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Introduction

This habilitation thesis is based on our work

(D) M. Dirbák, First cohomology groups of minimal flows, Dissertationes Math. 562

(2021), 206 pp.,

which is also a part of the thesis as an attachment. Our interest in the thesis is in group

extensions of minimal flows with compact abelian groups in the fibres. We study their

structure from categorical and algebraic points of view, and describe relations of their

dynamics to the one-dimensional algebraic-topological invariants. We determine the first

cohomology groups of flows with simply connected acting groups and those of topologi-

cally free flows possessing a free cycle. As an application we show that minimal extensions

of these flows not only do exist, but they have a rich algebraic structure.

Summary

In what follows we formulate the problems, describe the necessary tools and summarize

the main results obtained in (D). Chapter 1 in (D) explains motivation for our study of

group extensions and proposes the main problems of our research. Chapter 2 is prelimi-

nary, its purpose is to collect the necessary auxiliary material from the category theory,

theory of abelian groups, topology, theory of compact abelian groups and Pontryagin

duality, and topological dynamics. Chapters 3–6 form the core of (D) and contain our

main results. In the following pages we will try to summarize them in a brief (but close-

to-complete) way. Despite our effort to make this summary as self-contained as possible,

on occasions the reader might find it helpful to consult List of symbols or Index contained

at the end of (D).

Notation and basic definitions

Minimal flows. By a flow F we shall understand a representation of a topological group

Γ in the group of homeomorphisms of a topological space X, which is continuous as a map

Γ×X → X. We write F : Γ ↷ X and use Tγ (γ ∈ Γ) to denote the acting transformations

of F . We refer to Γ as the acting group of F and to X as the phase space of F . A flow

F is called minimal if all its orbits OF (x) (x ∈ X) are dense in the phase space X.

Given z ∈ X, consider the associated transition map

Fz : Γ ∋ γ 7→ Tγ(z) ∈ X.

If Fz is injective then z is called a free point of F . One of the classes of flows F that we

work with is formed by the minimal flows with the following properties:

� the acting group Γ of F is locally compact, non-compact, second countable and

amenable,

� the phase space X of F is compact and second countable,
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� the flow F has a free point.

Since every abelian locally compact group is amenable, this includes the cases Γ = Z and

Γ = R.
Another class of minimal flows F that appear in our work is formed by those with

the following properties:

� the acting group Γ of F is a simply connected Lie group,

� the phase space X of F is a (not necessarily locally connected) compact metrizable

space.

Notice that by minimality of F , X is a connected space. In this setting we shall frequently

make use of the first cohomotopy group π1(X) of X (which is isomorphic to the first Čech

cohomology group ofX). In Section 1.7 we notice that for every torsion-free abelian group

A with rank(A) ≤ c there is a compact connected space X with π1(X) isomorphic to

A, which admits a minimal continuous flow F : R ↷ X. Moreover, if the group A is, in

addition, countable then such a space X can be found in the class of metrizable continua.

Finally, we are interested also in minimal flows F with the following properties:

� the acting group Γ of F is a connected Lie group,

� the phase space X of F is a compact (connected) manifold.

In this context we shall often make us of the fundamental groups π1(Γ) and π1(X) of

Γ and X, respectively. The first homology groups of these spaces, H1(Γ) and H1(X),

are interpreted exclusively as abelianisations of their fundamental groups. We shall often

remove torsion parts of the first homology groups, thus obtaining the first weak homology

groups Hw
1 (Γ) and Hw

1 (X) of Γ and X, respectively. Given z ∈ X, we consider the

morphism

F ♯
z : H

w
1 (Γ) → Hw

1 (X)

induced by the transition map Fz : Γ → X and set Hw
1 (F) = im(F ♯

z). (As follows from

Lemma 2.7, the subgroup Hw
1 (F) of Hw

1 (X) does not depend on the choice of z.) Set

n = rank(Hw
1 (F)), n + m = rank(Hw

1 (X)) and denote by d1, . . . , dn the elementary

divisors of Hw
1 (F) in Hw

1 (X). Then, up to isomorphism, the inclusion Hw
1 (F) ⊆ Hw

1 (X)

takes the form

(d1Z⊕ · · · ⊕ dnZ)⊕ 0 ⊆ Zn ⊕ Zm

and we have an isomorphism of groups

Hw
1 (X)/Hw

1 (F) ∼= Zd1 ⊕ · · · ⊕ Zdn ⊕ Zm.

We say that the flow F

� is topologically free if F ♯
z : H

w
1 (Γ) → Hw

1 (X) is a monomorphism (equivalently, if

the restriction F ♯
z : H

w
1 (Γ) → Hw

1 (F) is an isomorphism),

� has a free cycle if rank(Hw
1 (F)) < rank(Hw

1 (X)) (equivalently, if m > 0).

In Subsections 2.5.3–2.5.5 we discuss these two properties and give examples of minimal

flows which are topologically free and/or have a free cycle.
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Cocycles, coboundaries and cohomology groups. Let F : Γ ↷ X be a minimal flow

with acting homeomorphisms Tγ (γ ∈ Γ). We are interested in group extensions of F with

values in compact abelian groups. To simplify notation, write CAGp for the category of

compact abelian groups. (The group operation on G ∈ CAGp will be denoted either

multiplicatively or additively, depending on what is more convenient or appropriate.)

Given G ∈ CAGp, a group extension of F with values in G is a skew product over F with

the fibre G, whose acting homeomorphisms act by rotations on the fibres. Formally, let

C : Γ×X → G be a continuous map and for every γ ∈ Γ consider the homeomorphism

T̃γ : X ×G ∋ (x, g) 7→ (Tγx, C(γ, x)g) ∈ X ×G.

Then the family T̃γ (γ ∈ Γ) constitutes a Γ-flow on X × G if and only if the map C
satisfies the cocycle identity

C(α, Tβx)C(β, x) ≡ C(αβ, x).

If this is the case then we call C a cocycle over F with values in G. We also denote the

flow with acting homeomorphisms T̃γ (γ ∈ Γ) by FC and call it a group extension of F .

When convenient, we shall identify FC with C and attribute to C the dynamical properties

of FC . In particular, we say that C is minimal if FC is minimal.

Given G ∈ CAGp, denote by ZF (G) the set of all cocycles over F with values in G.

Clearly, ZF (G) is an abelian group with operations defined pointwise. If both Γ and X

are locally compact then we equip ZF (G) with the topology of uniform convergence on

compact sets (briefly, u.c.s. convergence) or, equivalently, with the compact-open topo-

logy, thus turning it into a complete topological abelian group. If all Γ, X and G are

additionally second countable then ZF (G) is a Polish abelian group. Often in our work

we deal with a flow F whose acting group Γ is connected. By minimality of F it follows

that the phase space X of F is also connected. In this case every cocycle C ∈ ZF (G) takes

its values in the identity component G0 of G. For this reason, we often restrict ourselves

to cocycles with values in connected groups G.

A cocycle C ∈ ZF (G) is called a coboundary over F if it is of the form

C(γ, x) = ξ(Tγx)ξ(x)
−1

for an appropriate continuous map ξ : X → G. Such a map ξ is called a transfer function

of C. By minimality of F , the transfer function of a coboundary is unique up to an

additive constant. In fact, if z ∈ X and e is the identity of G then there is a unique

transfer function ξ of C with ξ(z) = e. The coboundaries over F with values in G form a

subgroup BF (G) of ZF (G). The corresponding quotient group

HF (G) = ZF (G)/BF (G)

is called the (first) cohomology group of F (underlying to G). The congruence relation

on ZF (G) determined by BF (G) is called the cohomology relation or the equivalence of

extensions and we shall denote it by ≃. We denote by πG the quotient morphism

πG : ZF (G) → HF (G)

and by µG the inclusion morphism

µG : BF (G) → ZF (G).
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In order to simplify notation, we may occasionally use the same symbol C for an extension

from ZF (G) as well as for its cohomology class πG(C) ∈ HF (G). Of special importance for

us will be extensions with values in the 1-dimensional torus T1. For the sake of simplicity

of notation we write ZF , BF , HF , µ and π instead of ZF (T1), BF (T1), HF (T1), µT1

and πT1 , respectively.

We will be particularly interested in minimal extensions C ∈ ZF (G). The set of such

extensions together with the trivial extension (that is, with the identity C = e of ZF (G))

will be denoted by MinZF (G). The set MinZF (G) is, in general, not a subgroup of

ZF (G). It is a groupoid in the sense that the product in ZF (G) is a partial operation on

MinZF (G). Notice that if the group G is non-trivial then the trivial extension C = e is

not minimal. Despite this fact we prefer including it into the groupoid MinZF (G), for

it will simplify formulations of some of our subsequent results. We shall also work with

the groupoid of cohomology classes of extensions from MinZF (G) and we denote it by

MinHF (G). Thus, formally, MinHF (G) = πG(MinZF (G)). We also write MinZF and

MinHF instead of MinZF (T1) and MinHF (T1), respectively.

The group extensions over a given minimal flow F form a category CAGpZF . Objects

of this category are extensions C ∈ ZF (G) with G ∈ CAGp. If C ∈ ZF (G) and D ∈ ZF (H)

are objects of CAGpZF then the set of morphisms C → D is defined as

Hom(C,D) = {q ∈ Hom(G,H) : qC = D}.

The composition of morphisms in CAGpZF is their composition in CAGp and the identity

in Hom(C, C) with C ∈ ZF (G) is idG. As we show in Proposition 2.20, CAGpZF is a

co-complete category in the sense that every inverse system in CAGpZF has a limit.

Results of Chapter 3. Fundamental tools

Extensions as group morphisms. Let F : Γ ↷ X be a minimal flow, G ∈ CAGp and

G∗ be the Pontryagin dual of G. With every extension C ∈ ZF (G) we may associate a

morphism of groups C∗ : G∗ → ZF acting by the rule C∗(χ) = χC for every χ ∈ G∗. The

assignment C 7→ C∗ defines a morphism of groups

ΦG : ZF (G) → Hom(G∗,ZF ).

As we show in Theorem 3.1, ΦG is in fact an isomorphism. Moreover, if Γ and X are lo-

cally compact, ZF (G) and ZF carry the topology of u.c.s. convergence and Hom(G∗,ZF )

is equipped with the topology of pointwise convergence, then ΦG is a topological iso-

morphism. Further, in Corollary 3.8 we notice that ΦG restricts to an isomorphism of

groups

ΦG : BF (G) → Hom(G∗,BF )

as well as to the isomorphism of groupoids

ΦG : MinZF (G) → Mon(G∗,MinZF ),

where Mon(G∗,MinZF ) is the groupoid of monomorphisms G∗ → ZF which take their

values in MinZF . We infer from these isomorphisms that in order to determine the
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groups ZF (G), BF (G) and the groupoidMinZF (G) for every G ∈ CAGp, it is in principle

sufficient to determine ZF , BF and MinZF , respectively.

Some useful consequences of Theorem 3.1 are collected in Corollaries 3.3—3.5. In

particular, a contravariant functor is constructed, which allows us to view the category

CAGpZF as an opposite to a full subcategory of the category Hom(DAGp,ZF ), where

DAGp denotes the category of discrete abelian groups.

Functorial approach to sections. Given a minimal flow F : Γ ↷ X, a groupG ∈ CAGp

with the identity e, C ∈ ZF (G) and x ∈ X, denote by F (C) the vertical x-section of the

orbit-closure of (x, e) under the action of FC . Then F (C) is a closed subgroup of G,

which does not depend on x. In Theorem 3.7 we consider the assignment C 7→ F (C)
as a covariant functor F : CAGpZF → CAGp. We treat it axiomatically and verify its

uniqueness. In particular, we show that F detects coboundaries:

C ∈ BF (G) if and only if F (C) = e,

as well as minimal extensions:

FC is minimal if and only if F (C) = G.

Furthermore, F respects the cohomology relation:

if C,D ∈ ZF (G) are cohomologous then F (C) = F (D),

and it is continuous in the sense that it preserves limits of inverse systems. As a useful

application of these properties of F we notice in Corollary 3.9 that

MinHF \1 = HF \ tor(HF ),

that is, cohomology classes of the minimal extensions C ∈ ZF are precisely the elements

of the group HF of infinite order.

We wish to mention that this abstract, functorial approach to sections turns out to

be very useful to us. Very often we manage with the defining conditions of the functor

F (and with its other properties listed in Theorem 3.7) and thus do not have to invoke

its explicit construction. This makes many proofs throughout our whole work much more

transparent.

A summation formula for F . Let H1, H2 ∈ CAGp. We say that H1, H2 are group-

disjoint if H1 × H2 is the only closed subgroup of H1 × H2 with full projections onto

both H1 and H2. For some results related to the notion of group-disjointness we refer the

reader to Subsection 2.4.17.

Now let F : Γ ↷ X be a minimal flow, G ∈ CAGp and C1, . . . , Cn ∈ ZF (G) be ex-

tensions, whose sections F (C1), . . . , F (Cn) are pairwise group-disjoint. Then, by Proposi-

tion 3.19,

F (C1, . . . , Cn) = F (C1)× · · · × F (Cn) ⊆ Gn and F

(
n∑

i=1

Ci

)
=

n∑
i=1

F (Ci) ⊆ G.

The assumption of group-disjointness is essential for the validity of these equalities and

can not be omitted in general. The first equality generalizes to sequences of extensions
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Cn ∈ ZF (G) (n ∈ N) in the sense that

F ((Cn)n∈N) =
∏
n∈N

F (Cn),

provided that the sections F (Cn) (n ∈ N) are pairwise group-disjoint. However, the

second equality does not generalize to sequences in general. Nevertheless, in Theorem 3.23

we show that if Γ and X are locally compact second countable, G ∈ CAGp is second

countable, Cn −→ e u.c.s. and the sections F (Cn) (n ∈ N) are pairwise group-disjoint,

then there is an increasing sequence of positive integers (kn)n∈N such that

F

( ∞∑
n=1

Ckn

)
⊇

∞∑
n=1

F (Ckn
), (1)

where the right-hand side of this inclusion denotes the closed subgroup of G generated

by the groups F (Ckn
):

∞∑
n=1

F (Ckn
) =

⋃
n∈N

(
n∑

i=1

F (Cki
)

)
.

Proposition 3.28 then shows that passing to a subsequence is in general necessary for the

validity of (1). Finally, in Theorem 3.29 we show that the inclusion converse to that from

(1) does not hold, not even when passing to a subsequence is allowed.

The ext-topology. Given a group G ∈ CAGp, we denote by 2G the set of all non-empty

closed subsets of G. As we notice in Subsection 2.4.16, with the usual product of sets

HK = {hk : h ∈ H, k ∈ K}

and with the Vietoris topology, 2G is a compact abelian semigroup. The closed subgroups

of G form a closed subsemigroup of 2G.

Now let F : Γ ↷ X be a minimal flow and G ∈ CAGp. The subgroup BF (G) of ZF (G)

is not closed in general if we equip ZF (G) with the topology of u.c.s. convergence. For this

reason, the corresponding quotient topology on HF (G) is not Hausdorff and so HF (G)

with this topology is not a topological group in the usual sense. However, as we show in

Section 3.4, it is possible to turn HF (G) into a (Hausdorff) topological group in a natural

way. As a matter of fact, in Theorem 3.34 we show that there is the coarsest of all the

topologies on HF (G), with respect to which HF (G) is a (Hausdorff) topological group

and the mapping F : HF (G) → 2G is continuous. We call this topology the ext-topology

and denote it by τext. In fact, τext is induced by the translation-invariant 2G-valued

pseudo-metric δ on ZF (G), given by

δ(C,D) = F (CD−1),

see Proposition 3.22 and Remark 3.33. This means that a net (Ci) in HF (G) converges to

C ∈ HF (G) with respect to τext if and only if the net F (CiC−1) converges to the identity

e in 2G.

Lifts of extensions. In Section 3.5 we consider the problem whether extensions lift

into extensions across covering morphisms. In Theorem 3.38 we show that if the acting
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group Γ of a minimal flow F : Γ ↷ X is simply connected then this is the case. More

precisely, if p ∈ Hom(G′, G) is a covering morphism between abelian topological groups

and C ∈ ZF (G) then there is a unique C′ ∈ ZF (G
′) with pC′ = C. In subsequent parts of

our work this theorem is frequently applied to the covering morphisms

p : R → S1, p(x) = exp(i2πx), and κd : S1 → S1, κd(z) = zd (d ∈ N).

Example 3.40 demonstrates that the assumption of simple connectedness of Γ can not be

omitted from the statement of Theorem 3.38.

As a first application of Theorem 3.38 we show in Corollary 3.41 that for a flow F
with a simply connected acting Lie group Γ and a compact second countable phase space

X, the group ZF (G) is the additive topological group of a real separable Fréchet space

for every connected second countable group G ∈ CAGp. Moreover, if G is additionally

of finite topological dimension then ZF (G) is the additive topological group of a real

separable Banach space.

Secondly, we use Theorem 3.38 to show in Theorem 3.43 that for a minimal flow

F : Γ ↷ X with Γ simply connected and X compact there is a short exact sequence of

abelian groups

0 −→ π1(X) −→ HF (R) −→ HF −→ 0.

We also show that HF splits into a direct sum

HF = tor(HF )⊕D,

where D is a divisible torsion-free subgroup of the groupoidMinHF . Finally, if π
1(X) ̸= 0

and rank(π1(X)) < c then rank(D) ≥ c and MinHF thus contains a subgroup isomorphic

to R. This result suggests the possibility that the groupoids MinHF (G) (G ∈ CAGp)

might have large algebraic structures. We consider this problem in Chapter 6.

Results of Chapter 4. Topological-algebraic aspects

Free group extensions. One of the most important notions introduced and studied in

our work is that of the free group extension of a given minimal flow F : Γ ↷ X, which is

defined as the free object for the category CAGpZF . It consists of a group Fג ∈ CAGp and

an extension ℸF ∈ ZF Fג) ) such that for every G ∈ CAGp and every C ∈ ZF (G) there is a

unique hC ∈ Hom(גF , G) with hC ℸF = C. In other words, for every object C of CAGpZF ,

the set Hom(ℸF , C) is a singleton and each extension from CAGpZF is thus a composition

of ℸF with a unique morphism from CAGp. This means that the pair Fג) ,ℸF ) carries full

information about all extensions from CAGpZF . The existence of such a universal object

is proved in Theorem 4.5, where it is shown that Fג can be identified with the Pontryagin

dual (ZF )
∗
d of the discretization (ZF )d of the group ZF and, under this identification,

ℸF acts by the rule

ℸF (γ, x) : ZF ∋ C 7→ C(γ, x) ∈ T1

for all γ ∈ Γ and x ∈ X. The group Fג is, typically, very large. We illustrate it in

Example 4.6 by showing that Fג is topologically isomorphic to the Bohr compactification
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bR of R, provided that the acting group Γ of F is a simply connected Lie group and the

phase space X of F is compact second countable.

In Theorem 4.7 we collect some basic information about the free group extension

Fג) ,ℸF ) of F . We show that under the standard identification Fג) )∗ ∼= (ZF )d we have

F (ℸF )
⊥ = BF and (ℸF )

∗ = IdZF .

Further, we identify the quotient group Fג /F (ℸF ) as the free compact abelian group

over the space X. Finally, we describe an isomorphism between the groups ZF (G) and

Hom(גF , G) for every G ∈ CAGp, and an isomorphism between the categories CAGpZF
and Hom(גF ,CAGp).

Divisibility and torsion-freeness. For a given minimal flow F : Γ ↷ X, in Section 4.3

we study certain topological-algebraic properties of the group Fג . In Theorem 4.10 we

show that the connectedness of Fג is equivalent to the torsion-freeness of ZF or, equiva-

lently, of ZF (G) for every G ∈ CAGp. Moreover, this occurs if and only if X is connected

and Γ has no non-trivial finite abelian quotient groups.

Further, as shown in Theorem 4.12, the torsion-freeness of Fג is equivalent to the

divisibility of ZF or, equivalently, of ZF (G) for every connected group G ∈ CAGp. This

can be equivalently expressed by saying that objects of CAGpZF lift across the finite-

to-one epimorphisms from CAGp or, equivalently, across all epimorphisms from CAGp.

Moreover, this occurs if and only if the short exact sequences in CAGp give rise to short

exact sequences of associated groups of cocycles.

Finally, in Theorem 4.14 we show that Fג is both torsion-free and connected if and

only if ZF is both divisible and torsion-free, and this in turn occurs if and only if ZF (G)

is divisible (and torsion-free) for every G ∈ CAGp. Moreover, this is the case if and only

if the objects of CAGpZF lift uniquely across the epimorphisms from CAGp with finite

(or totally disconnected) kernels.

In Proposition 4.16 we apply these results to show that if ZF is both torsion-free

and divisible then certain morphisms in CAGp induce isomorphisms (or topological iso-

morphisms) of associated groups of cocycles. These include epimorphisms with totally

disconnected kernels and, in particular, epimorphisms coming from projective resolutions

and maximal toral quotient sequences. Finally, we conclude by arriving at an isomorphism

ZF ∼= R and a topological isomorphism Fג ∼= bR under assumptions of local compactness

and second countability of Γ and X.

Non-existence of free minimal extensions. Let F : Γ ↷ X be a minimal flow. Being

inspired by our construction of the free group extension of F , we search for an analogous

free object for the subcategory of CAGpZF formed by the minimal extensions. To be

concrete, we are searching for a group mFג ∈ CAGp and a minimal extension ℸm
F ∈ ZF mFג) )

such that for every G ∈ CAGp and every minimal extension C ∈ ZF (G) there is q ∈
Hom(גmF , G) with q ℸm

F = C. In Theorem 4.23 we show that such an object typically

does not exist. More precisely, if both BF and MinZF are non-trivial then such a pair

mFג) ,ℸm
F ) does not exist. However, in Theorem 4.27 we show that for every minimal

extension C from CAGpZF we can construct a minimal extension ℶ in CAGpZF such
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that C is an epimorphic image of ℶ and every minimal extension ℶ′ from CAGpZF with

Hom(ℶ′,ℶ) ̸= ∅ is isomorphic to ℶ. Thus every minimal extension from CAGpZF is an

epimorphic image of a “maximal” minimal extension. Example 4.29 then demonstrates

that two such extensions ℶ need not be isomorphic in CAGpZF and in Example 4.30 we

describe a situation when their sections F (ℶ) are not isomorphic in CAGp.

Cohomology classes as group morphisms. Let F : Γ ↷ X be a minimal flow and

G ∈ CAGp. As we explained before, there is an isomorphism

ΦG : ZF (G) → Hom(G∗,ZF ),

which restricts to an isomorphism

ΦG : BF (G) → Hom(G∗,BF ).

These two isomorphisms give rise to a monomorphism

ΨG : HF (G) → Hom(G∗,HF ).

In fact, as we show in Theorem 4.32, ΨG is a topological isomorphism onto its image,

provided that HF (G) and HF carry the ext-topology and Hom(G∗,HF ) is equipped

with the topology of pointwise convergence. Since HF is always discrete, this implies, in

particular, that HF (G) is always totally disconnected. The image im(ΨG) of ΨG may or

may not be closed in Hom(G∗,HF ), depending on a particular situation. We shall discuss

this fact more thoroughly later.

In Corollary 4.34 we use ΨG to construct a topological isomorphism onto its image

Ψ̃G : HF (G) → Hom(F (ℸF ), G),

whereHF (G) carries the ext-topology and Hom(F (ℸF ), G) is equipped with the topology

of uniform convergence.

Let us emphasize that unlike ΦG, ΨG is in general not an isomorphism. In Theo-

rem 4.36 we find exact sequences which determine the extent, to which ΨG fails to be

epic. We then infer that ΨG is an isomorphism provided that the group Ext(G∗, π1(X))

of extensions of G∗ by π1(X) vanishes. Moreover, if ZF is divisible and G is connected

then (under the identification im(ΨG) ∼= HF (G)) there is a direct sum

Hom(G∗,HF ) = HF (G)⊕ Ext(G∗, π1(X)).

In Theorem 4.39 we continue our study of ΨG under the assumption of divisibility of

ZF and connectedness of G. We begin by noticing that there is a direct sum

ZF (G) = Ztd
F (G)⊕ Zcn

F (G),

where Ztd
F (G) is the group of all extensions C ∈ ZF (G) with a totally disconnected

section F (C) and F (D) is connected for every D ∈ Zcn
F (G). This direct sum then yields a

(topological) direct sum of the corresponding subgropus of HF (G), namely

HF (G) = Htd
F (G)⊕Hcn

F (G),

We also show that ΨG maps Hcn
F (G) isomorphically onto Hom(G∗,Hcn

F ) and that there

is a direct sum

Hom(G∗,Htd
F ) = Htd

F (G)⊕ Ext(G∗, π1(X)).
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Thus we may say that the non-surjectivity of ΨG is caused by the extensions with totally

disconnected sections.

Torsions as non-minimal extensions. As we mentioned earlier, the torsion elements

in HF correspond to non-minimal extensions from ZF and minimal extensions from ZF
thus correspond to elements of HF of infinite order. Being motivated by these facts, we

study the torsion subgroup tor(HF ) of HF for a given minimal flow F : Γ ↷ X.

In Theorem 4.41 we show that if Γ has no non-trivial finite abelian quotient groups,

X is a compact connected space and the group ZF is divisible (which includes the case

when Γ is simply connected) then for every k ∈ N there are isomorphisms

tork(HF ) ∼= π1(X)/kπ1(X)

and

tor(HF ) ∼= (Q/Z)⊗ π1(X).

Moreover, tor(HF ) is a direct summand in HF and

HF = D ⊕ tor(HF )

for some divisible subgroup D of the groupoid MinHF . This allows us to prove in Corol-

lary 4.43 that the identity component F (ℸF )0 of F (ℸF ) is a topological direct summand

in F (ℸF ) and the group of components F (ℸF )/F (ℸF )0 is topologically isomorphic to

the Pontryagin dual of the discrete group (Q/Z)⊗ π1(X).

In Theorem 4.44 we study the torsion subgroup of HF in the case when Γ is a

connected Lie group and X is a compact manifold. Set n = rank(Hw
1 (F)), n + m =

rank(Hw
1 (X)), denote by d1, . . . , dn the elementary divisors of Hw

1 (F) in Hw
1 (X) and, for

k ≥ 2 and i = 1, . . . , n, let δi = gcd(di, k). Then there are isomorphisms of groups

tork(HF ) ∼= Zδ1 ⊕ · · · ⊕ Zδn ⊕ (Zk)
m

and

tor(HF ) ∼= Zd1 ⊕ · · · ⊕ Zdn ⊕ (Q/Z)m.

If, in addition, the flow F is topologically free then, by Theorem 4.47, tor(HF ) is a direct

summand in HF and we have

HF = D ⊕ tor(HF )

for an appropriate divisible subgroup D of the groupoid MinHF . We also have a topo-

logical isomorphism

F (ℸF ) ∼= D∗ × ((Q/Z)∗)m × Zd1
× · · · × Zdn

,

where both D and Q/Z carry the discrete topology. Finally, as we show in Theorem 4.46,

under the assumption of topological freeness of F , we have direct sums

ZF ∼= Div(ZF )⊕ Zn

and

HF ∼= Div(HF )⊕ Zd1
⊕ · · · ⊕ Zdn

,

where Div(ZF ) and Div(HF ) denote the divisible subgroups of ZF and HF , respectively.



11

Results of Chapter 5. Algebraic-topological aspects

Lifts of transfer functions. Let F : Γ ↷ X be a minimal flow with a connected phase

space X and suppose that the acting group Γ of F has no non-trivial finite abelian

quotient groups. (This is the case, for instance, if Γ is connected.) Assume that G ∈ CAGp

is a group with the identity e, C ∈ ZF (G) is an extension and the section F (C) of C is

contained in a closed totally disconnected subgroup K of G. If pK : G → G/K denotes

the quotient morphism then pKC is a coboundary. Fix z ∈ X and let ξ be the transfer

function of pKC with ξ(z) = K. Given a closed subgroup E of K, let pE : G → G/E be

the quotient morphism and qE : G/E → G/K be the unique topological morphism with

qEpE = pK . In Proposition 5.3 we show that the section F (C) of C

G/E

G/K

G

Γ×XpK

pE

qE
pEC

pKC = co(ξ)

C

� coincides with the smallest of all the closed subgroups E of K, for which ξ lifts

across qE to a continuous map η : X → G/E,

� coincides with the smallest of all the closed subgroups E ofK, for which the induced

morphism ξ∗ : (G/K)∗ → Cz(X,T1) extends through (qE)
∗ : (G/K)∗ → (G/E)∗ to

a morphism σ : (G/E)∗ → Cz(X,T1) (here Cz(X,T1) denotes the group of all

continuous maps f : X → T1 with f(z) = 1).

This (auxiliary) result is an important step towards our proofs of the main results of

Chapter 5.

Sections and monodromy. Let G ∈ CAGp, K be a closed totally disconnected sub-

group of G and pK : G → G/K be the quotient morphism. Denote by p♯K the morphism

π1(G) → π1(G/K) induced by pK with the identities of the groups G,G/K serving as

base points for their fundamental groups. Let us recall the monodromy action of π1(G/K)

on K. Given a loop f ∈ π1(G/K) and k ∈ K, let f̃ be the (continuous) lift of f across

pK starting at k. Then we let the endpoint of f̃ be the result of the monodromy action

of f on k.

Given a subgroup Q of π1(G/K), let EK(Q) be the orbit of the identity e of G under

the monodromy action of Q on K. Thus, EK(Q) consists of the endpoints of lifts of loops

in Q starting at e. Since EK(Q) = EK(Q+p♯Kπ1(G)), we shall sometimes restrict ourselves

to the subgroups Q of π1(G/K) containing p♯Kπ1(G). Conversely, given a subgroup E of

K, let QK(E) consist of those elements of π1(G/K) which lift across pK to paths both
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starting and ending in E. Notice that QK(E) = QK(E ∩ Ga), where Ga denotes the

identity arc-component of G.

In Lemma 5.8 we collect some important properties of EK and QK . We show that for

Q ⊇ p♯Kπ1(G) and E as above,

� EK(Q) is a subgroup of K contained in Ga,

� QK(E) is a subgroup of π1(G/K) containing p♯Kπ1(G),

� EK(QK(E)) = E ∩Ga and QK(EK(Q)) = Q,

� EK(Q) ∼= Q/p♯Kπ1(G).

(In Examples 5.10 and 5.12 we describe EK in the situation when G is a torus or a

solenoid, respectively.) Let us mention that for a given Q, the subgroup EK(Q) of K may

not be closed in K. We denote its closure by EK(Q). Thus, EK(Q) is the orbit closure of

the identity e of G under the monodromy action of Q on K.

Keeping the assumptions and notation as above, let F : Γ ↷ X be a minimal flow

and C ∈ ZF (G) be an extension with pKC ∈ BF (G/K). Fix z ∈ X and let ξ be the

transfer function of pKC with ξ(z) = K. In Theorem 5.14 we express the section F (C) of
C in terms of the monodromy action. To be concrete, we show that if X is a connected

manifold and Γ has no non-trivial finite abelian quotient groups then

F (C) = EK
(
ξ♯π1(X) + p♯Kπ1(G)

)
= EK

(
ξ♯π1(X)

)
. (2)

It follows, in particular, that F (C) depends only on the homotopy class of ξ. Further, if

the group K is finite then

� we have

F (C) = EK
(
ξ♯π1(X) + p♯Kπ1(G)

)
= EK

(
ξ♯π1(X)

)
,

� F (C) ⊆ Ga and there is an isomorphism

F (C) ∼=
(
ξ♯π1(X) + p♯Kπ1(G)

)
/p♯Kπ1(G),

� F (C) = K occurs if and only if K ⊆ Ga and

ξ♯π1(X) + p♯Kπ1(G) = π1(G/K).

Let us also mention that for an infinite group K, the closure operator can not be removed

from (2) and the inclusion F (C) ⊆ Ga may fail to hold. Examples demonstrating these

assertions are constructed in Proposition 5.18 and Remark 5.19.

Existence of prescribed sections, part 1. The monodromy formula (2) enables us

to determine which closed totally disconnected subgroups of a given fibre group are

values of the functor F . To be concrete, let F : Γ ↷ X be a minimal flow with Γ a

connected Lie group and X a compact connected manifold. Set n = rank(Hw
1 (F)), n +

m = rank(Hw
1 (X)) and let d1, . . . , dn be the elementary divisors of Hw

1 (F) in Hw
1 (X).

Assume that G ∈ CAGp is a connected group with the identity arc-component Ga and K

is a closed totally disconnected subgroup of G. As we show in Theorem 5.22, under these

assumptions the following conditions are equivalent:

� there is C ∈ ZF (G) with F (C) = K,
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� there are k1, . . . , kn+m ∈ K ∩ Ga which generate a dense subgroup of K and such

that kdi
i = e for i = 1, . . . , n.

(If follows, in particular, that if F has no free cycle (that is, if m = 0) then all totally

disconnected values of F are finite.)

In Corollary 5.24 we use the result of Theorem 5.22 to show that if K is finite then

the following conditions are equivalent:

� there is C ∈ ZF (G) with F (C) = K,

� K is contained in Ga and it is a quotient group of Zd1 ⊕ · · · ⊕ Zdn ⊕ Zm.

By using the preceding results together with the summation formula (1), we can prove

analogous existence results for more general (not necessarily totally disconnected) closed

subgroups K of G. We illustrate this in situations when G is a torus or a solenoid. Firstly,

in Theorem 5.25 we show that for every positive integer k the following conditions are

equivalent:

� for every closed subgroup K of Tk there is C ∈ ZF (Tk) with F (C) = K,

� for every finite subgroup K of Tk there is C ∈ ZF (Tk) with F (C) = K,

� m = rank(Hw
1 (X))− rank(Hw

1 (F)) ≥ k.

In particular, if m ≥ k then ZF (Tk) contains a minimal extension.

Secondly, for a given solenoid S and its non-trivial proper closed subgroup K, we

study in Theorem 5.30 the existence of an extension C ∈ ZF (S) with F (C) = K. We

begin by showing that if F does not have a free cycle (that is, if m = 0) then such an

extension C does not exist. Then we show that if F has a free cycle then an extension

C ∈ ZF (S) with F (C) = K exists if and only if the annihilator K⊥ of K in S∗ is infinite

cyclic. Finally, if F has a free cycle then ZF (S) contains a minimal extension.

Sections and first cohomotopy groups. The monodromy formula (2) applies to ex-

tensions of minimal flows F : Γ ↷ X on manifolds X. Since many important examples of

minimal flows are supported on more general, not necessarily locally connected spaces,

we are motivated to search for a result analogous to (2) in the setting of more general

spaces X. So let the phase space X of F be compact connected and let the acting group

Γ of F have no non-trivial finite abelian quotient groups. Let G ∈ CAGp be connected,

K be a finite subgroup of G and C ∈ ZF (G) be an extension with F (C) ⊆ K. Given

z ∈ X, let ξ be the transfer function of pKC with ξ(z) = K. Consider the morphism

ξ♭ : π1(G/K) → π1(X) induced by ξ. Since π1(G/K) is isomorphic to (G/K)∗ ∼= K⊥,

we may view ξ♭ as a morphism K⊥ → π1(X). In Theorem 5.32 we show that if d is the

largest torsion coefficient of K and η is the cardinality of K then

F (C)⊥ =
1

d

(
ξ♭
)−1 (

dπ1(X)
)
=

1

η

(
ξ♭
)−1 (

ηπ1(X)
)
. (3)

To be even more precise, let us notice that the first equality in (3) states that

F (C)⊥ =
{
χ ∈ G∗ : ξ♭(χd) ∈ dπ1(X)

}
;

the second equality is understood in the same way. Moreover, we also show that the

following conditions are equivalent:
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� F (C) = K,

� dG∗ ∩ (ξ♭)−1
(
dπ1(X)

)
= dK⊥,

� ξ♭
(
dG∗ \ dK⊥) ∩ dπ1(X) = ∅.

Theorem 5.32 enables us to find an algebraic criterion for the existence of an extension

C ∈ ZF (G) with F (C) = K. This is done in Corollary 5.36. We show that if the acting

group Γ of F is simply connected then the existence of C ∈ ZF (G) with F (C) = K is

equivalent to the existence of a morphism ϱ ∈ Hom
(
K⊥, π1(X)

)
with

dG∗ ∩ ϱ−1
(
dπ1(X)

)
= dK⊥.

In Theorem 5.40 we generalize the results from Theorem 5.32 to the situation when

K is a closed (possibly infinite) totally disconnected subgroup of G. So let the other

assumptions of Theorem 5.32 be fulfilled and assume that K is a closed totally discon-

nected subgroup of G. Consider a generating net of torsions (dj)j∈J for K as defined in

Section 5.5. Then

F (C)⊥ =
⋃
j∈J

1

dj

(
ξ♭
)−1 (

djπ
1(X)

)
=
∑
j∈J

1

dj

(
ξ♭
)−1 (

djπ
1(X)

)
= lim

−→

1

dj

(
ξ♭
)−1 (

djπ
1(X)

)
.

As we mention in Remark 5.41, the equality F (C) = K holds if and only if

1

dj

(
ξ♭
)−1 (

djπ
1(X)

)
⊆ K⊥

for every j ∈ J .

Existence of prescribed sections, part 2. Now we use results of Theorems 5.32

and 5.40 together with the summation formula (1) to find conditions, under which a

given closed subgroup K of G ∈ CAGp is a value of the functor F . We assume that

F : Γ ↷ X is a minimal flow with a simply connected acting group Γ and a compact

connected phase space X.

First, in Thoerem 5.42 we consider the case when X is a manifold. Given a connected

group G ∈ CAGp and a non-trivial closed totally disconnected subgroup K of G with a

generating net of torsions (dj)j∈J , we show that the following conditions are equivalent:

� there is C ∈ ZF (G) with F (C) = K,

� the group K⊥ splits into a direct sum K⊥ = F ⊕Q, where F is a free abelian group

with rank(F ) ≤ rank(π1(X)) and Q is a dj-pure subgroup of G∗ for every j ∈ J ,

� the group G/K has a topological direct summand T , which is a torus with topo-

logical dimension dim(T ) ≤ rank(π1(X)) and whose preimage under the quotient

morphism pK : G → G/K is connected.

Notice that by our assumptions on X we have isomorphism π1(X) ∼= Hw
1 (X), from which

it follows that rank(π1(X)) is finite.

Further, in Theorem 5.44 we consider the situation when X is an arbitrary compact

(connected) space and G is a torus Tn. We show that for a given integer d ≥ 2 the

following conditions are equivalent:
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� for every finite subgroup K of Tn, whose largest torsion coefficient divides d, there

is C ∈ ZF (Tn) with F (C) = K,

� π1(X)/dπ1(X) has rank at least n when considered as a Zd-module.

Moreover, in Proposition 5.45 we give a sufficient condition for the existence of a minimal

extension C ∈ ZF (Tn). We show that such an extension exists if the space X is second

countable and for infinitely many prime numbers p, the group π1(X) is not p-divisible

(that is, π1(X) ̸= pπ1(X)). In fact, under these assumptions such an extension C exists

in the closure of Ztd
F (Tn), so that it is expressible as a limit of a sequence of extensions

Ck (k ∈ N), each of which has a totally disconnected section F (Ck).
We continue our study of the existence of finite sections in Proposition 5.47, this

time concentrating on the case when G = T1. Let d ≥ 2 be an integer with the prime

decomposition d = pk1
1 . . . pkn

n . Then the following conditions are equivalent:

� there is C ∈ ZF with F (C) = Zd,

� for every i = 1, . . . , n, the group π1(X) is not pi-divisible.

Then we concentrate on the situation when G is a solenoid S. In Theorem 5.48 we

show that for a non-trivial closed totally disconnected subgroup K of S with a generating

net of torsions (dj)j∈J , the following conditions are equivalent:

� there is C ∈ ZF (S) with F (C) = K,

� π1(X) contains a subgroup isomorphic to K⊥, which is dj-pure in π1(X) for every

j ∈ J .

In particular, if d ≥ 2 is an integer and K ∼= Zd then the existence of an extension

C ∈ ZF (S) with F (C) = K is equivalent to the existence of a d-pure subgroup of π1(X)

isomorphic to K⊥, see Corollary 5.49.

Finally, we study the existence of minimal extensions in ZF (G) for connected finite-

dimensional groups G ∈ CAGp. In Proposition 5.51 we show that if dim(G) = n ∈ N then

ZF (G) contains a minimal extension if and only if ZF (Tn) contains a minimal extension.

In Corollary 5.52 we use this equivalence to verify the equivalence of the following three

statements:

� for every solenoid S, ZF (S) contains a minimal extension,

� there is a solenoid S such that ZF (S) contains a minimal extension,

� ZF contains a minimal extension.

Results of Chapter 6. First cohomology groups

Groups of minimal extensions. Let F : Γ ↷ X be a minimal flow and let G ∈ CAGp.

As we mentioned earlier, MinZF (G) is a subgroupoid but not a subgroup of ZF (G).

It is therefore natural to ask whether or not MinZF (G) contains an isomorphic copy

of a given abelian group A and, in particular, of ZF (G). Of course, the group A can

not be arbitrary and must reflect certain features of ZF (G), including cardinality and

group-theoretical properties.
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We begin our study of the problem formulated above in Theorem 6.1, where we show

that for an arbitrary minimal flow F and an infinite cardinal number k the following

conditions are equivalent:

� for every torsion-free abelian group A with card(A) ≤ k and every non-trivial con-

nected group H ∈ CAGp with weight w(H) ≤ k, MinZF (H) contains an isomorphic

copy of A,

� for every torsion-free abelian group A with card(A) ≤ k, MinZF contains an iso-

morphic copy of A,

� for every non-trivial connected groupG ∈ CAGp with weight w(G) ≤ k,MinZF (G)\
1 ̸= ∅.

Let us mention that the assumption of torsion-freeness of A is necessary, for the group

ZF (G) is torsion-free as soon as G ∈ CAGp is connected.

Next we turn to describing situations in which the three conditions stated above are

fulfilled. First, in Theorem 6.3 we show that if Γ is locally compact second countable

amenable, X is compact second countable and F has a free point then the following

statements hold:

� for every non-trivial connected group G ∈ CAGp with w(G) ≤ c, MinZF (G) con-

tains an isomorphic copy of R,
� for every non-trivial connected second countable group G ∈ CAGp, the groupoid

MinZF (G) contains an isomorphic copy of the quotient group ZF (G)/ tor(ZF (G)).

In connection with the first statement recall that the group R is universal among torsion-

free abelian groups A with card(A) ≤ c in the sense that each such group A is isomorphic

to a subgroup of R. In connection with the second statement notice that MinZF (G)

contains no torsion elements and so factoring out the torsion subgroup tor(ZF (G)) of

ZF (G) is necessary in general.

Further, in Theorem 6.5 we consider the situation when Γ is a simply connected Lie

group and X is a compact space with 1 ≤ rank(π1(X)) < c. We show that for every non-

trivial connected group G ∈ CAGp with w(G) ≤ c, MinZF (G) contains an isomorphic

copy of R. If, in addition, X is second countable then for every non-trivial connected

second countable group G ∈ CAGp, MinZF (G) contains an isomorphic copy of ZF (G).

Finally, in Theorem 6.6 we turn our attention to the case when Γ is a connected Lie

group, X is a compact (connected) manifold and the flow F has a free cycle. We show

that the following statements hold:

� for every non-trivial connected group G ∈ CAGp with w(G) ≤ c, MinZF (G) con-

tains an isomorphic copy of R,
� for every non-trivial connected second countable group G ∈ CAGp, MinZF (G)

contains an isomorphic copy of ZF (G).

First cohomology groups. The results obtained thus far enable us to determine first

cohomology groups of certain minimal flows F : Γ ↷ X. We begin by studying the groups

HF = HF (T1) in Section 6.2.
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In Theorem 6.12 we consider the case when Γ is a simply connected Lie group and

X is a second countable compact (connected) space with a non-trivial first cohomotopy

group π1(X). We show that the inclusion of groups BF ⊆ ZF takes the form

0⊕ R⊕ π1(X) ⊆ R⊕ R⊕
(
Q⊗ π1(X)

)
and infer that there is an isomorphism of groups

HF ∼= R⊕
(
(Q/Z)⊗ π1(X)

)
.

We also show that the inclusion of topological groups F (ℸF ) ⊆ Fג takes the form

bR× 1× π1(X)⊥ ⊆ bR× bR×
(
Q⊗ π1(X)

)∗
,

where π1(X)⊥ denotes the annihilator of π1(X) in (Q⊗ π1(X))∗. If the group π1(X) is

additionally finitely generated with rank k then the inclusion BF ⊆ ZF becomes

0⊕ R⊕ Zk ⊆ R⊕ R⊕Qk,

there is an isomorphism

HF ∼= R⊕ (Q/Z)k

and the inclusion F (ℸF ) ⊆ Fג takes the form

bR× 1×
(
Z⊥)k ⊆ bR× bR× (Q∗)

k
.

In Theorem 6.14 we consider the case when Γ is a connected Lie group, X is a compact

(connected) manifold, the flow F is topologically free and has a free cycle. As usual, we

set n = rank(Hw
1 (F)), n +m = rank(Hw

1 (X)) and denote by d1, . . . , dn the elementary

divisors of Hw
1 (F) in Hw

1 (X). We show that the inclusion BF ⊆ ZF takes the form

0⊕ R⊕ Zm ⊕

(
n⊕

i=1

diZ

)
⊆ R⊕ R⊕Qm ⊕ Zn.

Consequently, we have an isomorphism

HF ∼= R⊕ (Q/Z)m ⊕

(
n⊕

i=1

Zdi

)
.

Also, the inclusion of topological groups F (ℸF ) ⊆ Fג becomes

bR× 1×
(
Z⊥)m ×

(
n∏

i=1

Zdi

)
⊆ bR× bR× (Q∗)

m × Tn.

In Corollary 6.16 we use results of Theorem 6.14 to express the short exact sequence

EF : 0 −→ BF −→ ZF −→ HF −→ 0

as a direct sum of elementary short exact sequences and to determine the 2-cocycle

φF ∈ Z2(HF ,BF ) which leads to EF . We observe that EF does not split (that is, BF is

not a direct summand in ZF ) and so φF is not a 2-coboundary.

In Section 6.3 we study the first cohomology groups HF (G) of F , where G ∈ CAGp

is an arbitrary connected second countable group. We begin by noticing that G∗, being

a countable torsion-free abelian group, splits into a direct sum

G∗ = f(G∗)⊕ t(G∗),
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where f(G∗) is a free abelian group and the group t(G∗) is torsion-less (that is, all mor-

phisms t(G∗) → Z vanish). We set

r = rank(G∗), f = rank(f(G∗)) and t = rank(t(G∗)).

In Theorem 6.19 we show that under the assumptions and notation from Theorem 6.14

(that is, for a topologically free flow F having a free cycle), the inclusion of groups

BF (G) ⊆ ZF (G) takes the form

0 ⊕ Rr ⊕ Zmf ⊕ 0 ⊕ (d1Z⊕ · · · ⊕ dnZ)f ⊆
⊆ Rr ⊕ Rr ⊕ Qmf ⊕ Qmt ⊕ (Zn)

f
,

and we have an isomorphism of groups

HF (G) ∼= Rr ⊕ (Q/Z)mf ⊕Qmt ⊕ (Zd1 ⊕ · · · ⊕ Zdn)
f
.

We also express the topological morphism

ΨG : HF (G) → Hom(G∗,HF )

as an inclusion of concrete topological groups. As a corollary we observe that ΨG is an

isomorphism if t(G∗) = 0, that is, ifG is a torus. (In connection with the two isomorphisms

above notice that if the group G is non-trivial then 1 ≤ r ≤ ℵ0 and so Rr is isomorphic

to R.)
In Theorem 6.23 we work under the assumptions and notation from Theorem 6.12.

We thus assume that Γ is a simply connected Lie group and X is a second countable

compact (connected) space with π1(X) ̸= 0. Given a connected group G ∈ CAGp with

r = rank(G∗), we show that the inclusion BF (G) ⊆ ZF (G) takes the form

0⊕ Rr ⊕Hom
(
G∗, π1(X)

)
⊆ Rr ⊕ Rr ⊕Hom

(
G∗,Q⊗ π1(X)

)
.

(As we mentioned above, if G is non-trivial and second countable then Rr is isomorphic

to R.) We also show that the group Ext(G∗, π1(X)) can be viewed as a direct summand

in Hom(G∗, (Q/Z)⊗ π1(X)) and that there are isomorphisms of groups

HF (G) ∼= Rr ⊕
Hom

(
G∗,Q⊗ π1(X)

)
Hom(G∗, π1(X))

∼= Rr ⊕
Hom

(
G∗, (Q/Z)⊗ π1(X)

)
Ext (G∗, π1(X))

,

which simplify significantly under some additional assumptions on π1(X) or G (see Re-

mark 6.24).

More on first cohomology groups. Let F : Γ ↷ X be a minimal flow. In Theorem 4.39

we found splittings of the groups ZF (G) and HF (G) into subgroups formed by exten-

sions with totally disconnected, respectively, connected sections, under the assumption of

divisibility of ZF (which includes the case when Γ is simply connected). By using results

from Theorems 6.14 and 6.19, we were able to obtain analogous splittings also in the

case when the flow F is topologically free and has a free cycle. So let the assumptions

of Theorems 6.14 and 6.19 be fulfilled, the notation introduced therein be fixed and let

G ∈ CAGp be second countable and connected. In Theorem 6.25 we show that there are

a direct sum and an isomorphism of groups

ZF (G) = Zcn
F (G)⊕ Ztd

F (G) ∼= Rr ⊕
(
Rr ⊕ Znf

)
,
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where Ztd
F (G) is the subgroup of ZF (G) formed by the extensions C with F (C) totally

disconnected and F (D) is connected for every D ∈ Zcn
F (G). Correspondingly, there are a

direct sum and an isomorphism of groups

HF (G) = Hcn
F (G)⊕Htd

F (G) ∼= Rr ⊕

Qmt ⊕ (Q/Z)mf ⊕

(
n⊕

i=1

Zdi

)f
 .

In Theorem 6.28 we study the topological morphism

ΨG : HF (G) → Hom(G∗,HF )

under the assumptions from the preceding paragraph. First we show that with the usual

identification HF (G) ∼= im(ΨG), the former group is a direct summand in Hom(G∗,HF )

in the algebraic sense and there is a direct sum

Hom(G∗,HF ) ∼= HF (G)⊕ Ext(t(G∗),Zm)⊕

(
n⊕

i=1

tordi(t(G))

)
.

The splitting is, in general, not topological. In fact, we show that the following conditions

are equivalent:

� HF (G) is a topological direct summand in Hom(G∗,HF ),

� HF (G) is a closed subgroup of Hom(G∗,HF ),

� HF (G) coincides with Hom(G∗,HF ),

� G∗ is a free abelian group, that is, t(G∗) = 0,

� G is a torus.

We conclude by proving that the closure HF (G) of HF (G) in Hom(G∗,HF ) is a topo-

logical direct summand in Hom(G∗,HF ) and the corresponding topological direct sum

is

Hom(G∗,HF ) ∼= HF (G)⊕

(
n⊕

i=1

tordi(t(G))

)
.

Dense groups of minimal extensions. In the last part of our work we are interested

in the topological size of the sets of minimal group extensions. Similarly to the preceding

sections, we consider minimal flows F : Γ ↷ X of two types:

(1) Γ is a simply connected Lie group and X is a compact second countable space with

π1(X) ̸= 0,

(2) Γ is a connected Lie group, X is a compact manifold, the flow F is topologically

free and has a free cycle.

In Theorem 6.30 we show that in both situations, the minimal extensions from ZF (G)

form a dense Gδ subset of ZF (G) for every connected second countable group G ∈ CAGp.

(As usual, ZF (G) is assumed to carry the topology of u.c.s. convergence.)

Since ZF (G) is an (abelian) Polish topological group, Theorem 6.30 shows that mini-

mal extensions form a dense subset of ZF (G). Now is it possible that ZF (G) has a dense

subgroup contained in MinZF (G)? To see what kind of abelian groups can be dense

subgroups of ZF (G), we need to know the topological-algebraic structure of ZF (G). In

the two cases listed above,
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(1) ZF (G) is the additive topological group of a real separable Fréchet space (this is

proved in Corollary 3.41),

(2) if n = rank(Hw
1 (F)) and f = rank(f(G∗)) then ZF (G) splits into a topological direct

sum

ZF (G) = Div(ZF (G))⊕ Znf,

where the divisible subgroup Div(ZF (G)) of ZF (G) is the additive topological group

of a real separable Fréchet space and Znf carries the product topology (this is proved

in Proposition 6.21).

Having these information about ZF (G), we can prove in Theorem 6.32 that for every

torsion-free abelian group R with ℵ0 ≤ rank(R) ≤ c, the following statements hold in

both situations (1) and (2):

� MinZF (G) contains an isomorphic copy of the group R, which forms a dense subset

of Div(ZF (G)),

� MinZF (G) contains an isomorphic copy of the group R ⊕ Z(ℵ0), which forms a

dense subset of ZF (G).


