding
machine ω �→ ω + 10000 · · · with “carrying” to the
right (for details, see for example [Downarowicz,
2005]), and p(ω) is a rotation angle as defined below.

The function p : Ω → S
1 is given by the fol-

lowing algorithm. First, fix an arbitrary parame-
ter α with 3

4 < α < 1. Then choose an increasing
sequence of natural numbers {ni}∞i=1 such that1

lim
i→∞

(2n1 − 2)
2n1

· (2n2 − 4)
2n2

· (2n3 − 8)
2n3

· . . . · (2ni − 2i)
2ni

= α. (3)

A
dd

in
g

M
ac

hi
ne

ω
�→

τ
(ω

)
︷

︸
︸

︷

Rotation by an angle p(ω)
depending on the level

Fig. 1. A distal system with an uncountable DC3 scrambled
set.

We will also use the notation mi := n1 + n2 + · · ·+
ni, and m0 := 0. If 2 ω = 1∞, then set p(ω) = 0.
Otherwise, decompose ω into the infinite concatena-
tion ω = ω(1)ω(2)ω(3) · · · where each ω(i) is a block
of length ni. To be clear, if ω = ω1ω2 · · ·, then
ω(i) = ωmi−1+1ωmi−1+2 · · ·ωmi ∈ {0, 1}ni . Then
define

k = k(ω) = min{i;ω(i) �= 1ni}. (4)

By |ω(k)| we denote the evaluation of the block ω(k),
where the evaluation operator is defined by

|x1x2x3 · · · xq| = x1 + 2x2 + 22x3 + · · · + 2q−1xq,

q ∈ N, x1, . . . , xq ∈ {0, 1}. (5)

Observe that 0 ≤ |ω(k)| < 2nk − 1, since we know
that ω(k) consists of nk symbols, but ω(k) �= 1nk by
the definition of k. Finally, set

p(ω) =




0, if 2k−1 ≤ |ω(k)| < 2nk − 2k−1 − 1

1
2k

, otherwise.

(6)

Definition of the Metric: To discuss DC3 chaos
we must specify a metric. If two points in S

1

have representatives θ, θ′ ∈ [0, 1), then the distance
between them will be min(|θ − θ′|, 1 − |θ − θ′|), so
that points on opposite sides of the circle are sep-
arated by a distance 1

2 . We wish that Ω will have
diameter 1

4 , so we define the distance between two
points ω, ω′ ∈ Ω to be 2−1−inf{i;ωi �=ω′

i}. Finally, we

1We note that it is possible to choose such a sequence ni. It suffices (analysis exercise) to define recursively ni+1 as the smallest
integer greater than ni such that the (i + 1)th partial product in (3) is still larger than α.
2As is usual in symbolic dynamics, we use exponents to indicate repetition of a symbol. Thus, 1∞ denotes the infinite sequence
111 · · ·, while 1l denotes the block 11 · · · 1 formed by concatenating l copies of the symbol 1.
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equip the product space Ω× S
1 with the maximum

metric

d((ω, θ), (ω′, θ′)) = max(distΩ(ω, ω′),distS1(θ, θ′)).

It is clear that F determines a distal dynamical sys-
tem — for points from distinct fibers we recall that
the adding machine is distal, and for distinct points
from the same fiber we notice that the rotations
preserve the distance in the circle.

Lemma 1 (Rotation along Orbits). Define σ : Ω →
Ω by σ(ω1ω2ω3 · · ·) = 0n1−1ω10n2−1ω20n3−1ω3 · · · .
For each ω ∈ Ω and i ∈ N we have the
following estimate regarding net rotations along
the orbit of σ(ω). Let βi :=

(
2ni−2 − 2i−1 − 1

) ·∏i−1
l=1

(
2nl − 2l

)
. Then

#


n ∈ {1, . . . , 2mi−2};

n−1∑
j=0

p(τ jσω) =

1
2

(
(1 − ω1) + · · · + (1 − ωi)

)
mod 1


 ≥ βi.

Moreover,

αi :=
βi

2mi−2
→ α as i → ∞.

The proof of Lemma 1 is technical and is
deferred to the Appendix. The interpretation of
Lemma 1 is that during the first 2mi−2 steps along
the orbit, the position of the point Fn(σω, 0) in the
circle is “usually” equal to 1

2((1 − ω1) + · · · + (1 −
ωi)) mod 1, i.e. with frequency at least αi.

The Scrambled Set: Equip Ω with the tail
equivalence relation ω1ω2 · · · ∼ ω′

1ω
′
2 · · · if and

only if ∃n ∈ N : ωnωn+1 · · · = ω′
nω′

n+1 · · ·.
We wish to choose an uncountable set Λ ⊂ Ω
such that no two points of Λ are tail equiva-
lent. One quick solution is to invoke the axiom
of choice and let Λ consist of one representative
point from each equivalence class of ∼. Alterna-
tively, we may follow a more constructive approach
and take Λ = λ({0, 1}N), where λ(ω1ω2ω3 · · ·) =
ω1 ω1ω2 ω1ω2ω3 ω1ω2ω3ω4 · · · , so that λ(ω) �∼
λ(ω′) for ω �= ω′. We claim that the uncountable
set

S = σ(Λ) × {0} ⊂ Ω × S
1

is pairwise DC3 scrambled for the map F .

Verification of DC3 Chaos: Let s = (σω, 0),
s′ = (σω′, 0) be distinct points in S. The dis-
tance between Fn(s), Fn(s′) is small whenever the
points are on the same side of the circle, and large
whenever the points are on opposite sides of the
circle. We state this notion precisely in the follow-
ing implications:

n−1∑
j=0

p(τ jσω) =
n−1∑
j=0

p(τ jσω′) mod 1 ⇒

d(Fn(s), Fn(s′)) ≤ 1
4
, (7)

n−1∑
j=0

p(τ jσω) −
n−1∑
j=0

p(τ jσω′) =
1
2

mod 1 ⇒

d(Fn(s), Fn(s′)) =
1
2
. (8)

Now partition the natural numbers into the
sets

A = {i ∈ N;ω1 + · · · + ωi = ω′
1 + · · · + ω′

i mod 2},
B = {i ∈ N;ω1 + · · · + ωi �= ω′

1 + · · · + ω′
i mod 2}.

Since ω �∼ ω′, it follows that both sets A,B are
infinite.

Suppose that i ∈ A. Lemma 1 gives us the
“usual” positions of the points Fn(s), Fn(s′) in
the circle, but does not give any sense of syn-
chrony. Thus, Lemma 1 in conjunction with (7)
gives

1
2mi−2

· #{n∈{1, . . . , 2mi−2}; d(Fn(s), Fn(s′))< δ}

≥ 2αi − 1, δ >
1
4
.

Taking the limit as i → ∞, i ∈ A, we obtain an
estimate for the upper distribution function

Φ∗
(s,s′)(δ) ≥ 2α − 1, δ >

1
4
.

Now suppose that i ∈ B. It follows from (8)
and Lemma 1 that

1
2mi−2

·#{n∈{1, . . . , 2mi−2}; d(Fn(s), Fn(s′))< δ}

≤ 1 − (2αi − 1), δ <
1
2
.

Taking the limit as i → ∞, i ∈ B, we obtain an
estimate for the lower distribution function

Φ(s,s′)(δ) ≤ 2 − 2α, δ <
1
2
.
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Since α > 3
4 , it follows that

Φ(s,s′)(δ) ≤ 2 − 2α <
1
2

< 2α − 1

≤ Φ∗
(s,s′)(δ),

1
4

< δ <
1
2
.

Thus s, s′ are a DC3 pair. This completes the proof
of Theorem 1. �

4. Conjugacy Problem

We show that DC3 is not preserved by conjugacy,
i.e. distributional chaos of type 3 can be destroyed
(or created) by using a conjugating homeomor-
phism. There are two ways we can understand this
statement. In Sec. 4.1, we interpret distributional
chaos as the existence of a chaotic pair, and we con-
struct a system with a DC3 pair which is conjugate
to a dynamical system without one. This consti-
tutes the first correct proof of [Balibrea et al., 2005,
Theorem 2]. In Sec. 4.2, we interpret distributional
chaos as the existence of an uncountable chaotic set
and we present a DC3 system which is conjugate to
a dynamical system with only DC3 pairs (the max-
imum cardinality of any distributionally scrambled
set in this system is 2).

4.1. DC3 pairs

Throughout the whole subsection, we use the cylin-
drical coordinate system for R

3. This means that
the point (r cos(2πφ), r sin(2πφ), z), r ≥ 0, φ ∈
[0, 1], will be denoted more compactly as (r, φ, z).
Let d be the max-metric on R

3 given by d(a, b) =
max{|ra − rb|, |za − zb|, ρ(φa, φb)}, where ρ will be
the circle metric given by ρ(φa, φb) = min{|φa −
φb|, 1 − |φa − φb|}.
Lemma 2. Suppose we are given two angles φx,
φy ∈ [0, 1] (mod 1 ), a natural number k and a num-
ber δ ∈ (0, 0.5). Let πk = πk(φx, φy, δ) := #{0 ≤
i ≤ k − 1; ρ(φx + i

k , φy) < δ}. Then

2δk − 1 ≤ πk ≤ 2δk + 1.

Proof. The reader may picture k points equally
spread around the circle [0, 1] (mod 1) and an arc
(φy − δ, φy + δ) of radius δ ∈ (0, 1/2). Without
loss of generality we will take φx = 0. Then πk =
#{0 ≤ i ≤ k − 1; ρ( i

k , φy) < δ} is equal to #{i ∈
Z; | i

k − φy| < δ} = #{i ∈ Z; |i − kφy| < δk}. By
these equalities we moved the problem from the cir-
cle to the real line and so the question is: How many

integers lie in the open interval (kφy − δk, kφy + δk)
with length 2δk? At least 2δk − 1 and at most
2δk + 1. �

Now we construct two conjugate dynamical sys-
tems (X, f) and (Y, g). We also denote the jth iter-
ate of a point x by f j(x) = (rj

x, φj
x, zj

x), and when
no confusion can result, we use the same notation
for the iterates of x by g.

Definition of the Conjugate Systems (X, f)
and (Y, g): The space X consists of two concen-
tric columns of “rings”; in each column the rings
are accumulating on a bottom-most ring. The defi-
nition is

X =
{

(r, φ, z) : r ∈ {0.01, 0.02}, φ ∈ [0, 1],

z ∈
{

1
n

;n ∈ N

}
∪ {0}

}
.

We need the radius difference |r1−r2| to be smaller
than 1/2. For concreteness we choose r1 = 0.01 and
r2 = 0.02, but it is not necessary to work with these
two exact numbers.

The map f : X → X carries each ring down to
the next lower ring with some rotation and fixes the
bottom ring. The definition is

f

(
r, φ,

1
n

)
=

(
r, φ + ϕ(r)

n ,
1

n + 1

)
and

f(r, φ, 0) = (r, φ, 0),

(9)

where φ + ϕ
(r)
n is computed modulo 1 and the rota-

tion angle ϕ
(r)
n is given by

ϕ(0.01)
n =

1
k
, for lk−1 < n ≤ lk, k ∈ N,

ϕ(0.02)
n =




1
k
, for lk−1 < n ≤ lk, odd k,

2
k
, for lk−1 < n ≤ lk, even k,

where lk =
k∑

i=1

ii, for k ∈ N and l0 = 0.

(10)

We may think of ϕ
(r)
n as a sequence being

divided into blocks, where the kth block consists
of the angles 1

k or 2
k repeated kk times. We need the

block lengths lk to be multiples of k and with the

1650235-5
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property that lk
lk+1−lk

→ 0 for k → ∞. It is easy to
see that for our blocks it is true and so for k → ∞

lk
(k + 1)k+1

→ 0 and
kk

lk
→ 1. (11)

We will see (in the proof of Theorem 2) that
every DC3 pair in (X, f) contains one point from
each cylinder, and neither of those two points is
fixed. The chaos is detected by distances of angles,
which are always smaller than 1/2. Since we are
using a maximum metric, we “kill” the chaos in the
conjugate system by separating the cylinders by a
distance more than 1/2. We lift the inner cylinder
(by homeomorphism) by, for concreteness, 1.3 units,
and we keep the map on each cylinder the same as
before. We can imagine this space like an extended
telescope.

We construct a conjugate dynamical system
(Y, g) by the following definitions

Y = Π(X) and g = Π ◦ f ◦ Π−1, where

Π((r, φ, z)) =

{
(r, φ, z + 1.3), if r = 0.01,

(r, φ, z), if r = 0.02.

(12)

Theorem 2. The existence of DC3 pairs is not pre-
served by topological conjugacy.

Proof. For the proof we will use the systems (X, f)
and (Y, g) constructed above. We will first show that
in (Y, g) there do not exist any DC3 pairs and after
that we will show that in (X, f) there are DC3 pairs.

(A) We claim that there are no DC3 pairs in (Y, g).

We can see all possible different cases for pairs of
distinct points (x, y) ∈ Y × Y in Fig. 2, where
x = (rx, φx, zx) and y = (ry, φy, zy).

(A1) rx �= ry.

When x and y belong to different cylinders, the dis-
tance between their images converges to 1.3 because
we are using the max metric.

(A2) rx = ry = r, zx = zy = z (φx �= φy).

Since x and y are at the same height in the same
cylinder, they rotate by the same angle, so the dis-
tance between them stays constant. That means
d(gj(x), gj(y)) = ρ(φx, φy) for all j, and so (x, y)
is not DC3.

(A3) zx �= zy and zx, zy �= 1.3, rx = ry = r = 0.01.

(Y, g)

rx �= ry

(A1)

rx = ry

zx = zy

(A2)

zx �= zy

rx = ry = 0.01

zx, zy �= 1.3
(A3)

zy = 1.3
(A4)

rx = ry = 0.02

zy = 0
(A5)

zx, zy �= 0
(A6)

Fig. 2. Possible pairs in the system (Y, g).

Let zx = 1
cx

+ 1.3, zy = 1
cy

+ 1.3, and without loss
of generality we suppose cy = cx + c, where c ∈ N.
Then limj→∞ |zj

x − zj
y| = 0 and |rj

x − rj
y| = 0 for

any j ∈ N. That means we can make calculations
using the circle metric ρ in place of the maximum
metric d. We can write φj

x = φx +
∑cx+j−1

n=cx
ϕ

(r)
n ,

and similarly for φj
y. By expanding these sums we

obtain

lim
j→∞

ρ(φj
x, φj

y) =

= lim
j→∞

ρ


(φx +

cx+c−1∑
n=cx

ϕ(r)
n +

cx+j−1∑
n=cx+c

ϕ(r)
n

)
,


cx+j−1∑

n=cx+c

ϕ(r)
n +

cx+j+c−1∑
n=cx+j

ϕ(r)
n + φy




.

We may cancel the innermost sums. By (10), we find
limj→∞

∑cx+j+c−1
n=cx+j ϕ

(r)
n = 0. Therefore the limit

limj→∞ d(gj(x), gj(y)) exists and so (x, y) is not
DC3.

(A4) zx �= zy and zy = 1.3, rx = ry = 0.01.

As in (A3), we make calculations using ρ in place of
d. We will calculate Φ and Φ∗ explicitly to show that
they are equal. Notice that ρ(φj

x, φ
j
y) ∈ [0, 0.5] for all

j, so Φ∗
(x,y)(δ) = Φ(x,y)(δ) = 1 for δ > 0.5. From the

definition of the map g, the point y = (0.01, φy , 1.3)
is a fixed point, and for simplicity let us take zx =
1 + 1.3 (if it is not, we replace x by some higher
preimage from the uppermost circle). As the point
x approaches the bottom ring, it rotates by finer
and finer steps. Thus, we hope to obtain the distri-
bution functions of a smoothly rotating point and
a fixed point. Our careful choice of rotation angles
and block sizes in (10) fulfills this hope.
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We write φj
x = φx +

∑j
n=1 ϕ

(r)
n . We may think

about φj
x in blocks. In the kth block (between lk−1

and lk) we can see the sequence of these k angles
{φlk−1

x + 0, φlk−1
x + 1

k , φ
lk−1
x + 2

k , . . . , φ
lk−1
x + k−1

k }
exactly kk−1 times. Then by Lemma 2 we obtain

2δk − 1 ≤ πk ≤ 2δk + 1, where

πk := #{lk−1 ≤ j ≤ lk−1 + k − 1; ρ(φj
x, φy) < δ}

(13)

and so in the whole kth block

2δkk − kk−1 ≤ Bk ≤ 2δkk + kk−1, where

Bk := #{lk−1 ≤ j < lk; ρ(φj
x, φy)< δ}= kk−1πk.

(14)

To show equality Φ∗
(x,y)(δ) = Φ(x,y)(δ), it is not

enough to work along subsequences — we need esti-
mates for all n. For each n, there exist unique kn, αn

and βn such that αn < k
(kn−1)
n , βn < kn and

n = 11 + 22 + · · · + (kn − 1)(kn−1) + αnkn + βn

= lkn−1 + αnkn + βn. (15)

Let us mark pn := #{0 ≤ j ≤ n; ρ(φj
x, φj

y) < δ}.
Then by (14) and (15), for each n there exists a
unique γn ≤ πkn such that

pn =
kn−1∑
j=1

Bj + αnπkn + γn

=
kn−1∑
j=1

jj−1πj + αnπkn + γn. (16)

By (13) and (16)

pn ≤
kn−1∑
j=1

(jj−1(2δj + 1)) + αn(2δkn + 1) + γn

= lkn−12δ +
kn−1∑
j=1

jj−1 + αn(2δkn + 1) + γn

= 2δ(lkn−1 + αnkn) + γn +
kn−1∑
j=1

jj−1 + αn.

(17)

And similarly

pn ≥ lkn−12δ −
kn−1∑
j=1

jj−1 + αn(2δkn − 1) + γn.

(18)

By (11), (15) and (17) we get

Φ∗
(x,y)(δ) = lim sup

n→∞




2δ(lkn−1 + αnkn) + γn

lkn−1 + αnkn + βn

+

kn−1∑
j=1

jj−1 + αn

lkn−1+αnkn+βn




= 2δ

(19)

and by (11), (15) and (18) we get

Φ(x,y)(δ) ≥ lim inf
n→∞




2δ(lkn−1 + αnkn) + γn

lkn−1 + αnkn + βn

−

kn−1∑
j=1

jj−1 + αn

lkn−1+αnkn+βn




= 2δ.

(20)

From (19) and (20), we obtain

Φ(x,y)(δ) = Φ∗
(x,y)(δ) = 2δ, for δ <

1
2
,

Φ(x,y)(δ) = Φ∗
(x,y)(δ) = 1, for δ ≥ 1

2
.

(21)

This shows that (x, y) is not DC3.

(A5) zx �= zy and zy = 0, rx = ry = 0.02.

The only difference from (A4) is that when we think
in blocks indexed by k, now we have to distinguish
between even and odd k. For odd k, the blocks are
exactly the same as in (A4) — see (13)–(16). But for
even k, we add the angle 2/k instead of 1/k in every
iteration. For odd k, we define πk := #{lk−1 ≤ j ≤
lk−1+k−1; ρ(φj

x, φy) < δ} and observe by Lemma 2
that 2δk − 1 ≤ πk ≤ 2δk + 1. For even k, we define
πk := #{lk−1 ≤ j ≤ lk−1 + k

2 − 1; ρ(φj
x, φy) < δ}

and observe in the same way that 2δ k
2 − 1 ≤ πk ≤

2δ k
2 + 1.

You can see that for even k we get full rotation
in k/2 steps instead of k steps. Then for the whole
block

Bk =

{
kk−1πk, for odd k,

2kk−1πk, for even k,
(22)
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where Bk := #{lk−1 ≤ j < lk; ρ(φj
x, φy) < δ}.

Hence

2δkk − 2kk−1 ≤ Bk ≤ 2δkk + 2kk−1,

for every k ∈ N. (23)

Then by the same computation as in (A4) we obtain

Φ(x,y)(δ) = Φ∗
(x,y)(δ) = 2δ, for δ <

1
2
,

Φ(x,y)(δ) = Φ∗
(x,y)(δ) = 1, for δ ≥ 1

2
.

(24)

This shows that (x, y) is not DC3.

(A6) zx �= zy and zx, zy �= 0, rx = ry = r = 0.02.

The computing is the same as in (A3) so
limj→∞ d(gj(x), gj(y)) converges and (x, y) is not
DC3.

(B) We claim that there is a DC3 pair in (X, f).

We will show that x = (0.01, 0, 1) and y =
(0.02, 0, 1) is DC3. For all j, |rj

x − rj
y| = 0.01,

|zj
x − zj

y| = 0 and ρ(φj
x, φj

y) ∈ [0, 0.5]. We will com-
pute Φ∗

(x,y)(δ) and Φ(x,y)(δ) for δ ∈ [0.01, 0.5].
After every lk steps (in the end of every kth

block), φlk
x = φlk

y = 0. Let us denote

Ak := #{0 ≤ j ≤ lk; d(f j(x), f j(y)) < δ} ≤ lk + 1.
(25)

After lk−1 steps, if k − 1 is even, then for the next
kk steps φj

x = φj
y so d(f j(x), f j(y)) = 0.01 and

#{lk−1 < j ≤ lk−1 + kk; d(f j(x), f j(y)) < δ} = kk.

(26)

Then by (11), (25) and (26) we get

Φ∗
(x,y)(δ) ≥ lim sup

k→∞
Ak−1 + kk

lk−1 + kk

= lim sup
k→∞

Ak−1 + kk

lk
= 1. (27)

If k− 1 is odd, then for the next kk steps, the inner
point is rotating with speed 1/k while the outer
point is rotating with speed 2/k. From the point
of view of calculating distances, the situation is
exactly the same as if the inner point made no rota-
tion and the outer point rotated with speed 1/k.

Applying Lemma 2 [the same as we did in (14)] we
obtain

#{lk−1 < j ≤ lk; d(f j(x), f j(y)) < δ}
≤ #{lk−1 < j ≤ lk; ρ(φj

x, φj
y) < δ}

≤ 2δkk + kk−1 (28)

and by (11), (25) and (28) we get

Φ(x,y)(δ) ≤ lim inf
k→∞

Ak−1 + 2δkk + kk−1

lk
= 2δ.

(29)

By (27) and (29) we get

Φ(x,y) ≤ 2δ < 1 ≤ Φ∗
(x,y)(δ), for δ ∈ (0.01, 0.5).

(30)

That shows that (x, y) is a DC3 pair.

We have shown that (X, f) contains a DC3 pair,
while the conjugate system (Y, g) does not. �

4.2. DC3 — Uncountable
scrambled set

Theorem 3. The existence of an uncountable DC3
set is not preserved by topological conjugacy.

Proof. Let I be the unit interval and C be the
middle-third Cantor set inside I. Let C̃ be C trans-
lated by 1, i.e. C̃ = C + 1 and Sr be the circle
with radius r ∈ C̃ and with center at the origin.
The desired counterexample is constructed on the
union in R

3 of uncountably many concentric cylin-
ders above {Sr : r ∈ C̃} (height of points in these
cylinders ranges only in { 1

k : k ∈ N} ∪ {0}), with a
skew-product mapping. The base map of this skew-
product mapping decreases the height of a point in
the limit to 0 and each fiber map is a rigid rotation.

Define

X =
{

(r cos(2πϕ), r sin(2πϕ), z) : r ∈ C̃,

ϕ ∈ I, z ∈
{

1
k

: k ∈ N

}
∪ {0}

}
.

We equip our space with the max-metric d(x, y) =
max{|rx − ry|, ρ(ϕx, ϕy), |zx − zy|}, where ρ is the
metric on the unit circle ρ(α, β) = min{|α− β|, 1−
|α − β|}.
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The transformation f : X → X is the identity
for points with zero third coordinate,

(r cos(2πϕ), r sin(2πϕ), 0)

�→ (r cos(2πϕ), r sin(2πϕ), 0)

and for the other points f is defined as follows(
r cos(2πϕ), r sin(2πϕ),

1
k

)
�→

(
r cos(2π(ϕ + p(k))), r sin(2π(ϕ + p(k))),

1
k + 1

)
.

To define the function p : N → I, let 0 < n0 <
n1 < · · · be an increasing sequence of integers such
that

lim
k→∞

sk

nk
= 0 and simultaneously lim

k→∞
2k

nk
= 0,

(31)

where sm =
∑m−1

i=0 ni and s0 = 0. Set

p(k) =




1
2m+1

if sm < k ≤ sm + 2m

0 if sm + 2m < k ≤ sm + nm.

(32)

Let (Y, F ) be a dynamical system conjugated
with (X, f) via the following homeomorphism

Π((x, y, z)) =

{
(x, y, z) if x ≥ 0,

(2x, y, z) if x < 0,
(33)

where Y = Π(X) and F = Π ◦ f ◦ Π−1.

(I) (Y, F ) is DC3.

We claim that the set S ⊂ Y ,

S = {(r, 0, 1) : r ∈ C̃},
is distributionally scrambled of type 3. Denote
f i(x) = (r cos(2πηi), r sin(2πηi), zi), for i ≥ 0. Then
for x ∈ S,

zi =
1

1 + i
and ηi =

i∑
j=1

p(j) mod 1.

Let

Uk = #{0 ≤ i ≤ sk + nk; ηi = 0},

Lk = #
{

0 ≤ i ≤ sk + nk; ηi =
1
2

}
.

By (32) and the definition of ηi, we can see that for
k ≥ 0

L2k ≥ n2k − 22k and U2k+1 ≥ n2k+1 − 22k+1.

Let x1, x2 be two distinct points in S such that
x1 = (r1, 0, 1) and x2 = (r2, 0, 1). Then d(x1, x2) =
|r1 − r2| = ε. By the definition of F ,

d(F i(x1), F i(x2)) = d(f i(x1), f i(x2))

= ε, if ηi = 0

and

d(F i(x1), F i(x2)) = 2 · d(f i(x1), f i(x2))

= 2ε, if ηi =
1
2
.

It follows for any δ ∈ (ε, 2ε],

Φ∗
(x1,x2)

(δ) ≥ lim
k→∞

1
s2k+1 + n2k+1

U2k+1

≥ lim
k→∞

n2k+1 − 22k+1

n2k+1 + s2k+1
, (34)

Φ(x1,x2)(δ) ≤ 1 − lim
k→∞

1
s2k + n2k

L2k

≤ 1 − lim
k→∞

n2k − 22k

s2k + n2k
. (35)

By (31), (34) and (35), we get for any δ ∈ (ε, 2ε],

Φ∗
(x1,x2)

(δ) = 1, Φ(x1,x2)(δ) = 0.

(II) (X, f) is not DC3.
It is sufficient to show that every DC3 pair in X
contains a fixed point and therefore the maximum
cardinality of any distributionally scrambled set in
X is 2. Let

Fix = {(r cos 2πϕ, r sin 2πϕ, 0) : r ∈ C̃, ϕ ∈ I}
be the set of all fixed points. We prove that for every
(x, y) ∈ (X\Fix)2 the limit limn→∞ d(fn(x), fn(y))
always exists and hence Φ∗

(x,y)(δ) = Φ(x,y)(δ), for
any δ > 0.

Let x = (rx cos 2πϕx, rx sin 2πϕx, 1
kx

) and y =
(ry cos 2πϕy, ry sin 2πϕy,

1
ky

). We assume without
loss of generality that kx ≤ ky, and after replac-
ing x and y by their (kx − 1)th preimages, we may
assume that kx = 1 and we may write l = ky. By
the definition of f , the distance |rfn(x) − rfn(y)| =
|rx−ry| is constant and the distance | 1

kfn(x)
− 1

kfn(y)
|

decreases to zero. Moreover, using the fact that
limn→∞

∑n+l
k=n+1 p(k) = 0, we find that the dif-

ference between the angles (with all calculations
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modulo 1) converges to a constant:

lim
n→∞ϕfn(x) − ϕfn(y)

= lim
n→∞

(
ϕx +

n∑
k=1

p(k)

)
−

(
ϕy +

n+l∑
k=l

p(k)

)

= ϕx − ϕy +
l−1∑
k=1

p(k) − lim
n→∞

n+l∑
k=n+1

p(k)

= ϕx − ϕy +
l−1∑
k=1

p(k).

It follows that ρ(ϕfn(x), ϕfn(y)) converges to a con-
stant. The existence of the limit limn→∞ d(fn(x),
fn(y)) follows from the separate convergence in all
three coordinates. �

5. Distributional Chaos of Type 21
2

Nevertheless, the notion of DC3 can be strength-
ened in such a way that it is preserved under con-
jugacy and implies Li–Yorke chaos:

Definition 5.1. A pair (x1, x2) ∈ X2 is called dis-
tributionally scrambled of type 21

2 if there are posi-
tive numbers c and s such that, for any 0 < δ ≤ s,

Φ(x1,x2)(δ) < c < Φ∗
(x1,x2)

(δ).

We can define both distribution functions at 0
as limits Φ(x1,x2)(0) = limδ→0+ Φ(x1,x2)(δ) and
Φ∗

(x1,x2)
(0) = limδ→0+ Φ∗

(x1,x2)
(δ). Then (x1, x2)

being DC21
2 is equivalent to

Φ(x1,x2)(0) < Φ∗
(x1,x2)

(0).

We define also DC21
2 sets and DC21

2 systems in
the same way as for the other versions of distribu-
tional chaos (see Sec. 2).

By simple observation we can see that if
(x1, x2) ∈ X2 is DC21

2 , then it is Li–Yorke scram-
bled. Since Φ∗

(x1,x2)
(δ) > c for arbitrary small

δ, (x1, x2) must be proximal (for distal pairs
Φ∗

(x1,x2)
(0) = 0). Similarly, (x1, x2) is not asymp-

totic (for asymptotic pairs Φ(x1,x2)(δ) = 1 for every
δ > 0).

Remark 5.1. We call a dynamical system strictly
DC21

2 if it possesses an uncountable DC21
2 set

but no DC2 pairs. By results in [Downarowicz &
Lacroix, 2014], positive topological entropy implies
existence of an uncountable DC2 set, hence strictly
DC21

2 systems must have zero topological entropy.

Theorem 4. Let f and g be topologically conjugate
continuous maps of a compact metric space (X, d).
Then f is DC21

2 if and only if g is DC21
2 .

Proof. Suppose (u, v) is a DC21
2 pair with respect

to f , i.e. there are positive numbers c and s such
that, for any 0 < δ ≤ s, Φ(u,v)(δ) < c < Φ∗

(u,v)(δ).
Let h be a homeomorphism conjugating f and g
such that h ◦ f = g ◦ h. By uniform continuity of h
and h−1, for any ε > 0 there is δ > 0 (and we may
take δ < s) such that for any u, v ∈ X,

d(u, v) < δ implies d(h(u), h(v)) < ε (36)

and

d(h(u), h(v)) < δ implies d(u, v) < ε. (37)

Since fn = h−1 ◦ gn ◦ h, it follows by (36),

d(fn(u), fn(v)) < δ implies

d(gn ◦ h(u), gn ◦ h(v)) < ε

and consequently c < Φ∗
(u,v)(δ) ≤ Ψ∗

(h(u),h(v))(ε),
where Φ∗ and Ψ∗ are the upper distribution func-
tions of f and g respectively. Similarly by (37),
Ψ(h(u),h(v))(δ) ≤ Φ(u,v)(ε), where Φ and Ψ are the
lower distribution functions of f and g respectively.
Hence for given s we can find s′ > 0 such that
Ψ(h(u),h(v))(s′) ≤ Φ(u,v)(s) < c. By monotonicity of
the distribution function Ψ(h(u),h(v)), for any 0 <
ε ≤ s′,

Ψ(h(u),h(v))(ε) < c < Ψ∗
(h(u),h(v))(ε). �

The following example illustrates that DC21
2 is

essentially weaker than DC2.

Example 5.1. Let X be the union of a converging
sequence of unit fibers and the limit fiber,

X =
{

1
k

: k ∈ N

}
× I ∪ {0} × I,

where I = [0, 1], and let f be a skew-product map
f : X → X which is the identity on the limit fiber,

(0, z) �→ (0, z)

and which is fk on the other fibers,(
1
k
, z

)
�→

(
1

k + 1
, fk(z)

)
, k ∈ N.

To define fk : I → I, let 0 = m0 < m1 < m2 <
m3 < · · · be an increasing sequence of integers

1650235-10
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satisfying

lim
l→∞

ml

ml+1 − ml
= 0, lim

l→∞
l

ml
= 0

and the difference (ml − ml−1) is divisible by 7l,
for any l ∈ N. Let hl(x) = l−1/lx and hl(x) =
min{1, l1/lx}. The sequence {fk}∞k=1 is defined in
two ways. If l is odd, then fk for ml−1 < k ≤ ml is
given by

fml−1+1 · · · fml
= [(hl)l(Id)4l(hl)l(Id)l]

1
7
(ml−ml−1),

where (h)l means h, . . . , h︸ ︷︷ ︸
l-times

. If l is even, then we

change the order and fk for ml−1 < k ≤ ml is given
by

fml−1+1 · · · fml
= [(hl)l(Id)l(hl)l(Id)4l]

1
7
(ml−ml−1).

We can express our construction of the sequence of
maps fk more precisely by writing that for odd l,

fk =




hl, ml−1 + i7l < k ≤ ml−1 + i7l + l

Id, ml−1 + i7l + l < k ≤ ml−1 + i7l + 5l

where k ∈ N,

hl, ml−1 + i7l + 5l < k ≤ ml−1 + i7l + 6l

where i ∈
{

0, 1, . . . ,
ml − ml−1

7l
− 1

}
,

Id, ml−1 + i7l + 6l < k ≤ ml−1 + i7l + 7l

and for even l,

fk =




hl, ml−1 + i7l < k ≤ ml−1 + i7l + l

Id, ml−1 + i7l + l < k ≤ ml−1 + i7l + 2l

where k ∈ N,

hl, ml−1 + i7l + 2l < k ≤ ml−1 + i7l + 3l

where i ∈
{

0, 1, . . . ,
ml − ml−1

7l
− 1

}
.

Id, ml−1 + i7l + 3l < k ≤ ml−1 + i7l + 7l.

The sequence {fk}∞k=1 uniformly converges to
the identity and therefore f is continuous. Let
(u, v) ∈ {1}×I and α = d(u, v). After l applications
of hl the distance is contracted from α to α

l and it
remains the same until l applications of hl recover
the distance to the original α. The identity map-
pings between hl and hl ensure that the distance
is contracted to α

l for four sevenths of the times i
and then it is recovered to α for one seventh of the

times i, when ml−1 < i ≤ ml and l is odd. Hence
6
7 ≥ Φ∗

(u,v)(δ) ≥ 4
7 , for any 0 < δ < α. When l is

even, the distance is contracted to α
l for one sev-

enth of the times i and then it is recovered to α for
four sevenths of the times i, for ml−1 < i ≤ ml+1.
Therefore 3

7 ≥ Φ(u,v)(δ) ≥ 1
7 , for any 0 < δ < α and

the set {1} × I is DC21
2 but not DC2.

With the same reasoning we conclude that pairs
in any fiber { 1

k} × I are either DC21
2 but not DC2

scrambled or they have eventually equal trajecto-
ries (because of the constant part of the function
hl). If u ∈ { 1

k} × I and v ∈ { 1
k+n} × I, then

we apply functions to u with a delay of n times.
Blocks of identities are arbitrarily long and n is
fixed, hence the delay does not change the limits —
6
7 ≥ Φ∗

(u,v)(δ) ≥ 4
7 and 3

7 ≥ Φ(u,v)(δ) ≥ 1
7 , for any

0 < δ < β, where β = d(fn(u), v). In this case (u, v)
is also a DC21

2 but not DC2 pair. If β = 0, then v
belongs to the orbit of u and (u, v) is asymptotic.

Notice that points in {0}×I are fixed and hence
there are no scrambled pairs in {0} × I. Suppose
u �∈ {0} × I and v ∈ {0} × I. Then 6

7 ≥ Φ∗
(u,v)(δ),

for sufficiently small δ, since the height of u is con-
tracted for at least 1/7 of the time and (u, v) is not
DC2 (if v = (0, 0), (u, v) is either an asymptotic pair
or 6

7 ≥ Φ∗
(u,v)(δ), since u is recovered for at least 1/7

of the time). Therefore X has no DC2 pairs.
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Appendix A

We give the proof of Lemma 1.

Proof. First we confirm the convergence αi → α as
i → ∞. If we multiply the numerator and denom-
inator of the expression for αi by 4 and rearrange
terms, we find

αi =

i∏
l=1

(2nl − 2l)

2mi
− 2i + 4

2ni
·

i−1∏
l=1

(2nl − 2l)

2mi−1
, i ∈ N.

Since ni is strictly increasing in i, it follows that
ni − i is nondecreasing. Moreover, ni − i → ∞,
for otherwise, ni − i would be eventually constant,
which contradicts (3). Now pass to the limit.

Now we derive the estimate for the rotation
along the orbit. We introduce the following func-
tions (cf. (4) and (6) for the definitions of k

and p)

ϕl(n, σω) =
∑
j∈J

p(τ jσω), where

J = {j; 0 ≤ j ≤ n − 1 and k(τ jσω) = l}.
(A.1)

Thus, ϕl counts the contribution to the net rotation
due to block l. We have

n−1∑
j=0

p(τ jσω) =
∞∑
l=1

ϕl(n, σω), n ∈ N.

Notice that τ2mi−2
represents addition by

000 · · · 010 · · ·, where 1 appears in the next to last
coordinate of block i. Thus, if n ≤ 2mi−2, then for
all j < n there is still a zero in the ith block of τ jσω
so that k(τ jσω) ≤ i. Therefore we only need to add
together contributions from blocks 1 through i,

n−1∑
j=0

p(τ jσω) =
i∑

l=1

ϕl(n, σω), n ∈ {1, . . . , 2mi−2}.

Comparing definitions (6) and (A.1), we find
that we can evaluate ϕl(n, σω) by looking up the
word appearing in the lth block of τnσω on one of
the tables in Fig. 3. We will say that the word in
block l is a good word if ϕl(n, σω) = 1

2(1−ωl) mod 1.

Use this table if ωl = 0 Use this table if ωl = 1

Block l from τnσω Evaluation ϕl(n, σω) mod 1 Block l from τnσω Evaluation ϕl(n, σω) mod 1

00 · · · 0 − 000 · · · 00 0 0 B
a
d

00 · · · 0 − 000 · · · 01 2nl−1 0 G
o
o
d

...
...

...
...

...
...

11 · · · 1 − 000 · · · 00 2l−1 − 1
2l−1 − 1

2l
11 · · · 1 − 011 · · · 11 2nl − 2l−1 − 1 0

00 · · · 0 − 100 · · · 00 2l 1

2

G
o
o
d

00 · · · 0 − 111 · · · 11 2nl − 2l−1 1

2l B
a
d...

...
...

...
...

...

11 · · · 1 − 011 · · · 11 2nl − 2l−1 − 1
1

2
11 · · · 1 − 000 · · · 00 2l−1 − 1

2l − 1

2l

00 · · · 0 − 111 · · · 11 2nl − 2l−1 2l−1 + 1

2l B
a
d

00 · · · 0 − 100 · · · 00 2l−1 1 G
o
o
d...

...
...

...
...

...

11 · · · 1 − 111 · · · 11 2nl − 1 1 11 · · · 1 − 111 · · · 10 2nl−1 − 1 1

Fig. 3. Table of values for ϕl(n, σω). Each word has length nl. The first l − 1 digits have been typographically separated
from the remaining digits by a hyphen.

1650235-12

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
IL

E
SI

A
N

 U
N

IV
E

R
SI

T
Y

 I
N

 O
PA

V
A

 o
n 

01
/0

2/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



January 6, 2017 11:45 WSPC/S0218-1274 1650235

On the Weakest Version of Distributional Chaos

If τnσω contains good words in each of the blocks
1 through i, then we obtain the desired sum
n−1∑
j=0

p(τ jσω) =
1
2
((1 − ω1) + · · · + (1 − ωi)) mod 1.

How many ways are there to choose good words in
all blocks?

Take the set {τn(σω)}2mi−2

n=1 and truncate each
member of this set to the first i blocks. We obtain
in this way the set of all x ∈ {0, 1}mi in the interval

Block 1︷ ︸︸ ︷
0 · · · 0ω1

Block 2︷ ︸︸ ︷
0 · · · 0ω2 · · ·

Block i︷ ︸︸ ︷
0 · · · 00ωi

< x ≤
Block 1︷ ︸︸ ︷

0 · · · 0ω1

Block 2︷ ︸︸ ︷
0 · · · 0ω2 · · ·

Block i︷ ︸︸ ︷
0 · · · 01ωi,

where the order relation corresponds to the tempo-
ral ordering of our orbit segment; we may express

this explicitly in terms of the evaluation opera-
tor (5) with the rule that x < y whenever |x| < |y|.
Unfortunately, this interval does not contain arbi-
trary combinations of words in the first i blocks.
It does, however, contain the subinterval

Block 1︷ ︸︸ ︷
00 · · · 0

Block 2︷ ︸︸ ︷
00 · · · 0 · · ·

Block i︷ ︸︸ ︷
10 · · · 00ωi

≤ x ≤
Block 1︷ ︸︸ ︷
11 · · · 1

Block 2︷ ︸︸ ︷
11 · · · 1 · · ·

Block i︷ ︸︸ ︷
11 · · · 10ωi .

This interval contains words from the set {x ∈
{0, 1}ni ; 10 . . . 00ωi ≤ x ≤ 11 . . . 10ωi} in block i
combined with arbitrary words in blocks 1 through
i− 1. Counting the number of good words available
in each block and multiplying completes the proof
of the lemma. �
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We disprove the conjecture that the existence of a DC3-scrambled pair is preserved under iter-
ation and show that a slightly strengthened definition of distributional chaos of type 3, denoted
by DC2 1

2 , is iteration invariant, i.e. that fn is DC2 1
2 if and only if f is. Unlike DC3, DC2 1

2 is
also conjugacy invariant and implies Li–Yorke chaos. The definition of DC21

2 is the following:
a pair 〈x, y〉 is DC2 1

2 -scrambled iff Φ〈x,y〉(0) < Φ∗
〈x,y〉(0), where Φ〈x,y〉(δ) (resp., Φ∗

〈x,y〉(δ)) is
lower (resp., upper) asymptotic density of the set of times k when d(fk(x), fk(y)) < δ, and both
densities are defined at 0 as limits of their values for δ → 0+. DC2 1

2 shares similar properties
with DC1 and DC2 but it is essentially weaker than DC2.

Keywords : Distributional chaos; Li–Yorke chaos; iteration invariant; zero topological entropy.

1. Introduction

The study of chaotic pairs in dynamical systems
started with Li and Yorke [1975], who consid-
ered pairs of points with the property that their
orbits are neither asymptotic nor separated by any
fixed positive constant. Schweizer and Smı́tal [1994]
introduced a related concept of a distributionally
chaotic pair as two points for which the statisti-
cal distribution of distances between their orbits
does not converge. In case of dynamics on a com-
pact interval, the existence of at least one distribu-
tionally chaotic pair is equivalent to the positivity
of topological entropy (and some other notions of
chaos).

Later, distributional chaos was divided into
three types, DC1, DC2, and DC3, see [Balibrea
et al., 2005]. Relations between them and the rela-
tion between distributional chaos, Li–Yorke chaos
and positivity of topological entropy were investi-
gated by many authors, see e.g. [Balibrea et al.,
2005; Downarowicz, 2014; Oprocha, 2009; Wang
et al., 2008b; Wang et al., 2014]. One can easily
see from the definitions that DC1 implies DC2 and

DC2 implies DC3. On the other hand, there are
examples which show that DC1 is stronger than
DC2 and DC2 is stronger than DC3. It is also
obvious that DC2 (thus also DC1) implies Li–Yorke
chaos. Moreover, there are Li–Yorke chaotic con-
tinuous maps of the interval with zero topological
entropy; by [Schweizer & Smı́tal, 1994], such maps
cannot be distributionally chaotic. This shows that
Li–Yorke chaos need not imply any of the three ver-
sions of distributional chaos. Recently, Downarow-
icz in [Downarowicz, 2014] proved that positive
topological entropy implies DC2.

It is proved in [Balibrea et al., 2005] that DC3
does not imply chaos in the sense of Li and Yorke
and it is not invariant with respect to topolog-
ical conjugacy. Hence the definition of DC3 was
strengthened in such a way that it is preserved
under conjugacy and implies Li–Yorke chaos, but
is still weaker than DC2 — the new definition
was denoted by DC21

2 (see [Doleželová-Hantáková
et al., 2016]). A pair 〈x, y〉 is DC3-scrambled iff
Φ(δ) < Φ∗(δ), for every δ > 0 in some interval I.
We say that a pair 〈x, y〉 is DC21

2 -scrambled iff
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Φ(0) < Φ∗(0), where the distribution functions at
0 are defined as limits of their values for δ → 0+.
Since both Φ and Φ∗ are nondecreasing, Φ(0) <
Φ∗(0) implies Φ(δ) < Φ∗(δ), for every δ > 0 in
some interval I with left endpoint 0, which shows
that DC21

2 implies DC3. An example which proved
that DC21

2 is essentially weaker than DC2 can be
found in [Doleželová-Hantáková et al., 2016]. This
example possesses no DC2-scrambled pair; hence,
by results in [Downarowicz, 2014], its topologi-
cal entropy must be zero. We will show in this
paper that DC21

2 is (like DC1 and DC2) iteration
invariant.

Another strengthened distributional chaos,
denoted by DC11

2 , was proposed by authors in
[Downarowicz & Lacroix, 2014]. DC11

2 chaos is
stronger than DC2 but is still implied by positive
topological entropy.

Li in [Li, 2011] and Wang et al. in [Wang et al.,
2008a] show that DC1 and DC2 are iteration invari-
ants and posed an open question whether DC3 is
also preserved under iteration. Dvořaková proved in
[Dvořáková, 2012] one implication — if a function f
is DC3, then fn is DC3, for every n ∈ N, and conjec-
tured that the opposite implication also holds. We
disprove this conjecture by finding a dynamical sys-
tem which has a DC3-scrambled pair with respect
to f2 but no DC3-scrambled pairs with respect to f .

However, it should be noticed that the distri-
butional chaos considered in [Balibrea et al., 2005;
Li, 2011; Wang et al., 2008a; Dvořáková, 2012] was
defined as the existence of at least one distribution-
ally scrambled pair. In the considerations by most
other authors, it is usually assumed that distribu-
tional chaos means the existence of an uncount-
able distributionally scrambled set. Thus, a natural
question arises — does the existence of an uncount-
able scrambled set behave under iterates of a func-
tion in the same manner as the existence of at
least one scrambled pair? The answer to this ques-
tion strongly depends on the type of distributional
chaos. Since we will deal with both conceptions of
distributional chaos, we adapt the following nota-
tion. The existence of at least one DCi-scrambled
pair is denoted by DCip and the existence of an
uncountable DCi set is denoted by DCiu.

The paper is organized as follows: the first two
sections are introductory. The third section inves-
tigates distributional chaos of type 21

2 and proves
that both DC21

2p
and DC21

2u
are iteration invari-

ants. In the fourth section we show that DC3p is not

iteration invariant, by creating a counter-example.
The fifth section discusses whether the existence
of an infinite or an uncountable distributionally
scrambled set is preserved under iteration.

2. Terminology

Let (X, d) be a nonempty compact metric space.
A pair (X, f), where f is a continuous self-map
acting on X, is called a topological dynamical sys-
tem. A property P is iteration invariant if, for
any dynamical system (X, f) and n ∈ N, (X, f)
has P if and only if (X, fn) has P . We define
the forward orbit of x, denoted by Orb+

f (x) as the
set {fn(x) : n ≥ 0}. We say that a pair 〈x, y〉
is asymptotic if limn→∞ d(f i(x), f i(y)) = 0 or even-
tually equal if there is j ∈ N such that f j(x) =
f j(y). We call a pair 〈x, y〉 ∈ X2 proximal if
lim infn→∞ d(f i(x), f i(y)) = 0 (otherwise we say
that 〈x, y〉 is distal). A pair of points is Li–
Yorke scrambled simply if it is proximal but not
asymptotic.

For a pair 〈x1, x2〉 of points in X, we define the
lower distribution function generated by f as

Φ〈x1,x2〉(δ) = lim inf
m→∞

1
m

#{0 ≤ k ≤ m;

d(fk(x1), fk(x2)) < δ}
and the upper distribution function as

Φ∗
〈x1,x2〉(δ) = lim sup

m→∞
1
m

#{0 ≤ k ≤ m;

d(fk(x1), fk(x2)) < δ},
where #A denotes the cardinality of the set A.

A pair 〈x1, x2〉 ∈ X2 is called distributionally
scrambled of type 1 (briefly DC1 ) if

Φ∗
〈x1,x2〉(δ) = 1, for every 0 < δ ≤ diam X,

Φ〈x1,x2〉(ε) = 0, for some 0 < ε ≤ diam X,

distributionally scrambled of type 11
2 (briefly

DC11
2 ) if

Φ∗
〈x1,x2〉(δ) = 1, for every 0 < δ ≤ diam X, and,

for every c > 0, there is εc > 0
such that Φ〈x1,x2〉(εc) ≤ c,

distributionally scrambled of type 2 (briefly DC2 ) if

Φ∗
〈x1,x2〉(δ) = 1, for every 0 < δ ≤ diam X,

Φ〈x1,x2〉(ε) < 1, for some 0 < ε,
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distributionally scrambled of type 21
2 (briefly

DC21
2 ) if there exist numbers c, ε > 0 such that

Φ〈x1,x2〉(δ) < c < Φ∗
〈x1,x2〉(δ), for every 0 < δ ≤ ε,

distributionally scrambled of type 3 (briefly DC3 ) if

Φ〈x1,x2〉(δ) < Φ∗
〈x1,x2〉(δ), for every δ ∈ (a, b),

where 0 ≤ a < b ≤ diam X.

A subset S of X is distributionally scrambled
of type i (or a DCi set), where i = 1, 11

2 , 2, 21
2 , 3, if

every pair of distinct points in S is a DCi-scrambled
pair. The dynamical system (X, f) is DCiu, where
i = 1, 11

2 , 2, 21
2 , 3, if there is an uncountable dis-

tributionally scrambled set S ⊂ X of type i.
The dynamical system (X, f) is DCip, where i =
1, 11

2 , 2, 21
2 , 3, if there is at least one distribution-

ally scrambled pair of type i in X. The dynamical
system is strictly DCiu (resp., strictly DCip) if it is
DCiu (resp., DCip) and possesses no distribution-
ally scrambled pairs of types smaller than i.

We can define both distribution functions at
0 as the limit Φ〈x1,x2〉(0) = limδ→0+ Φ〈x1,x2〉(δ)
and Φ∗

〈x1,x2〉(0) = limδ→0+ Φ∗
〈x1,x2〉(δ). Then (x1, x2)

being DC1-scrambled is equivalent to

Φ∗
〈x1,x2〉(0) = 1, Φ〈x1,x2〉(ε) = 0,

for some 0 < ε ≤ diam X;

DC11
2 -scrambled is equivalent to

Φ∗
〈x1,x2〉(0) = 1, Φ〈x1,x2〉(0) = 0;

DC2-scrambled is equivalent to

Φ∗
〈x1,x2〉(0) = 1, Φ〈x1,x2〉(0) < 1;

DC21
2 -scrambled is equivalent to

Φ〈x1,x2〉(0) < Φ∗
〈x1,x2〉(0).

3. Iteration Problem for DC21
2

For completeness, we first state all existing
results about distributional chaos of type 21

2 from
[Doleželová-Hantáková et al., 2016]. First of all, if
〈x, y〉 ∈ X2 is DC21

2 , then it is Li–Yorke scram-
bled. Indeed, Φ∗

〈x,y〉(0) > 0 implies 〈x, y〉 being
proximal (for distal pairs, Φ∗

〈x,y〉(0) = 0). Similarly,
Φ〈x,y〉(0) < 1 implies 〈x, y〉 being not asymptotic
(for asymptotic pairs, Φ〈x,y〉(0) = 1).

DC21
2 p

is strictly stronger than DC3p (any
distal DC3p system must not have DC21

2 pairs)

and strictly weaker than DC2p (see example of
strictly DC21

2p
system in [Doleželová-Hantáková

et al., 2016]). By results in [Downarowicz, 2014],
positive topological entropy implies existence of an
uncountable DC2 set, hence strictly DC21

2 p
systems

and strictly DC21
2u

systems must have zero topo-
logical entropy.

Both DC21
2 p

and DC21
2u

are conjugacy invari-
ants — let f and g be topologically conjugate con-
tinuous maps of a compact metric space. Then f
is DC21

2 p
(resp., DC21

2u
) if and only if g is DC21

2p

(resp., DC21
2u

). This claim is an easy consequence
of the following Lemma 1.

Lemma 1. Let f and g be topologically conjugate
continuous maps of a compact metric space (X, d).
Then the upper and the lower distribution functions
of any pair 〈x, y〉 in X calculated with respect to
g have the same value at zero as calculated with
respect to f .

Proof. Let h be a homeomorphism conjugating f
and g such that h◦f = g ◦h. By uniform continuity
of h and h−1, for any ε > 0 there is δ > 0 such that
for any x, y ∈ X,

d(x, y) < δ implies d(h(x), h(y)) < ε (1)

and

d(h(x), h(y)) < δ implies d(x, y) < ε. (2)

Since fn = h−1 ◦ gn ◦ h, it follows by (1),

d(fn(x), fn(y)) < δ

implies d(gn ◦ h(x), gn ◦ h(y)) < ε

and consequently Φ〈x,y〉(δ) ≤ Ψ〈h(x),h(y)〉(ε) and
Φ∗
〈x,y〉(δ) ≤ Ψ∗

〈h(x),h(y)〉(ε), where Φ and Φ∗ (resp.,
Ψ and Ψ∗) are the lower and the upper distribu-
tion functions of f (resp., of g). Similarly by (2),
Ψ〈h(x),h(y)〉(δ) ≤ Φ〈x,y〉(ε) and Ψ∗

〈h(x),h(y)〉(δ) ≤
Φ∗
〈x,y〉(ε). It follows Φ〈x,y〉(0) = Ψ〈h(x),h(y)〉(0) and

Ψ∗
〈h(x),h(y)〉(0) = Φ∗

〈x,y〉(0). �

Now we will show that DC21
2 p

and DC21
2u

are
also iteration invariants:

Theorem 1. For any integer N > 1, the function
fN is DC21

2p
(resp., DC21

2u
) if and only if f is

DC21
2p

(resp., DC21
2u

).
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Proof. For a given function f of a compact metric
space (X, d), an integer N and two points x, y in X,
denote the distribution functions with respect to f
by Φ

Φ(δ) = lim inf
k→∞

1
k
#{0 ≤ i < k; d(f i(x), f i(y)) < δ},

Φ∗(δ) = lim sup
k→∞

1
k
#{0 ≤ i < k; d(f i(x), f i(y)) < δ}

and with respect to fN by Ψ

Ψ(δ) = lim inf
k→∞

1
k
#{0 ≤ i < k;

d(f iN (x), f iN (y)) < δ},

Ψ∗(δ) = lim sup
k→∞

1
k
#{0 ≤ i < k;

d(f iN (x), f iN (y)) < δ}.
Notice that we can calculate Φ(δ) (resp., Φ∗(δ))
using only subsequence of multiples of N . For every
element ni of the subsequence of times with mini-
mal (resp., maximal) asymptotic density, there is an
integer k such that kN ≤ ni < kN + N , therefore
errors in computation using subsequence of multi-
ples of N tend to 0 with i → ∞.

We derive another metric D on X,

D(x, y) = max
j=0,1,...,N

{d(f j(x), f j(y))}.

By a simple observation,

D(x, y) < δ implies d(f j(x), f j(y)) < δ,

for j = 0, 1, . . . , N − 1 (3)

and

d(fN (x), fN (y)) ≥ δ

implies D(f j(x), f j(y)) ≥ δ,

for j = 0, 1, . . . , N − 1. (4)

It follows by (3), ΨD(δ) ≤ Φ(δ) and Ψ∗
D(δ) ≤ Φ∗(δ),

and similarly by (4), 1 − Ψ(δ) ≤ 1 − ΦD(δ) and
1−Ψ∗(δ) ≤ 1−Φ∗

D(δ), where the distribution func-
tions with subscript D were computed for the met-
ric D and all distribution functions with respect to
f were computed along the subsequence of multi-
ples of N . By Lemma 1, the distribution functions
do not depend on the metric at zero. Therefore
Ψ(0) = ΨD(0) ≤ Φ(0) and Ψ(0) ≥ ΦD(0) = Φ(0).
The equality Ψ∗(0) = Φ∗(0) is obtained in the same

manner. Consequently, 〈x, y〉 is DC21
2 with respect

to f if and only if it is DC21
2 with respect to fN .

�

4. Iteration Problem for DC3

Theorem 2. DC3 p is not iteration invariant.

Proof of this theorem consists of finding a dynam-
ical system which has a DC3-scrambled pair with
respect to f2 but no DC3-scrambled pairs with
respect to f . The main obstacle in the creation of
such system is that by [Li, 2011], DC2p is an iter-
ation invariant, hence the desired system has to be
strictly DC3p. There are only few such examples in
the literature (see [Balibrea et al., 2005; Li, 2011;
Oprocha, 2009]).

In this section we will gradually modify a very
simple dynamical system from Sec. 4.1 to get a
DC3p system in Sec. 4.2 and then prove our the-
orem in Sec. 4.3.

Since we are considering only DC3p in this sec-
tion, we pose the following open question for DC3u.

Question 4.1. Is there a dynamical system which
has an uncountable DC3 set with respect to f2 but
no DC3-scrambled pairs with respect to f?

4.1. Oscillator

Our first goal is to construct an oscillatory dynam-
ical system, where points regularly move from the
right endpoint of an interval to the left endpoint
(and back). Let I be the unit interval and gm : I →
I be the mapping defined as

gm(x) =




0 0 ≤ x <
1
m

x − 1
m

1
m

≤ x ≤ 1
(5)

and ĝm : I → I defined as

ĝm(x) =




x +
1
m

0 ≤ x < 1 − 1
m

1 1 − 1
m

≤ x ≤ 1.
(6)

Dynamical system O1 consists of a compact metric
space I × ({ 1

k : k ∈ N} ∪ {0}) endowed with the
max-metric d(x, y) = max{|x1 − y1|, |x2 − y2|} and
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a function F such that, for x ∈ I,

F (〈x, 0〉) = 〈x, 0〉

F

(〈
x,

1
k

〉)
=

〈
fk(x),

1
k + 1

〉
,

with

fk =




gm sm + 2im < k ≤ sm + 2im + m

ĝm sm + (2i + 1)m < k ≤ sm + (2i + 2)m

i ∈ {0, 1, . . . , nm − 1},
(7)

where s1 = 0, sm = n1 · 2 · 1 + n2 · 2 · 2 + · · · +
nm−1 · 2 · (m − 1), for m > 1, and {nm}∞m=1 is an
increasing sequence of positive integers which will
be specified later. The first terms of the sequence
{fk}∞k=1 are

(g1, ĝ1)n1(g2, g2, ĝ2, ĝ2)n2(g3, g3, g3, ĝ3, ĝ3, ĝ3)n3 · · ·

where (h)l means h, . . . , h︸ ︷︷ ︸
l-times

. Notice that the point

〈1, 1〉 moves from left to the right applying m-times
gm and then from left to right applying m-times ĝm

and repeat this movement nm-times in each time
interval (sm, sm+1). Other points in O1 are either
fixed or lie on the orbit of 〈1, 1〉, or are eventually
mapped on the orbit of 〈1, 1〉. We will show that O1

is not DC3 — since points on the orbit of 〈1, 1〉 are
asymptotic to 〈1, 1〉, it is enough to show that 〈x, y〉
is not DC3-scrambled, where x = 〈1, 1〉 and y =
〈z, 0〉, z ∈ I. The pair 〈x, y〉 is not DC3-scrambled,
in particular, if Φ〈x,y〉(δ) = Φ∗(δ)〈x,y〉, for all δ > 0.
Because the second coordinate of x decreases with
time to zero and we are considering the max-metric,
it is sufficient to prove that the limit

lim
n→∞

1
n

#{i ≤ n : |f i(1) − z| < δ}

exists, where f i = fi ◦ fi−1 ◦ · · · ◦ f2 ◦ f1.
Denote Jδ = (z − δ, z + δ)∩ I and the length of

Jδ by |Jδ |. The number of times i such that |f i(1)−
z| < δ, for sm < i ≤ sm+1, is the same as the
number of times when a point oscillating between
the endpoints of I with velocity 1

m for 2m times
hits the subinterval Jδ ⊂ I. Denote the number of
hitting times by Pm. We estimate Pm by

|Jδ| · 2m − 2 ≤ Pm ≤ |Jδ| · 2m + 2. (8)

For every n ∈ N, there is m ∈ N such that

n = sm + 2mα + β,

where 0 ≤ α < nm and 0 ≤ β < 2m. Since

#{i ≤ n : |f i(1) − z| < δ}
= P1n1 + P2n2 + · · · + Pm−1nm−1

+ Pmα + γ, 0 ≤ γ ≤ β,

we can estimate #{i ≤ n : |f i(1)−z| < δ} according
to (8) from below by

(|Jδ| · 2 · 1 − 2)n1 + (|Jδ | · 2 · 2 − 2)n2

+ · · · + (|Jδ | · 2 · m − 2)α

and from above by

(|Jδ| · 2 · 1 + 2)n1 + (|Jδ | · 2 · 2 + 2)n2

+ · · · + (|Jδ | · 2 · m + 2)α + 2m.

If the sequence {ni}∞i=1 grows rapidly such that
limi→∞ si

ni
= 0, then

|Jδ| = lim
m→∞

1
sm + 2mα + β

(|Jδ | · (sm + 2mα)

− (2n1 + 2n2 + 2nm−1 · · · + 2α))

≤ lim
n→∞

1
n

#{i ≤ n : |f i(1) − z| < δ}

≤ lim
m→∞

1
sm + 2mα + β

(|Jδ | · (sm + 2mα)

+ (2n1 + 2n2 + · · · + 2nm−1 + 2α + 2m))

= |Jδ|,
implying Φ〈x,y〉(δ) = Φ∗(δ)〈x,y〉 = |Jδ|.

4.2. Distributionally chaotic
oscillators

We extend the dynamical system from the previous
section by adding one more oscillator with distance
1 to the right side of O1. Let K be the interval [2, 3]
and hm : K → K be a mapping defined as

hm(x) =




2 2 ≤ x < 2 +
1
m

x − 1
m

2 +
1
m

≤ x ≤ 3
(9)
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and ĥm : K → K defined as

ĥm(x) =




x +
1
m

2 ≤ x < 3 − 1
m

3 3 − 1
m

≤ x ≤ 3.
(10)

The dynamical system O2 consists of the compact
metric space K × ({ 1

k : k ∈ N} ∪ {0}) and the func-
tion F̂ defined by

F̂ (〈x, 0〉) = 〈x, 0〉, x ∈ K

F̂

(〈
x,

1
k

〉)
=

〈
f̂k(x),

1
k + 1

〉
, x ∈ K, k ∈ N.

(11)

The function f̂k is defined for k ∈ {sm, sm +
1, . . . , sm+1} differently for even and odd m. For
odd m,

f̂k =




Id sm < k ≤ sm + 2m

hm sm + m < k ≤ sm + 2m

ĥm sm + 2im < k ≤ sm + 2im + m

hm sm + (2i + 1)m < k ≤ sm + (2i + 2)m

i ∈ {1, . . . , nm − 1},
(12)

for even m,

f̂k =




Id sm < k ≤ sm + 2m

ĥm sm + m < k ≤ sm + 2m

hm sm + 2im < k ≤ sm + 2im + m

ĥm sm + (2i + 1)m < k ≤ sm + (2i + 2)m

i ∈ {1, . . . , nm − 1},
(13)

where sm and nm are taken the same as in the pre-
vious construction. O2 is made similarly as O1, we
are just using f̂k instead of fk. The first terms of
sequence {f̂k}∞k=1 are

Id, h1, (h1, ĥ1)n1−1Id2, ĥ2
2, (h2, h2, ĥ2, ĥ2)n2−1Id3,

ĥ3
3, (h3, h3, h3, ĥ3, ĥ3, ĥ3)n3−1 · · · .

For a better understanding of the dynamical sys-
tems O1 and O2 see Fig. 1. Adding m identity
mappings at the beginning of each time interval
(sm, sm+1) causes change in the movement of y =
〈3, 1〉 — for m odd, y starts to oscillate from the

O1 O2

I K
0

1

1
s2

1
s3

Fig. 1. Movement of points x = 〈1, 1〉 in O1 and y = 〈3, 1〉
in O2.

right endpoint but for m even, y starts to oscillate
from the left endpoint. Nevertheless, these identity
mappings do not affect the calculation of distribu-
tion functions of y and some fixed point in K —
we get the same results as in (8). We conclude that
there are no DC3-scrambled pairs either in O1 or
in O2.

Consider the union of the dynamical systems
O1 ∪ O2 defined naturally as the space (I ∪ K) ×
({ 1

k : k ∈ N} ∪ {0}) with a function G such that G

restricted to I × ({ 1
k : k ∈ N} ∪ {0}) is equal to F

and G restricted to K× ({ 1
k : k ∈ N}∪{0}) is equal

to F̂ .
Now we investigate the behavior of pairs in

O1 ∪ O2. We have already seen that there are no
DC3-scrambled pairs inside O1 or O2. By Remark 1,
any fixed point in K (resp., in I) paired with
x = 〈1, 1〉 (resp., y = 〈3, 1〉) also cannot be DC3-
scrambled. All other possible pairs consist of points
asymptotic to x = 〈1, 1〉 or y = 〈3, 1〉, so it is suffi-
cient to examine only Φ〈x,y〉 and Φ∗

〈x,y〉.
In the time interval (sm + 2m, sm+1), where m

is even, the orbits of the points x and y are syn-
chronic (see the cyan part of the trajectory of y in
Fig. 1) — they maintain the same distance. If we
denote the first coordinate of Gi(x) by xi and the
first coordinate of Gi(y) by yi, then

yi = 2 + xi, for sm + 2m < i ≤ sm + 2mnm,

m is even,

1750183-6
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therefore #{sm + 2m < i ≤ sm + 2mnm, d(F i(x),
F i(y)) < δ} is either 0, for δ ≤ 2, or 2mnm − 2m,
for δ > 2.

Since limm→∞ 2mnm
sm+2mnm

= 1, we obtain

Φe
〈x,y〉 = lim

m→∞
m is even

1
sm + 2mnm

{0< i≤ sm + 2mnm, d(Gi(x), Gi(y))< δ}

=

{
0 δ ≤ 2

1 δ > 2.
(14)

In time interval (sm + 2m, sm+1), where m is odd,
the orbits of the points x and y are asynchronic
(see orange parts of trajectory of y in Fig. 1) —
the image of x is on the left endpoint of its interval
when the image of y is on the right endpoint of its
interval (and vice versa), therefore

yi = 3 − xi, for sm + 2m < i ≤ sm + 2mnm,

m is odd.

From the perspective of the image of x, the orbit of
y is approaching the orbit of x to the distance 1 and
then is leaving for distance 3 with doubled speed 2

m .
This type of movement (one point is fixed and one
point is oscillating) was investigated in the previous
section — see calculation between (7) and (8), hence

Φo
〈x,y〉 = lim

m→∞
m is odd

1
sm + 2mnm

{0< i≤ sm + 2mnm, d(Gi(x), Gi(y))< δ}

=




0 δ ≤ 1

δ − 1
2

1 < δ ≤ 3

1 δ > 3.

(15)

Finally, we can conclude

Φ〈x,y〉 = min{Φo
〈x,y〉,Φ

e
〈x,y〉},

Φ∗
〈x,y〉 = max{Φo

〈x,y〉,Φ
e
〈x,y〉}.

By (14) and (15), Φ〈x,y〉(δ) < Φ∗
〈x,y〉(δ), for δ ∈

(1, 3), hence 〈x, y〉 — and all pairs consisting of
points asymptotic to x and y — is DC3-scrambled.

4.3. Iteration problem

Dvořáková in [Dvořáková, 2012] proved that if 〈x, y〉
is a DC3-scrambled pair with respect to G then

there is a j ∈ {0, 1} such that 〈Gj(x), Gj(y)〉 is a
DC3-scrambled pair with respect to G2. We keep
the notation from the previous sections and will
define a new function H such that H2(z) = G2(z),
for z ∈ Orb+

G(x) ∪ Orb+
G(y). Hence 〈Gj(x), Gj(y)〉

remains DC3-scrambled with respect to H2 but
there will be no DC3-scrambled pairs with respect
to H, which will complete the proof of Theorem 2.

We add one more oscillator with distance 1 to
the left side of O1. Let J be the interval [−2,−1]
and lm : J → J be the mapping defined as

lm(x) =



−2 −2 ≤ x < −2 +

1
m

x − 1
m

−2 +
1
m

≤ x ≤ −1
(16)

and l̂m : J → J defined as

l̂m(x) =




x +
1
m

−2 ≤ x < −1 − 1
m

−1 −1 − 1
m

≤ x ≤ −1.
(17)

The definition of f̃k is symmetrical to f̂k, we use
lm (resp., l̂m) instead of ĥm (resp., hm). For odd m,

f̃k =




Id sm < k ≤ sm + 2m

l̂m sm + m < k ≤ sm + 2m

lm sm + 2im < k ≤ sm + 2im + m

l̂m sm + (2i + 1)m < k ≤ sm + (2i + 2)m

i ∈ {1, . . . , nm − 1},
(18)

for even m,

f̃k =




Id sm < k ≤ sm + 2m

lm sm + m < k ≤ sm + 2m

l̂m sm + 2im < k ≤ sm + 2im + m

lm sm + (2i + 1)m < k ≤ sm + (2i + 2)m

i ∈ {1, . . . , nm − 1}.
(19)

The dynamical system O consists of the com-
pact metric space (I ∪K ∪ J)× ({ 1

k : k ∈ N}∪ {0})
and the function H defined by

H(〈x, 0〉) = 〈x, 0〉 x ∈ I ∪ K ∪ J

H

(〈
x,

1
k

〉)
=

〈
fk(x),

1
k + 1

〉
x ∈ I, k ∈ N

1750183-7
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I KJ 0 1 2 3-1-2

1

Fig. 2. Movement of points x = 〈1, 1〉, y = 〈3, 1〉, z = 〈−2, 1〉. Cyan parts of trajectories of y and z indicate when they are
synchronic with x and orange parts indicate when they are asynchronic.

H

(〈
x,

1
k

〉)
=

〈
1 − f̂k(x),

1
k + 1

〉
x ∈ K, k ∈ N

H

(〈
x,

1
k

〉)
=

〈
1 − f̃k(x),

1
k + 1

〉
x ∈ J, k ∈ N.

(20)

The idea of dynamical system O is represented
in Fig. 2. By (20), the oscillator above K is mapped
onto the oscillator above J and vice versa. More-
over, these oscillators are symmetric to each other
about the axis S = 1

2 . It is easy to see that

H2(x) = G2(x),

for x ∈ (I ∪ K) ×
({

1
k

: k ∈N

}
∪ {0}

)
,

therefore existence of the DC3-scrambled pair for
G2 implies the same for H2.

There are two types of points in O — fixed in
I ∪ K ∪ J and oscillating. Fixed points cannot be
part of any DC3-scrambled pair by arguments given
in previous sections. Oscillating points are either
x = 〈1, 1〉, y = 〈3, 1〉 and its mirror image z =
〈−2, 1〉, or points which are asymptotic to them.
Therefore it is sufficient to investigate distribution
functions among x, y and z.

Denote the upper and lower distribution func-
tions with respect to H by Ψ and Ψ∗. The orbits of
the pair 〈y, z〉 are asynchronic for the whole time —
the distance between orbits of y and z ranges from 3
to 5. By a similar argument as in (15), we have

Ψ∗
(y,z)(δ) = Ψ(y,z)(δ)

= lim
m→∞

1
sm

{0< i≤ sm, d(H i(x),H i(y))< δ}

=




0 δ ≤ 1

δ − 3
2

3 < δ ≤ 5

1 δ > 5.

(21)

We proceed with the calculation of the distribu-
tion function of 〈x, y〉. In the time interval (sm +
2m, sm+1), where m is even, the image of y is for
half times above K and the orbits of 〈x, y〉 are syn-
chronic in those times — see Fig. 2. The other half
times is the image of y above J and the orbits of
〈x, y〉 are asynchronic. Therefore we can use Φe

〈x,y〉
(as a result of synchronic movement) and Φo

〈x,y〉
(as a result of asynchronic movement) from (14)
and (15) to calculate the distribution function Ψe

〈x,y〉
as the arithmetic average of Φe

〈x,y〉 and Φo
〈x,y〉,

Ψe
〈x,y〉(δ) = lim

m→∞
m is even

1
sm + 2mnm

{0< i ≤ sm + 2mnm, d(H i(x),H i(y))< δ}

=
Φe
〈x,y〉(δ) + Φo

〈x,y〉(δ)

2
. (22)

Similarly, in the time interval (sm + 2m, sm+1),
where m is odd, the image of the point y is for
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half times above K and the orbits of 〈x, y〉 are asyn-
chronic. The other half times is the image of y above
J and the orbits of 〈x, y〉 are synchronic. Hence

Ψo
〈x,y〉(δ) = lim

m→∞
m is odd

1
sm + 2mnm

{0 < i ≤ sm + 2mnm, d(H i(x),H i(y)) < δ}

=
Φe

(x,y)(δ) + Φo
〈x,y〉(δ)

2
, (23)

which shows Ψe
〈x,y〉 = Ψo

〈x,y〉. We conclude that

Ψ〈x,y〉 = Ψ∗
〈x,y〉 =

Φe
〈x,y〉 + Φo

〈x,y〉
2

.

Since z is a mirror image of y, 〈x, z〉 has the same
distribution functions, i.e.

Ψ〈x,z〉 = Ψ∗
〈x,z〉 =

Φe
〈x,y〉 + Φo

〈x,y〉
2

,

therefore there are no DC3-scrambled pairs in the
entire system O with respect to H.

5. Chaotic Sets for Iterated
Function

We now turn our attention to the distributional
chaos defined using an uncountable distributionally
scrambled set.

DC1u, DC2u and DC21
2u

are iteration invari-
ants, since 〈x, y〉 is a DCi-scrambled pair with
respect to f if and only if it is DCi-scrambled with
respect to fn, for i = 1, 2, 21

2 . But the situation
is more complicated for DC3u — by [Dvořáková,
2012], if 〈x, y〉 is a DC3-scrambled pair with respect
to f , then there is a j ∈ {0, 1, . . . , n − 1} such that
〈f j(x), f j(y)〉 is a DC3-scrambled pair with respect
to fn. This j can be different for different pairs in
the DC3 set, hence the uncountable DC3 set can
be split into DC3-scrambled pairs or into DC3 sets
with smaller cardinalities.

Let S be a DC3 set with respect to f . We can
generate an undirected graph G in the following
way — the set of vertices of G is labeled by all points
in S and we add an edge between vertices x and y
if 〈x, y〉 is a DC3-scrambled pair. Then for a fixed
x ∈ S there is exactly one edge leading to every

y ∈ S\{x} — hence G is a complete graph. Next,
on this graph, we assign colors c0, . . . , cn−1 in such
a way that the edge between x and y has color cj if
〈f j(x), f j(y)〉 is a DC3-scrambled pair with respect
to fn. By [Dvořáková, 2012], there is always at least
one such j (in case of multiple choices for j we pick
one arbitrarily). Since the graph G is colored by
n colors, we can use Ramsey theory to find a com-
plete monochromatic subgraph which will represent
a chaotic set with respect to fn.

Let us recall a classic result from [Ramsey,
1930], reformulated for our purposes:

Theorem 3. Let G be a complete graph with infinite
set of vertices and let each edge in this graph be
colored by exactly one of colors c0, . . . , cn−1. Then
G contains an infinite subgraph H such that edges
between every two distinct vertices in H have the
same color ci, for some i ∈ {0, 1, . . . , n − 1}.

An immediate consequence of Infinite Ramsey
theorem is the following corollary:

Corollary 5.1. Let S be an infinite DC3 set with
respect to f . Then there exists an infinite subset
R ⊂ S such that f j(R) is a DC3 set with respect
to fn, for some j ∈ {0, 1, . . . , n − 1}.

Unfortunately the existence of an uncountable
monochromatic subgraph is not ensured — Sierpin-
ski coloring in [Sierpinski, 1933] serves as an exam-
ple. Thus we pose an open question:

Question 5.1. Does the existence of an uncount-
able DC3 set with respect to f imply the same with
respect to fn?
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