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1. PREFACE

Different approaches to integrability of partial differential equations (PDEs) are
based on their diverse but related properties such as existence of infinite hierar-
chies of (local or nonlocal) symmetries and/or conservation laws, zero-curvature
representations, Lax integrability, recursion operators etc.

This thesis consists of papers

[I] Baran, H. Infinitely many commuting nonlocal symmetries for modified Mar-
tinez Alonso—Shabat equation. Communications in Nonlinear Science and
Numerical Simulation 96 (2021), 105692.

[II] Baran, H., Krasil’shchik, I.S., Morozov, O.1., and Voj¢dk, P. Nonlocal Sym-
metries of Integrable Linearly Degenerate Equations: A Comparative Study.
Theoretical and Mathematical Physics 196 (2) (2018), 1089-1110.

[ITT] Baran, H., Krasil’shchik, 1.S., Morozov, O.1., and Vojédk, P. Coverings over
Lax integrable equations and their nonlocal symmetries. Theoretical and
Mathematical Physics 188 (3) (2016), 1273-1295.

[IV] Baran, H., Krasil’shchik, I1.S., Morozov, O.I., and Vojédk, P. Integrability
properties of some equations obtained by symmetry reductions. Journal of
Nonlinear Mathematical Physics 22 (2) (2015), 210-232.

[V] Baran, H., Krasil’shchik, 1.S., Morozov, O.1., and Vojcdk, P. Symmetry re-
ductions and exact solutions of Lax integrable 3-dimensional systems. Jour-
nal of Nonlinear Mathematical Physics 21 (4) (2014), 643-671.

[VI] Baran, H. and Marvan, M. Classification of integrable Weingarten surfaces
possessing an sl(2)-valued zero curvature representation. Nonlinearity 23 (10)
(2010), 2577-2597.

[VII] Baran, H. and Marvan, M. On integrability of Weingarten surfaces: A for-
gotten class. Journal of Physics A: Mathematical and Theoretical 42 (40)
(2009), 404007.

All of them study integrability properties of some or several nonlinear PDE.

Section [2] is a brief review of basic definitions from geometry of PDEs and fixes
some notation.

Section [3| reviews the results of the paper [I] on the 4-dimensional modified
Martinez Alonso—-Shabat equation

Uylgs + QUz UL — (Uy + QU )Uzy = 0

and presents its recursion operator and an infinite commuting hierarchy of nonlocal
symmetries. Discovering explicit form of the infinite-dimensional nonlocal symmetry
algebras for multidimensional integrable PDEs, rather than just finding shadows of
nonlocal symmetries, appears to be quite difficult and hence was only done for a
very small number of examples, especially in the case of four or more independent
variables. On the other hand, the situation seems to be different in 3D, where
infinite-dimensional noncommutative algebras of nonlocal symmetries for a number
of dispersionless integrable systems were found by direct computations, as we can
see in [IT} III].

In Section [4] we focus on the papers [II, [III] where we considered the four 3-
dimensional Lax-integrable equations: The universal hierarchy equation

Uyy = UtUgy — UyUty,



the rdDym equation
Uty = UgUgy — UyUgx,
the modified Veronese web equation
Uty = UtUgy — UyUty
and the 3D Pavlov equation
Uyy = Uty + UyUgy — UgUgy-

All of the above four equations (we denote them as 4E) can be obtained as reductions
of five-dimensional equation

Uy, = Uts + Us Ugz — Uz Ugs

studied in [3]. In the papers [II, [III], for all the 4E equations, a Lie algebra of
local symmetries is described, two infinite-dimensional differential coverings are
constructed, a complete description of nonlocal symmetry algebras associated to
these coverings is given and actions of recursion operators on shadows of nonlocal
symmetries are discussed.

In Section [5| we study 2-dimensional reductions of 4E equations following the
papers [IV, |V]. The paper V] presents a complete description of 2-dimensional
equations that arise as symmetry reductions of 4E equations. In the paper [IV], we
study the behavior of the integrability features of 4E equations under the reduction
procedure. We show that the zero-curvature representations are transformed to
nonlinear differential coverings of the resulting 2-dimensional systems similar to
the one found for the Gibbons-Tsarev equation. Using these coverings we construct
infinite series of (nonlocal) conservation laws and prove their nontriviality. We also
show that the recursion operators are not preserved under reductions.

The Section |§| follows the papers [VI, [VII], where we study classes of surfaces
immersed in the Euclidean space whose Gauss—Mainardi—-Codazzi equations are
integrable in the sense of soliton theory. The paper [VII] reveals an integrable
class, consisting of surfaces with a constant difference between the principal radii
of curvature, which we called surfaces of constant astigmatism and are described
by the integrable nonlinear PDE

Zyy + (1/2)pe +2 =0,

the constant astigmatism equation. In the paper [VI] we classify integrable Wein-
garten surfaces, where the criterion of integrability is that the associated Gauss
equation possesses an s[(2)—valued zero curvature representation with a nonremov-
able parameter. Under certain restrictions on the jet order, the answer is given by
a third order ordinary differential equation to govern the functional dependence of
the principal curvatures. We give a general solution of the governing equation in
terms of elliptic integrals. We show that the instances when the elliptic integrals
degenerate to elementary functions were known to nineteenth century geometers.

Note that all the symbolic computations in papers constituting this thesis were
performed using the software Jets [4].

2. PREREQUISITES

We give here (in a simplified, local coordinate form) the basics of the geometrical
approach to differential equations and differential coverings following [2] and [22].
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2.1. Jets and equations. Consider R™ with coordinates z!,..., 2" and R™ co-
ordinated by u',...,u™. The space of k-jets J*(n,m), k =0,1,..., 00, carries the
coordinates z',..., 2" and uZ, where j = 1,...,m and o is a symmetrical multi-
index of length |o| < k, ul, = wf. If u/ = f(2',...,2") is a vector-function then
the collection

i ololyd

0= g j=1,...,m, lo| <k,

(%

is called its k-jet.

At a fixed point 6 € J¥(n,m) tangent planes to the graphs of k-jets passing
through this point span the Cartan plane %y and the correspondence % : 6 — %y is
called the Cartan distribution. For k = oo, a basis of & consists of the vector fields

0 0
D1:7+ uj»—., i:17...,n,
T 9zt ; 7" Oul,
called the total derivatives. The total derivatives commute which amounts to the
formal integrability of the Cartan distribution on J*°(n,m). We put

Dy =Dgiy 0---0D i,

for o0 =iq1...1g.
The differential equation of order k is a submanifold in J*(n,m) given by the
relations

(2.1) Fla'ul) = = F'(z',ul) = 0;

for the sake of simplicity we speak of differential equations even if we in fact deal
with systems of those.
The infinite prolongation & C J*°(n,m) of (2.1) is given by

D,(F7) =0, j=1,...,r, |o|>0.

Everywhere below we deal with infinite prolongations only and identify them with
differential equations under study.

The total derivatives, as well as all differential operators expressed in terms of
total derivatives, are restrictable to the infinite prolongations defined above, and
we preserve the same notation for these restrictions. Total derivatives then span
the Cartan distribution on &. Maximal integral manifolds of this distribution are
solutions of &.

Given an &, we for a subsequent computations always choose internal coordinates
in it, which are local coordinates on the infinite prolongation &. The choice of
internal coordinates is not unique. To restrict an operator to & essentially amounts
to expressing this operator in terms of internal coordinates.

2.2. Linearization and adjoint. The linearization {s of & is defined as the re-
striction of the matrix operator

6F(,y 0121,...,7“
(2.2) lp = (Z o Dg)

u
o g B=1,....m

to &.



Let A be a differential operator in the matrix form A = (A*%), A% =3 AP D,.

g
Its adjoint is the matrix operator

A* = (AF) AP =3 "(=1)IID, 0 AYP.

o

In particular, the adjoint to g is given by

T
OF
tp=1>_(-1'D, .
F ( ( ) °© 6’&5)

o o

If & is the equation defined by F', we use the notation
££:£F|g’» &= Lple-

2.3. Symmetries. Consider an equation & C J°°(n,m). We shall assume below
that the natural projection & — J°(n,m) = R™ x R™ is a surjective map onto
its target. This means that the differential consequences of do not contain
0-order functions.. Consequently, the algebra C°>°(J°(n,m)) is embedded into the
algebra C°(&).

A vector fleld X: C>(&) — C>(&) is called vertical if X|co(jo(y,my) = 0, i€,
X does not contain components of the form 9/9x%. A vertical field X is a (higher, or
generalized) symmetry of & if it preserves the Cartan distribution, i.e., [X, €] C €.
Symmetries of & form a Lie algebra denoted by sym(&).

A vector field is a symmetry if and only if it has the evolutionary form

0
(23) E, = Do(¢) >,
- oug
where summation is taken over the internal coordinates on & and ¢ = (¢, ..., ¢™)

is a vector-function on & called the generating section (or characteristic) of the
symmetry that satisfies the equation

le(p) =0.

Generating sections are (vector) functions that form a Lie algebra with respect to
the Jacobi bracket

' NN
(et = 5 (Dateh 5~ DN 5 ).

o

which can be defined in the coordinate-free fashion as

{0, 9} = Ep(¢) — Ey ().

A solution u of the equation (2.1) is said to be invariant with respect to a
symmetry ¢ € sym & if it enjoys the equation

(2.4) @(x,...,aa%lg,...)zo.

The reduction of & with respect to ¢ is equation (2.1 rewritten in terms of first
integrals of the equation (2.4)).



2.4. Cosymmetries and conservation laws. A cosymmetry of the equation &
is a solution of the equation
e () =0.
The space of cosymmetries is denoted by cosym &.
A horizontal (n — 1)-form on &

w=w dZ2ANdz® A Ada"+wy da AdaP A A dam 4 A wn drt A dzP A oA deTh

defines a conservation law of & if
n

Z(_l)i+lDi(wi) =0,

i. e. when is closed with respect to the horizontal de Rham differential

n
dp = Zda}l ANDgi.
i=1

A conservation law is trivial if it is dp-exact, i.e. w = dpp for some horizontal
(n—2)-form p. We are interested in nontrivial conservation laws. Two conservation
laws are equivalent if their difference is a trivial one.

Let w be a conservation law and let us extend the form w on & to @ on J*(n,m)
in an arbitrary way. Then

n
(25) D (—1) Dyi(@i) = A(F)
i=1

for some differential operator A. Function v, = A*(1)|¢ is called the generating
function of the conservation law w. Generating function v, of a given conservation
law w is a cosymmetry of &

To compute conservation laws, their generating sections are used: Integrating by
parts eq. order of A can be reduced to zero which gives a relation

n
(2.6) > (=1 Dyi(wi) =" F' -+ ¢ F",
i=1

where ¢ = (1',...,9") is a vector function. Thus, to find conservation laws cor-
responding to a cosymmetry 1 the eq. must be solved w.r.t. the unknown
functions a;. All the solutions, if any, differ by a trivial conservation law.

2.5. Differential coverings. Consider the space & =R x &, s < oo, and the

natural projection 7: & — &. We say that 7 is an s-dimensional (differential)

covering over & if & is endowed with vector fields D1, ..., Dyn such that
[Dyi,Dyi] =0, 7u(Dyi) = Dy, i,j=1,...,n.

Let {w®} be coordinates in R® (they are called nonlocal variables). Then the cov-
ering structure is given by

D, =D, + X;
such that

where




are T-vertical vector fields.

There exists a distinguished class of coverings that are associated with two-
component conservation laws of &. Fix two integers ¢ and j, 1 <i < j < n, and
consider a differential form

w=X;dz"' A Ad2"TI AN AN da + X dat A Ada T AT TN A da”,
such that

Dyi(X;) = (=1)™ 7 Dy (X;).
Consider the Euclidean space V with the coordinates w?, where ¢ is symmetric

multi-index whose entries are any integers 1, ..., n except for ¢ and j. Thus, dimV =
1if n =2 and dim V' = oo otherwise. Then the system of vector fields

~ 0
o ok .
Dy = Dy + E w owe’ k#lmﬁ

xZ*Dz’+ZD awoa

Dy = Dy + (—1)"F9~ 121)

defines a covering structure on &, = V x &. The coverings of this type are called
Abelian.

2.6. Nonlocal symmetries. Denote by ¢ the distribution on & spanned by the
fields D1, ..., Dy» and let X be a field vertical with respect to the composition & —
& — R™. Such a field is called a nonlocal symmetry if it preserves %. These symme-
tries form a Lie algebra denoted by sym_ (&). The restriction X|qw gy : C*(&) =
Coo(g" ) is called a nonlocal T-shadow. A nonlocal symmetry is said to be invisible
if its shadow vanishes.

In local coordinates, any X € sym_(&) is of the form

where ¢ = (¢!,...,¢™), ¥* are functions on & satisfying the equations

le(p) =0,

~ 8X“
D (™) = D,(
() jZ )

where E ans (s are obtained from the expressions and | .7 respectfully,
by changmg D,i to D,i. Nonlocal shadows are the opcrators E, while invisible
symmetries are obtained from general ones by setting ¢ = 0.

In particular, for coverings of the form 5‘;, where w is a 2-component conservation
law, the symmetries acquire the form

0

X =E, +ZDU(¢)W?

where ¢ and 1) satisfy
Zg(@) =0,



~ 0X; =~ 0X; ~
Dxl(l/]) = aT]jDU((pk)JFZaT‘J’DU(w)’
o,k g o
= i . aXZ ~ 5XZ ~
Dzj (d)) = (71) -l uk DU(CPIC) + 8woDa(w)
o,k g o

2.7. Backlund transformations and recursion operators. Let &1, & be equa-
tions. A Bdicklund transformation between &, and &3 is the diagram

&
gl g? )

where 7y, 7o are coverings. When & = &, it is called a Bdcklund auto-transfor-
mation. If 7 is finite-dimensional and v C & is a graph of solution then, gener-
ically, (7'1_ 1(7)) is a finite-dimensional manifold endowed with an integrable n-
dimensional distribution whose integral manifolds are solutions of &5.

Consider now an equation & given by and the system

F(xl,uf,) =0, lr(q) =0,

where F' = (F!,..., F"). This system is called the tangent equation to & and de-
noted by 7 &, while the projection t: & — & is called the tangent covering.
Sections of this covering that preserve the Cartan distribution are identified with
generating sections of symmetries.

Let Z be a Bicklund transformation between 7& and .7 &5. Then it follows
from the above said that it accomplishes a correspondence between symmetries of
the two equations. If & = &, then such a correspondence is called a recursion
operator, [30].

2.8. Zero curvature representations. Given a system & of PDEs in independent
variables x,y and a Lie algebra g, a g-valued zero curvature representation for & is
a form a = Adx + Bdy with A, B € g such that

DyA—D,B+[A B =0

as a consequence of the system &.

Zero curvature representations have many applications in the field of integrability
theory of PDEs: there is a connection with inverse scattering method (Zakharov—
Shabat formulation), Backlund transformations, nonlocal symmetries, pseudosym-
metries (factorizations of PDE), recursion operators and hierarchies.

Zero curvature representations come in huge families (gauge equivalence classes):
Let >, A; dx’ be a g-valued zero curvature representation, G the Lie group corre-
sponding to the Lie algebra g. The left action

S(A;) =D;SS™' 4+ SA; S

by a G-valued function S is called the gauge transformation.

Two zero curvature representation are called gauge equivalent if one can be ob-
tained from the other by gauge transformation. A zero curvature representation is
called trivial if it is gauge equivalent to zero.
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We say that a PDE is Lax-integrable if it admits a Lax pair with a non-removable
parameter.

3. INFINITELY MANY COMMUTING NONLOCAL SYMMETRIES FOR MODIFIED
MARTINEZ ALONSO—SHABAT EQUATION |I]

In the paper [I], we study the 4-dimensional modified Martinez Alonso-Shabat
equation

(3.1) Uylgs + QU ULy — (Uy + QUL Uzy = 0

involving a nonzero real parameter «, found in [34], and present its recursion opera-
tor and an infinite commuting hierarchy of full-fledged nonlocal symmetries (rather
than mere shadows). To date such hierarchies were found only for very few in-
tegrable systems in more than three independent variables. Equation is an
integrable PDE as it has a known Lax pair involving the spectral parameter \ # «
[24] |42} 143]

Ay AUy + o

(3'2) Ty = —"—"Tg, Tz=— Ty — ATt
o Uy O Uy

3.1. The recursion operator. Starting with (3.2) and using the deformation
procedure described in [44] we readily find that (3.1) admits, in addition to (3.2),

a Lax pair
¢ = My + (@ — X)qug,y
(3.3) ’ Wl 7
. g = A ((aut + UZ)qr — QUgqr — quzz) + AqUg
z .

Qg

In particular, for any given A equations (3.3)) define a covering, which we denote by
2y, over (3.1). Unlike r, if ¢ satisfies (3.3]) then it is a nonlocal symmetry shadow
for (3.1) in the covering 2,. Using the techniques from [42| |44] we obtain

Proposition 3.1. Equation dS’.I) admits a recursion operator R defined by the
relations

Uy Pz — UgyP + auwyw
AUy ’

b, = (g + uz)Pr — QUYL — Uz + QU
z I’

Qg

% =
(3.4)

meaning that for any nonlocal symmetry shadow ¢ for (13.1) R produces another
nonlocal symmetry shadow R(p) def Y for (5.1).

3.2. Nonlocal symmetries. While, as we have seen in the preceding section, ¢ is
a nonlocal symmetry shadow in the covering 2,, this shadow cannot be lifted to a
full-fledged nonlocal symmetry in the covering under study.

To circumvent this difficulty, consider a formal expansion ¢ = Y ¢;A*. Substi-
tuting this expansion into shows that ¢y = Fu,, where F(z,t) is an arbitrary
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function, while the remaining ¢; are defined by the equations

QUgyq1 + (Ugz Uy — UgyUg ) F + upy Fy

(QI)y B Uy, ’
(g1)e = AUy, q1 + ((Uugtly) g + Ugatly — Ugstiy) F + (Quy + uy)ug Fy — aul Fy
1)z L, ;
(41)y = Uy Qi — Ugy(Gi—1) + Uy(gi=1),
Y QUg ’

(@), = QU2 Qi — Ugz(Gi—1) — 0Uz(Gi—1); + oue(qi—1), +u2(qi-1),
), =
Uy

)

1=2,3,..., that define an infinite-dimensional covering, which we denote by 2,
over (3.1).

Theorem 3.1. Infinite prolongations of the vector fields

0 )
3.5 P = Qi — Bl —, i=12,...
( ) Qz qlau+; Zaqja 1 y 4y )
form an infinite hierarchy of commuting nonlocal symmetries for 43,1) in the cov-
ering oo .
Here
(3.6) B — ([tes Giri—1], — (e, qirjl,) F = (@ qiv; — qivj—1) ua Fr

A Uy

s5(4,7)
Qitj—s(i,j)—1), 4s(i,j O\ Gitj—k» Gk, — |Ditj—k—15 k],
+( +i—s(4,5) 1) (4,5)+1 n Z (Gi+j—k> Q] (@i j—k—1,qx]

u au
T 1 T

where s(i,7) =min (i — 1,5 — 1) and [4, B], = A, B — AB,.

)

Finding explicit form of the symmetries Lie algebra generators and providing rig-
orous proofs of commutation relations for infinite-dimensional algebras of nonlocal
symmetries for multidimensional integrable PDEs, rather than merely finding shad-
ows of nonlocal symmetries, appears to be quite rare, especially in the case of four
(or more) independent variables. The situation seems to be quite different in 3D,
where infinite-dimensional noncommutative algebras of nonlocal symmetries for a
number of dispersionless integrable systems were found by direct computations, see
e.g. [LI], [III] or |17} 21].

4. ON THE FOUR 3-DIMENSIONAL LAX INTEGRABLE EQUATIONS [II],[III], [V]

In the series of papers [II],[III], [V] we consider the four 3-dimensional Lax-
integrable equations

- the universal hierarchy equation |29

(4.1) Uyy = Uplgy — Uylg.,
- the 8D rdDym equation |7}, 35, |37]

(4.2) Uy = UgUgy — UyUsg,
- the Veronese web equation (1} |10} 14} 49

(43) Uty = UtUgy — UyUty,
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- the Pavlov equation |11, [36]
(4.4) Uyy = Uty + Uylgy — Uplgy.

All the four above listed equations (denote them as 4E) may be obtained as the
symmetry reductions of the following Lax-integrable 4-dimensional systems

(4.5) Uyz = Uy + Up Ugy — Uy Ugz,

(4.6) Uty = Uy Ugy — Uy Uy

introduced in [|15] and [29], respectively, while the latter two, in turn, are the re-
ductions of

(47) Uyy = Uts T Us Ugy — Uy Ugs

with five independent variables ¢, x, y, z, s, studied in [3], which is a particular
case of Manakov—Santini equation |27, 28] and is related to the five-dimensional
equation considered in [29]. Some of 4E equations arise also in [15] as integrable
reductions of multi-dimensional dispersionless PDEs.

Reductions of (4.7) to (4.5) and (4.6) and consequently to 4E are described in
[3] and visualized in Figure |1 Integrability properties of the equation (4.7) were

(4.1) univ. hierarchy
Uyy=UzUgy — UyUgz

t=y
(4.6) 4D rdDym z=t (4.3) Veronese
Uty=UzUgy —UyUgz Uty =UtUgy —UyUts
Z=T
S=Yy
(.7) 5D (4.2} 3D rdDym
Uy z =Uts+tUs Ugz —Uz Uzs Uty =UgUgy —UyUza

(4.5) 4D Pavlov

Uyz=Uty +UyUzy — Uz Ugy

\

zZ=Y

(4.4) 3D Pavlov
Uyy =Utz T UyUge —Ug Ugy

FIGURE 1. 4E reduction diagram

studied in [3]: We found the Lie algebra of symmetries, conservation laws, differen-
tial coverings with non-removable parameter (Lax-integrability) and the recursion
operator together with its action on symmetries for .

The notation used within the papers [IT],[I1I], [V] here and there slightly differs,
so we fix here and bellow the notation to the form used in the last paper [II].

4.1. Symmetries and Lie algebra structure of 4E equations. In [V] we found
symmetries and corresponding Lia algebra structure for the 4E equations (4.1)—

(4.
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4.1.1. The universal hierarchy equation (4.1). The space of local symmetries is
spanned by the functions

0o(X) = Xu, — X'u, 0(X) =X,

0o(T) = Tus + T'yuy, ©1(T) = Tuy, v = yuy +u,
where X is a function of z and T is a function of ¢ and here and everywhere bellow
we using the notation [R, R] = RR' — RR’ for functions R and R, while ‘prime’
denotes the corresponding derivative. The commutators of local symmetries are
presented in Table

v 0o (X) 01(X) ¢o(T) 1(T)
v 0 0 —61(X) 0 o1 (T
Bo(X) | .. | 6o([X, X]) | 62([X, X]) 0 0
0.(X) | . 0 0 0
wo(T) | - eo([T,T]) | er([T,T7))
ei(T) | - 0

Table 1: The UHE: commutators of local symmetries.

4.1.2. rdDym equation (4.2). The space of local symmetries is spanned by the func-
tions

Yo = —T Uy + 2u, vo(Y) = Yuy,
1

0o(T) = Tug + T (zuy —u) + iT”xz,

0_\(T)=Tu, + T'z,  0_o(T) =T,

where T = T(t), Y = Y (y) are arbitrary functions of their arguments and ‘prime’
denotes the corresponding derivative. Commutators of symmetries are presented in
Table 2

Yo | vo(Y) 0o(T) 0-1(T) 0_2(T)
o 0 0 0 0_.(T) | 20_o(T)
v (Y) vo([Y,Y]) 0 0 0
00 (T) o([T.T]) | 01 ([T, T)) | 6—»((T,T])
0_(T) | ... . 0_o([T,T7]) 0
0T | ... | .. 0

Table 2: The rdDym equation: commutators of local symmetries.

4.1.3. Veronese web equation (4.3)). The modified Veronese web equation (mVWE)
was studied in [1] and is related to the Veronese web equation, |10} [49|, by the
Bécklund transformation (4.9)).
The space of local symmetries is generated by the functions
o(T) =Tur, v(Y)=Yuy, 6o(X)=Xu,—X'u, 6;(X)=2X,

where X = X(z), Y =Y (y), and T = T(t) are arbitrary functions of their argu-
ments. The commutators of the symmetries are presented in Table
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p(T) bo(X) 61 (X) v(Y)
o(T) | ([T, T]) 0 0 0
00(X) 00([X, X]) | 61([X, X)) 0
61 (X) 0 0
v(Y) u([Y,Y])

Table 3: The mVwe: commutators of local symmetries.

4.1.4. The Pavlov equation (4.4). The space of local symmetries is spanned by the
functions

P1 = 2T — Yyu,, Y2 = 3u — 2zU, — YUy,

1 1
Oo(T) = Tup + T (wuy + yuy — u) + iT”(y2um —2zy) — BTW 3

61(T) = Tuy + T (yu, — ) — %T”yz7 02(T) = Tu, — Ty, 03(T) =T,

where T is a function of ¢ and ‘prime’ denotes the t-derivatives. Commutators of
these symmetries are presented in Table

01 | w2 | Oo(T) 01(T) 0a(T) 05(T)

P1 0 | ¥ 0 —202(T) | 205(T) 0
or || 0 0 “0\(T) | —20,(T) | —365(T)
bo(T) | - 0o((T.T)) | 0:([T.T)) | 6-([T.T)) | 65([T. T))
0(T) | . 02([T,T1) | 63((T, T]) 0
62(T) | . 0 0
65(T) | . 0

Table 4: The Pavlov equation: commutators of local symmetries.

4.2. Lax pairs and differential coverings. The results presented in this section
were obtained in the paper [III] for the rdDym equation and in [II] for the remaining
equations.

For each equation, we construct two infinite hierarchies of two-component nonlo-
cal conservation laws (corresponding to non-negative and non-positive powers of the
spectral parameter). To these hierarchies there correspond two infinite-dimensional
coverings 71, 77 (in the sense of [22]) which we call positive and negative.

4.2.1. The universal hierarchy equation (4.1). The UHE admits the Lax represen-
tation

gt = )\_2<>\Ut - uy)Qwv qy = )‘_1qu$-
Expansion in powers of A leads to the system
it = UtQit+1,xc — UyQit2,2,  Qiyy = UyQitl,z-
The corresponding positive covering is of the form
Ut 1

diy = —, iz = —;
Uy Uy
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Uy _ Gi—1y
Qiyy = —Qi—1,y — Gi—1,t» Qix = —
Uy Uy

1 > 1, with the additional variables q(j ) that satisfy the relations

7

0 1+1 j
¢ =q, ¢V =4

The equations defining the negative covering are

Tly = Ugly, Tig = Uglp — Uy;

Tiy = UyTi-1,z, Tit = WTri-1,z —Ti—-1,y,
G+1) _ ()
7 I

4.2.2. rdDym equation (4.2)). The system

(4.8) wy = (Ugy — AWy Wy = )fluywm,

i > 1, with rgj ) defined by relations r

is a Lax pair for (&2)). Setting w = Y. °°__ Naw; and inserting this expansion
into (4.8)), we obtain

Wit = Ug Wy p — Wi—1,2, Wiy = UyWig1 x-

The corresponding positive covering is defined by the system

Uy 1
q1,t = 5 qi,z = )
Uy Uy
_ Ug 91,y
qit = —dqi—-1,y — ¢i—1,z, Qijx = —
Uy Uy

where ¢ > 2, with the additional nonlocal variables qgj ) defined by relations
¢ =q. ¢t = (qgj))y~

The negative covering is defined by the system

— 2 _
e = Uy — U, Ty = Ugly,

Tiw = UgTi—1,2 — Ti—1,t, Tiy = UyTi—1,x
enriched by additional nonlocal variables rgj ) defined by relations

PO gy D (sz) '
t

4.2.3. Veronese web equation . The mVwe admits the Lax pair
(4.9) g = A+ 1) tugy, qy = A" uyg,.
Expanding in powers of A, one obtains

Qi—1,t t Qit = UWiQixs  Qi—1,y = UyGiz-

Then the positive covering acquires the form

Ut 1
qit = —, Qe = —,
Uy Uy
_ Gi1y Uy
Qix = — Qit = —qi—1,y — Gi—1,t,
Uy Uy

1 > 1, the additional variables being qgj ) defined by relations

¢V =q, ¢’ =49
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The defining equations for the negative covering are
Tt = ut(ux - 1)7 T1,y = UgUy,
Tit = UtTi—1,20 — Ti—1t, Tiy = UyTi—1,x,
)
1

TZ(O) =7 rl(jﬂ)

1 > 1. The auxiliary variables are r,;”’, defined by relations

18

4.2.4. Pavlov’s equation . The Lax pair for the 3D Pavlov equation is
g = (N = Aug — uwy)ge, gy = (A — ) qa-
Expanding ¢ in integer powers of A, we arrive to the covering
Qit = qi—2,x — UzQi—1,0 — UyQixy Cijy = Gi—1,2 — UzGix,

for all i € Z.
The positive covering corresponding to this system is

qo,t + Uyqo,e = 0, qo,y + UzGo,z = 0;
41t + Uyqle = —Uzq0,z, q1,y t UzG1,z = G0z,
Qit T UyQix = Gi—2,20 — UzGi—1,25 Qiy + UzGiz = Qi—1,z,
where ¢ > 2, to which nonlocal variables qgj ) defined by relations

" =q, ¢ =4y

are added. This covering is not Abelian.
The negative covering is given by

2,
Ty = Ut + UgUy, Tl = Uy + UL

)

Tiy = Ti—1,t T UyTi—1 2, Tie =Ti—1y + UzgTi—1,z,

1 > 2, with additional nonlocal variables rgj ) defined by relations

O (+1)

_ J)
[ =Ti T

=rd).
4.3. Nonlocal symmetries, Lie algebra structure, recursion operators. For
each 4E equation, we obtained a full description of nonlocal symmetry algebras
associated to above coverings. For all the coverings, the obtained Lie algebras of
symmetries manifest similar (but not the same) structures. We also discuss actions
of recursion operators on shadows of nonlocal symmetries. Let us briefly present
the results on the rdDym equation obtained in [III]. The remaining equations are
studied in [II] in a similar fashion.

All the local symmetries of the rdDym equation can be lifted both to the posi-
tive 7T and the negative 7~ covering and we denote the lifts by the corresponding
capital letters: ¥q for the lift of ¢y, ©;(T) for 6;(T), etc.

Three families of nonlocal symmetries are admitted in 7F. The first one consists
of invisible symmetries
QFHV(Y) = (07 cre 707 Soilnva ey @;ﬂv’ A ')

k times
where ¢} = Y (y), and another two are generated by the lifts ¥_; and ¥_5 of the
nonlocal shadows

1
Vo1 =quy +x, Yoo = (2¢2 — %qg ))uy
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using the relations
U g =[0 41,V 1],k>3 and YT (V) =[¥_s_1, 0. (V)]
Theorem 4.1. There exist a basis in sym, (&) consisting of the elements
{w;,v;(T),vi(Y)}, i<0,j=0,—-1,-2, keZ

such that they commute as it is indicated in Table[5.

W, v;(T) vi(Y)
o ivii(T), —2<i+3j<0, . -
Wi (7 — ) Wit g) ) otherwise] Vit (Y)
) Vi+j([T7T])’ —2<i+75<0,
vi(T) 0, otherwise 0

Table 5: The rdDym equation: commutators in sym_; (&').

In a similar way, local symmetries are lifted to 7~ and three families of nonlocal
symmetries arise in this covering. They are Uy, k > 1, ©;(T), i > —2, <I>fm,.
The Lie algebra structure is then described by

Theorem 4.2. There exist a basis in sym, — (&) consisting of the elements
{wi,v;(T),v(Y)}, 120, jeZz,

that satisfy the commutator relations presented in Table[6.

w; v;(T) v(Y)
Wi (= D)Wisj | Gviei (T) 0
v | v, (T | 0
v(Y) v([Y,Y])

Table 6: The rdDym equation: commutators in sym..— (&).

Note that the components of the invisible symmetries are constructed using the
operator

Y = %ﬁ + i(l + 1)Qi+1i-
dy im1 9q;
Similar operators will arise in the study of other equations.
The equation under study admits a recursion operator %, defined by the system

Di(x) = uy_l (uy Dy (x) = uz Dy(x) + (totay — uy“M))%)a
Di(x) = u;l (uwy X — Dy(X))a

see [33]. This means that y is a nonlocal shadow whenever y is. Another recursion
operator Z_ is defined, in a fashion similar to %, , by the system

Dm(X) = Dt(f()_uacD:c(fC)_Fua:xf(a

(4.10)

(4.11)
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The operators Z4 and Z_ are mutually inverse.

The actions of #Z4 and Z_ on sym(&) may be prolonged to the shadows of
nonlocal symmetrles from sym(&1) and sym(&) if we replace the derivatives Dy,
D, and D, in and (| - by the total terivatives Dt, D, and Dy in the
Whitney product of the coverings 77 and 7~ in the sense of [22]. The resulting
operators will be still denoted by #Z, and Z_.

Note that the operators act nontrivially on ‘vacuum’: ,%’+( )=0_o(T), Z_(0) =
vo(Y"), which immediately follows from Equations (4.10) and - thus it is rea-
sonable to consider the actions of these operators modulo 0_o(T) for Z, and vy(Y)
for Z_. Taking into account this remark, we have the following

Proposition 4.1. Modulo the images of the trivial symmetry, the action of recur-
sion operators is of the form

+9.
aomy={ DT a ) —aream), iz -2
BelV) = o), 120 a iy ={ e i<l
Ry (i) =~ i, R (Vi) = v; Yiv1, i €Z,

where o, BE, and v are nonzero constants.

Note that the recursion operators Z, and Z_ ‘glue together’ the shadows ), of

nonlocal symmetries in coverings & and &~ and ‘tunnel’ from the series of 6 (T)
to that of v;(Y), see Figure

Z_ % % %
+ + -
R+ Yo R+ Yo R+ 1 R
& & % % % % - %
+ + + + + + -
v v 0 0 0 0 0
Zzy 1 e, 9 a2, Zy 2z, Lz, 0 gz, Tl g,

FIGURE 2. The rdDym equation: action of recursion operators

" and " Straight arrows denote actions up to scalar multipli-

ers and modulo the image of the trivial shadow. We write 6; instead of 6;(T),

vy instead of v (Y), etc. Notation (-)* means that a shadow lives in 7+, (-)

is for those who live in 7~ ; shadows marked by (-)¥ live in both coverings.

5. 4E SYMMETRY REDUCTIONS AND ITS INTEGRABILITY PROPERTIES

In the papers [IV, V], we study symmetry reductions of above mentioned 4E
equations (4.1)—(4.4) and integrability properties of a ‘nontrivial’ subset of those
reductions.

5.1. The complete list of 2-dimensional reductions [V]. The paper [V] com-
pletely answered a natural question: What 2-dimensional equations are the reduc-
tions of 3-dimensional equations 4E? The result comprises 32 equations of which

- sixteen can be solved explicitly,
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- one reduces to the Riccati equation,
- five can be linearized by the Legendre transformation,
- while the remaining ten are ‘nontrivial’.
The latter are presented in Table [7| (in the third column, we exemplify the
simplest relations).

Reduction of Eq. Relations with the initial eq.
20 = P, — O, ., EI) u= (@, Z),
Yy
u=®(&n) + 12 — 2tn,
¢'££ = (f + '@E)‘I'nn - (I)n@En -2, "
E=y, n=x+ty,
Pee = PP — PPy, 1) u=d(x,8e ", E=ye 7,
(14+£D,)Dee — £DcPe. + PP, =0, BI) u=d(z8e ", E=ye ",
u=®(ne ",
D, Dy — PPy = en@§€7 (4.1) 72(
& = ye , M= — %z,
(€ + @) Pey — By (Pee +2) =0, B2  u=®(¢ e, ¢ =ae,
Dy = ADDe — EDF + 26D D, E2)  u=dE )2, £ =ze Y,
u=®(&,n)e”,
Doy + (5 + ‘I)n)q)&n = ‘Dn(Q + q’f&)v (4.2) ¢
& =ze , N=Y— ta
X
(467 = 30)Pee — Dy — 66D + D + 60 =0, @D u=(Ey)y’, E= w1
u=®&n)e*,
Qee = (§ — ©y)Peyy + (2 + Pe) Py — @, =0,  (4.4) Bt ot
§=ye’ n=ze

Table 7: 4E’s ‘nontrivial’ reductions

The first two of these equations can be transformed to the Liouville equation
[8] and the Gibbons-Tsarev equation [19], respectively. The other eight, studied in
HZV], we will discuss later in Section

A brief exposition of the results on all the reductions of 4E equations f
obtained in is given in Table
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Eqn  dim(sym &) Reductions Comments
@ET) 14 00%® 4+ 00?* Xb,, —X'®, =0 Solves explicitly
20 =P, — P, D, Transforms
to the Liouville eq.
Dee = X' P — XPye Solves explicitly
Dee = PP — PP,
14+ Z3.)Pee = ZPc P> + Z’<I>§ Solves explicitly
(14D, )Pee — PP, + PP, =0
DPeg = PPy — Py Peyy Linearizes by the
Legendre transform.
B, De,y — PeDyyy = M Pge See & (5.1).
4.2) 1+ ool 4 oodt Dy =TP, Solves explicitly
Dy =209, Reduces
to the Riccati eq.
(@l 4+ Pe)Pey — Oy (Pee +2a) =0 Solves explicitly
for a =0
Tdyp =T Solves explicitly
(%5 + T) Pee + Per =0 Solves explicitly
Dt = 40D — D7 + 26D D
By + (Al 4 @) Pey = (20 + Peg) Linearizes by the
Legendre transform.
for @ = 0.
See &> .
E3) oo+ oot oottt @y, =0 Solves explicitly
XPy — X'®, =0 Solves explicitly
X®py — X'®, =0 Solves explicitly
D = XPpe — X' ¢ Solves explicitly
(14 ®¢)Pye = Py Dee Solves explicitly
(14 Pe)Pre = D Pee Solves explicitly
Dy Pee + (Py — P — 1) Py — PPy =0 Linearizes by the
Legendre transform.
4.4) 2+ cott Dyy = (T" — T2)y +TT —T' Solves explicitly
D,y = %}T’ +T" + ﬁ Solves explicitly
((TT, + 2aT) E+T? + ’1=") Dee Solves explicitly

Py — TP + T +2aTT =0

(462 — 30) D — gy — 66D + D7 + 60 =0

Dee = (BE — @) Peyy + (281 + Pe)Pyyy, — BP,  Linearizes by the
Legendre transform.
for B8 = 0.
See &3 .

Dee = (€ + )Py — Dy Peyy — 20 Reduces to the
Gibbons-Tsarev eq.
for o # 0.
Linearizes by the
Legendre transform.

for a = 0.

-

The notation co® ™ means the infinite-dimensional component corresponding to k arbitrary functions.

Table 8: Summary of 4E reductions
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5.2. Integrability properties of some reductions [IV|. The paper [IV] con-
siders the above 8 ‘interesting’ reductions (listed in the bottom part of Table [7]).
They can be divided in two groups by their symmetry properties: five equations
admit infinite-dimensional Lie algebras of contact symmetries (with functional pa-
rameters) and three others possess finite-dimensional symmetry algebras. These
are

- reduction &) of the universal hierarchy equation (4.1)

(51) Uyua:y - umuyy = eyua:a:a
- reduction & of the 3D rdDym equation (4.2)
(5.2) Uyy = (Ug + T)Ugy — Uy (Ugy + 2),

- reduction &3 of the Pavlov equation (4.4
(5.3) Ugz = (T — Uy)Uay + (2U + Ug)uyy — uy.

We denote the variables in the reduced equations by u, x, y instead of ®, £, n used in
source equations listed in Table[8|above. All the reductions of the modified Veronese
web equation were either exactly solvable or linearizable. The above equations
are pairwise inequivalent.

We deal with these three equations and study how the integrability properties
of the initial 3D systems behave under reduction. More precisely, we construct the
reductions of the zero-curvature representations for equations f and show
that they result in differential coverings of the form

asw? + aqw + ag B bow? + byw + by

5.4 = , = )
(5-4) v w2 + cqw + ¢ Wy w2 + cqw + ¢

where a;, b;, ¢; are functions in z, y, u, us, and u,. For every nonlinear covering we
construct an infinite series of conservation laws and prove nontriviality of those.

We also study the behavior of the recursion operators for symmetries of three-
dimensional systems and show that these operators do not survive under reduction.
Local symmetries and cosymmetries of the reduction equations are described and
the corresponding conservation laws are presented.

Using Lax representations of the 3D equations 4E, whose reductions are the
equations at hand, we construct here nonlinear coverings of 7.

5.2.1. Reductions of the Lax pairs, symmetries, cosymmetries.

Equation &7: is obtained as the reduction of the universal hierarchy equation (4.1))
with respect to the symmetry

(5.5) © = Uy + Ug + Yuy + u.

Equivalently, this reduction may be written in the form

(5.6) Uyy = UyUzg — (Ug + U)Ugy + Uglly

and Equation (5.1)) transforms to (5.6) by the change of variables © — vy, y — x,

u +— —eYu. In the further study of & we will use the form (5.6) rather than (5.1)).
Equation (4.1) admits the Lax representation

w, = (wu,—1u w_2wx,

_ -1
Wy = UyW Wy
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The symmetry ¢ can be extended to a symmetry ® = (¢, x) of (5.7), where
X = W, + w; + ywy +w

and the corresponding reduction leads to the covering
3

w

Wy = — P

w2 — (ugy +u)w —u

(5.8) (sz) Y
_ Yy

Yy = w? — (Uy + u)w — uy

of Equation (5.6).

The space sym(&7) spans the symmetries

O_1=Uy, Po=Yuy+u, Q©p=Uy, 1 =¢€ ".

The space cosym(&1) is 6-dimensional and is spanned by cosymmetries

Vo3 = ™ (3u? + 8u? 4 10uu, + 2uy), YYo= e (3u 4+ 2uy), Y1 = e,

1 22Uy — YUy + 2u
hy = e YUy T A

3
Uy

Y3 =

—
Uy

b = —4uzyuy + 6uug + 3u2 — dyuuy, + 3u? + 2uy + y2u§.

1
Uy

Equation &5: is obtained as the reduction of the 3D rdDym equation (4.2) with
respect to the symmetry

(5.9) @ = U — TUy — Uy + 2u.
The Lax representation of (4.2)) is
w = (ugy +w)wy,
(5.10) e = _1) ’
Wy = —UyW Wy

The symmetry ¢ extends to the one of (5.10): ® = (¢, x), where
X = Wy — TWy — Wy + U.

Reduction of the covering (5.10) with respect to ® leads to the covering

’U)2

Wy = — 2 — ;
(5.11) w? + (wa T)w + uy
Y

Yy w2 + (uy — T)w + Uy

over equation (5.2)).

The space sym(&2) is generated by the symmetries

1
p2 =1 o= us T, o= U ST, 9= Uy

The space cosym(&) is 4-dimensional and is generated by the cosymmetries

—2y
e Uy + T
1/1—3 = %a 1/)2 = 13
(7
Yy
e Y
Y_g = 5 Pz = Uy + 2.
uy
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Equation &3: is the reduction of the Pavlov equation (4.4) with respect to the
symmetry

(5.12) © = U — 22Uz — YUy + 3.
The Pavlov equation (4.4) possesses the Lax pair
wy = (w? — wuy — uy)w,,
(5.13) e = 2
wy = (W — Uz)Wy.

The symmetry ¢ lifts to the symmetry ® = (¢, x) of (5.13), where
X = Wy — 2TW, — YWy + Ww.

Reduction of the covering ([5.13)) with respect to this symmetry results in the non-
linear covering

w(w — Uy)

We = — )
(5.14) w? — (uy + )W + Uy — Uy — 2y
w

Wy :_w2—(uy+x)w+xuy—uz—2y

of Equation (5.3)).

The space sym(&3) spans the symmetries

_ 1 2 B g L
Yo = 3$UI 3yuy u, Y1 = Ug LUy Yy 237 )
Y2 = uy + 2z, p_3=1

The space cosym(&3) is 6-dimensional and spans the elements

" 54 +164 4_25624_2 +4 +122 44 +362
= —TUzUy + —2U —x U+ Uy + — UL Uy Uy + —U
e e 5T 5 Ylle T 5 Y

82 512 32 96 32 512 3
+ €x2u£ + T5x3uy + gxuf/ + ngui + EyQ + EZA + gui + uf/,

" 49 4 +3 +9 +92 +21 24_343 3, LB
=—z Ty + = Uyl —u —z Uy + —zu;, + —2° + -utu
o= o T tyte Tt T R Ty T T T

2
Y5 = dau, + 622 + 2y + guT + uz,
5 1
= — =1 1= .
Ya=grtuy, Ps=1 Y E——e

5.2.2. Conservation laws. We listed local conservation laws of & —&3 that corre-
sponds to the cosymmetries described above in [IV, Sect. 6]. The dimension of the
space of conservation laws for &7, & and &3 is 6, 4 and 6, respectively.

5.2.3. Hierarchies of nonlocal conservation laws. Using above nonlinear coverings
are in [IV, Sect. 3] constructed infinite hierarchies of nontrivial nonlocal conserva-
tion laws for &1-&3.

There is [IV, Sect. 3.1] a general construction of a hierarchy of nonlocal conser-
vation laws over an equation & in two independent variables z and y and unknown
function u, equipped by a differential covering

w, = X(z,y, [u], w), wy =Y (z,y, [u],w)

over &, where [u] denotes w itself and a collection of its derivatives up to some finite
order. The initial step of the construction is the so-called Pavlov reversing [38].
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Restricting the general covering to the Abelian case and assuming we derived
general recurrent formulae for the coefficients of the sought-for hierarchy.

Consequently, we apply this general construction on &1—&3. Moreover, we proved
that the obtained conservation laws are nontrivial [IV, Proposition 3.1].

5.2.4. On reductions of the recursion operators. In [IV, Sect. 3] we proved that

symmetry reductions of equations (4.1)), (4.2), and (4.4) are incompatible with
their recursion operators and thus the latter are not inherited by equations (5.1)),

(5.2)), and (|5.3)), respectively.

Consider recursion operators for symmetries %1, %o, %3 of equations &1, &1, &3,

i.e. (4.1, (4.2), and (4.4) found in [32] 33|, see [IV, Sect. 4.2] for explicit formulae.

Proposition 5.1. Recursion operators %, %, X3 are not invariant with respect

to the natural lifts of the symmetries (5.5)), , and (5.12), respectively.

5.2.5. Discussion on inequivalence. In [IV, Section 5] we obtained the

Proposition 5.2. Fquations (5.1), (5.2), and (5.3) are pairwise inequivalent with
respect to an arbitrary contact transformation.

The proof is nothing but the comparison of Lie algebra structures of the spaces
sym(&;) and dimensions of the Lie algebras cosym(é&;).

Moreover, the equations under consideration are not equivalent to the Gibbons-
Tsarev equation.

6. INTEGRABLE WEINGARTEN SURFACES

The classical geometry of immersed surfaces in the Euclidean space is well known
to be closely connected with the modern theory of integrable systems [41]. The
Gauss—Weingarten equations of a moving frame ¥ always take the form

(6.1) U, = AU, U, =BU.

where A, B are appropriate matrix-valued functions. Integrability conditions of (6.1)
are called the Gauss—Mainardi-Codazzi equations and take the form of a zero cur-
vature representation

(6.2) A, — B, +[A,B] =0.

The zero curvature representation is the key ingredient in the soliton the-
ory |13], where matrices A, B are additionally assumed to depend on what is called
the spectral parameter. The essential requirement is that the spectral parameter
cannot be removed by means of the gauge transformations. Consequently, if the
matrices A, B can be modified so that they depend on a nonremovable parameter
and still satisfy , then the corresponding Gauss—Mainardi—Codazzi equations
are considered to be integrable in the sense of soliton theory, and their solutions
are known as integrable or soliton surfaces [46).

Soliton-theoretic integrability can occur only when surfaces are subject to a
constraint (such as being pseudospherical etc.). Here we employ a method due
to Marvan [31]: we attempt to extend the given non-parametric zero curvature
representation to a power series in terms of the spectral parameter.

To be ‘geometric’, the determining constraint on integrable surfaces must be
invariant with respect to the changes of coordinates. The general non-differential
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invariant constraint is a functional relation f(p,q) = 0 between the principal curva-
tures p, g. Such a functional relation is characteristic of Weingarten surfaces. Well
known to be integrable is the class of linear Weingarten surfaces [9, 41|, character-
ized by a linear relation

(6.3) ak 4+ bh+c¢ =0, a,b,c = const

between the Gauss curvature k = pq and the mean curvature h = %(p + ¢q). Other
integrable classes of Weingarten surfaces sporadically occur in the literature.

So far, nothing contradicted the conjecture of Finkel |16, Conjecture 3.4] and
Wu [48] that the only functional relation f(p,q) = 0 to determine an integrable
class of Weingarten surfaces is the linear formula . Nevertheless, the main
result of the paper [VII] asserts that the simple relation p — o = const between the
principal radii of curvature, resp.

1 1
(6.4) — — — = const
p g

between the main curvatures p = 1/p, ¢ = 1/0, determines an integrable class of
Weingarten surfaces. The associated nonlinear partial differential equation
has a zero curvature representation (6.12) (missed in [48]) with a nonremovable
parameter, a third-order symmetry (6.14) (missed in [16]), and a recursion operator.

Paradoxically enough, surfaces satisfying relation were not completely un-
known to nineteenth century geometers. Ribaucour [40] established their most sig-
nificant property, namely, that the corresponding focal surfaces (evolutes) are pseu-
dospherical (i.e., have a constant Gaussian curvature k < 0). Consequently, surfaces
satisfying equation are involutes of pseudospherical surfaces. Moreover, the
classical Bianchi transformation [6] is nothing but the induced correspondence be-
tween the two focal pseudospherical surfaces. Thus, our integrability result is not
an entirely unexpected one.

The first examples of surfaces satisfying relation also date to the nineteenth
century. Lipschitz [26] derived a four-parametric family in terms of elliptic integrals.
A particular subcase, the rotation surface of von Lilienthal [25], is the involute of
the pseudosphere.

Ribaucour’s theorems are covered in Darboux [9] and early twentieth-century
monographs, such as [5 |12, |18 |47]. Later they became obsolete and forgotten as
the induced Bianchi relation between pseudospherical surfaces became superseded
by the classical Backlund transformation (the history is nicely reviewed by Prus
and Sym in [39, Sect. 4]).

The left-hand side of Equation is equal to the difference of the principal radii
of curvature at a point. This geometric quantity has a definite physical meaning,
being associated with the interval of Sturm [45], also known as the astigmatic
interval or the amplitude of astigmatism or simply the astigmatism [20]. A mirror
or a refracting surface satisfying relation will feature a constant astigmatism
in the normal directions.

In the sequel, surfaces satisfying condition will be called surfaces of constant
astigmatism. Accordingly, the equation to determine the surfaces of constant
astigmatism will be called the constant astigmatism equation.
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6.1. Weingarten surfaces. We shall consider surfaces parametrized by curvature
lines. As is well known, the fundamental forms can be written as
I =u?da® +02dy?, II =u’pda® 4+ viqdy?,

where p, g are the principal curvatures. Coordinates x, y are unique up to arbitrary
changes © = X(z), y = Y(y). Let ¥ = (e1,e2,n) denote the orthonormal frame,
given by e; =r;/u, e =1, /v, n = e; x ez. The Gauss—Weingarten equations

0 —“7” up 0 = 0
(6.5) v, = uv—y 0 0 v, v, =1 —= 0 vq | U,
—up 0 0 0 —wvq 0
or, more explicitly,
U U
Typp = irz - Tyry + UQPH’ Ng = —pry,
U v
Uy Vg
Tpy = ; z + Ty,
VU v
Ty = g et e o, n, = —qry

are easily established. The Gauss equation is

v u
(6.6) Ullyy + VVgz — aumvw — Euyvy + u?v?pg = 0,
while the Mainardi—-Codazzi equations are

(6.7) (p—Quy +upy =0, (q—p)vs +vg =0
and together they constitute the integrability conditions of the Gauss—Weingarten

equations (|6.5]).

Let us impose a constraint f(p,q) = 0 determining the class of Weingarten
surfaces. If nontrivial, it can be resolved with respect to one of the curvatures, say
(6.8) q=F(p),

which we assume henceforth. Then the Gauss equation becomes
E/
(6.9) Pyy = B*E" e + 20, + B*(EE")'p; + EE'D — E%p,

where E = E(p) is an arbitrary nonconstant function, E’ = dE/dp and the
Gauss—Mainardi—-Codazzi system of Weingarten surfaces reduces to the single equa-

tion .

The classification problem to be answered is: ‘For which choices of the function
E(p) is the equation integrable?

6.2. Constant astigmatism equation [VII]. In the paper |[VII], we found, be-
sides the well-known linear Weingarten surfaces 7 another integrable class, con-
sisting of surfaces with a constant difference between the principal radii of curvature
, which we call surfaces of constant astigmatism. They emerge as a solution

(6.10) E= %/p, ¢ = const,
e (&

of the ordinary differential equation
E" (FE\® 2B 1

— - -—— - —==0.
E E pE  p?
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Using the solution (6.10) and assuming that the constant astigmatism condition
(6.4) holds, the Gauss equation simplifies to the constant astigmatism equation

1
(6.11) Zyy + () +2=0.
z rxr
The equation (6.11) has A-dependent zero curvature representation
e VA + Az, (A+1)z7
N AL VA + Az )7

s VA VR ERT
- N LV )

it has obvious translational symmetries 0;, 0y, the scaling symmetry 220, — z0, +
y0Oy, the discrete symmetry

(6.12)

1
(6.13) T—y, Yy—x, zZ——.
z

and a recursion operator.

Computation reveals two third-order symmetries of equation (6.11]), missed in [16].
One of them has the generator

3
(6.14) ﬁ(zmx — ZZgay) —
2

— - 2%(9z, — 22y) 23z +

K5
2 3

~ 5” 25 (25 — 22y) (42 — 22y) 20y + ﬁZ%szy
2 3

3
+ ﬁz4(5zz — 22y) 2y — 5

ﬁzg(zx — 22y) (Zax — 222y)?
22(922 + 422,z — z%j)(zx — 22y)Zan

1
2K°
2(2y — 22,) 25,

where

K = \/(zw — zzy)? + 423,
The other is obtained by conjugation with the discrete symmetry (6.13]).

6.3. The classification [VI]. In the paper [VI] we completed the classification
of integrable classes in the simplest possible case. The integrability criterion we
adopt is the existence of an sl(2)-valued zero curvature representation depending
on a nonremovable parameter. We apply method of formal spectral parameter,
introduced in [31].

In [VI], we use the principal radii of curvature p, o instead of the principal cur-
vatures p = 1/p, ¢ = 1/0 used in [VII], since the radii transform in a very simple
way under the offsetting symmetry of the integrability problem.

Employing the Maple package Jets [4], we completed the computer-aided coho-
mological classification outlined in [VII].

Proposition 6.1. The third-order ordinary differential equation

3 — ' — 1o /+1
(6.15) w:§7m_ﬂ_w+%p ?@2).
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determines a unique mazximal class of Gauss—Mainardi—Codazzi equations of Wein-
garten surfaces whose initial s1(2, C)-valued zero curvature representation

iy _u vy _ v
(6.16) A= % 2, Bo=< g z%")

2p T T 20 2u

admits a second order formal spectral parameter under the condition that the normal
form of the zero curvature representation can depend on derivatives of u,v,o,p of
no higher than the first order.

The above proposition provides a complete classification of integrable Weingarten
surfaces under the following assumptions: the one-parameter zero curvature repre-
sentation takes values in the Lie algebra sl(2), includes the initial zero curvature
representation as a special case for some value of the parameter, depends
analytically on the parameter, and its normal form involves derivatives of order no
higher than one.

Proposition 6.2. The nonremouvable spectral parameter exists for all dependences

p(0) allowed by the governing equation (6.15)).

The governing equation is explored in [VI, Sect. 4]. We identify two ba-
sic symmetries, scaling and translation (offsetting), and solve equation in
terms of elliptic integrals. The generic class of integrable Weingarten surfaces we
obtained depends on one essential parameter (apart from the scaling and offsetting
parameters).

In [VI, Sect. 5] we establish the integrable Gauss equation [VI, (39)] in the generic
case as well as in a number of special cases when the elliptic integrals degenerate to
elementary functions. All of these special cases could be located in the nineteenth
century literature.
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1. Introduction

Integrable systems are well known to play an important role in modern mathematical physics, see e.g. [1-4]. An impor-
tant feature of integrable partial differential systems is that any such system belongs to an infinite hierarchy of pairwise
compatible systems that can be seen as symmetries of each other, cf. for example [1,3,5-7]. Such an infinite hierarchy of
symmetries is an important sign of integrability. On the other hand, a useful structure attached to a given integrable system,
as such a hierarchy provides, to an extent, the structure behind infinite families of explicit exact solutions like multisolitons,
cf. e.g. the discussion in Fokas [1], Olver [2]; see also [2,3,6-9] for applications of symmetries in general.

For integrable partial differential systems in more than two independent variables the symmetries in question, as well
as the conservation laws, are typically nonlocal, see e.g. [1,3-5,10,11], which makes the task of finding their commutation
relations quite difficult, cf. e.g. [3,11]. There is a technique [12,13] allowing one to find an infinite hierarchy of nonlocal
symmetries and establish its commutativity. This technique uses a Lax pair of the system under study for a fairly broad class
of integrable multidimensional systems with isospectral Lax pairs involving an essential parameter. Given the importance
of such hierarchies, as discussed above, it is natural to check whether indeed more examples of hierarchies of commuting
nonlocal symmetries can be found using this technique. In the present paper we show that this can be done for the modified
Martinez Alonso-Shabat equation in four independent variables (4D) and present an infinite commutative hierarchy of full-
fledged nonlocal symmetries for this equation as well as a recursion operator.

Nonlocal symmetries may be used in the same way as local ones. For example, one can construct explicit solutions
invariant w.r.t. nonlocal symmetries. Infinite-dimensional coverings of the presented type in many cases are infinite hydro-
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dynamical chains (cf. [14]) or systems very similar to the latter. The constructed nonlocal symmetries of the base equation
are local for these chains and thus existence of commutative hierarchies proves S-integrability of the covering system (see

[15]).
2. Modified Martinez Alonso-Shabat equation

Consider the modified Martinez Alonso-Shabat equation [13]
Uyllyz + QUxlley — (Uz + QU )Uxy = 0 (1)
involving a nonzero real parameter o.
Eq. (1) is an integrable 4D PDE as it has [13] a Lax pair involving the spectral parameter A # «

Au AU, +ou
AR P L P T (2)

Iy = 7
YT oy o Uy

cf. e.g. [3-5] and references therein for integrable 4D systems in general.
Identifying z and t in (1) yields [13] a 3D integrable reduction of the latter,
Uyley — (O + 1) Ugllyy + QUxllsy = 0. (3)
In turn, (3) is, up to a possible relabeling of independent variables and multiplication by an overall constant, nothing but
the Veronese web equation, also known as the ABC equation,
Auyugy + Buyu + Cuglyy =0, A+B+C=0, (4)

which describes three-dimensional Veronese webs and is a subject of intense research, see e.g. [16,17] and references therein.
Thus, (1) can be seen as a 4D generalization of (3) and hence of (4).

To simplify further computations, in what follows we shall work with Eq. (1) in the form
_ OUlyy + Uzgllyy — Uyllys
a oy

Uty

(5)

resolved with respect to uyy.
3. The recursion operator

Starting with (2) and using the deformation procedure described in Sergyeyev [18] (cf. also [5]) we readily find that
(5) admits, in addition to (2), a Lax pair
g = AllyGx + (o — A)quyy
y oy ’
_ A((our 4 uz) Gy — QUG — qUxz) + O QU
- ol ’

(6)

In particular, for any given A Eq. (6) define a covering, which we denote by Q,, over (5); see e.g. [3] for general back-
ground on coverings.

Unlike r, if q satisfies (6) then it is a nonlocal symmetry shadow for (5) in the covering Q,, i.e., roughly speaking, ¢ =q
satisfies the linearized version of (5),

Uty Dy (¢) — UstlxyDr () + UZDyy (¢) — UrlixDyy (¢) " Uzl Dx (@) — tyUxzDx (@) + UxtixzDy (¢) — UxtlyD: (@)
u? au?
n UxtlyDyz (@) — UxtizDyy (9) _
au

4z

0 (7)

modulo (5) and (6) and differential consequences thereof.

Here Dy, Dy etc. denote total derivatives in the appropriate covering over (5), e.g. Q, for q, cf. e;g. [3] for relevant
definitions.

Following [5,18], upon formally replacing Aq by ¢ and q by v in (6), we readily arrive at the following

Proposition 1. Eq. (5) admits a recursion operator R defined by the relations

Uy = Uy@x — Uyy@ + CUy Y/
Y Uy ’

(0Us + Uz) Py — CUKP; — Uxz @ + QU Y
oy ’

(2

meaning that for any nonlocal symmetry shadow R(¢) def for (5).

2
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In other words, the above R defines a Biacklund auto-transformation for the linearized version (7) of (5), see e.g. [3,5,19-
21] and references therein for details on this approach to recursion operators.

While using R one readily can construct infinite hierarchies of nonlocal symmetry shadows for (5), this leaves one with
the problem of finding a (minimal) covering in which all these shadows could be lifted to full-fledged nonlocal symmetries
of (5), since only for those one can rigorously establish their commutation relations.

In what follows we shall take a slightly different route, using (6) rather than X, to produce an infinite hierarchy of
full-fledged nonlocal symmetries for (5) and establish their commutativity.

4. Nonlocal symmetries

While, as we have seen in the preceding section, q is a nonlocal symmetry shadow in the covering Q,, this shadow
cannot be lifted to a full-fledged nonlocal symmetry in the covering under study.

To circumvent this difficulty, consider a formal expansion q = Y7, q;A\. Substituting this expansion into (6) shows that
qo = Fuy, where F(x, t) is an arbitrary function, while the remaining g; are defined by the equations

Qlhyqy + (Uedly — Uxylix ) F + tixttyFe

(ql )_y = Ay 5
_ OlUxqy + (a(Urly), + UxxlUz — UxsUx)F + (e + Uz )uxFy — ozu,%Ft
(‘h)z - au ’
X
@), = QUxy(i — Uxy (Gi-1) + Uy (Fi-1)yx
ty aux )
QUi — Ugz(Gio1) — QU (Qi1), + QU (Gi1)y + Uz (Gi1)y
(qi)z - au s
X
i=2,3,..., that define an infinite-dimensional covering, which we denote by 9, over (5).

Theorem 1. Infinite prolongations of the vector fields
J 9 i

a o0
Ql-=q,-%+j§Bia—qj, =1.2,..., (9)

form an infinite hierarchy of commuting nonlocal symmetries for (5) in the covering Q...

Here
Bl — ([Ux, Qi+j—l]x - a[ux, qi+j]X)F - (Ol divj — Qiﬂq)llx K (qnjfs(i,j)—l)XQS(i,j)H
i o Uy + Uy
. sgj) a[QH—j—ks Qk]xa_ux[mﬂ—k—l’ Qk]x’ (10)

k=1
wheres(i, j) = min (i— 1, j — 1) and [A, B]x = AxB — ABx.

Before proceeding to the proof of the theorem note that by the very construction we have q;,; = R(g;), so the commu-
tativity of infinite prolongations of Q; suggests that the above recursion operator R could be hereditary (cf. e.g. [2,3] and
references therein on the hereditary property in general), at least when restricted to the span of shadows ¢;, i=1,2,...,
which could provide some additional insight into how the hereditary property works in the multidimensions.

Proof. First of all, it is immediate that g; is a nonlocal symmetry shadow for (5) for each i =1, 2, ... since so is g.

Inspired by Sergyeyev [12], Morozov and Sergyeyev [13], we were able to find the lifts of q;, i=1,2, ..., to the covering
Q0. These lifts are nonlocal symmetries Q; for (5) given by (9).

Now, commutativity of the infinite prolongations of Q; is easily seen (cf. [12,13]) to be tantamount to that of the flows

ou/at; = qj, qu/ﬁrszf, i,j=1,2,... (11)
i.e., to the requirement that the relations
0%u/97:07; = 3%u/dt;0T, 03%q/0Ti0T; = 0%q/dT;0T, i, jk=1,2,..., (12)

hold by virtue of (5) and (11) and their differential consequences, which in turn is readily verified by straightforward but
tedious computation. O

Finding explicit form of the generators and providing rigorous proofs of commutation relations for infinite-dimensional
algebras of nonlocal symmetries for multidimensional integrable PDEs, rather than merely finding shadows of nonlocal sym-
metries, appears to be quite rare, especially in the case of four (or more) independent variables. In particular, there are only
a few earlier examples known to the present author where this was achieved in 4D, namely, the commutative hierarchies

3
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of nonlocal symmetries for the self-dual Yang-Mills equations [22] and for the Martinez Alonso-Shabat equation [13]. Inter-
estingly, the situation appears to be quite different in 3D, where infinite-dimensional noncommutative algebras of nonlocal
symmetries for a number of dispersionless integrable systems were found by direct computations, see e.g. [10,11,17,23].
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NONLOCAL SYMMETRIES OF INTEGRABLE LINEARLY
DEGENERATE EQUATIONS: A COMPARATIVE STUDY

H. Baran,* I. S. Krasilshchik, O. I. Morozov,! and P. Vojéak*

We continue the study of Lax integrable equations. We consider four three-dimensional equations: (1) the
rdDym equation usy = ugtey —UyUes, (2) the Pavlov equation Uyy = Utz +UyUgz — Uz Usy, (3) the universal
hierarchy equation uyy = usugzy — Uy, and (4) the modified Veronese web equation Uty = Usllgy — Uylig-
For each equation, expanding the known Lax pairs in formal series in the spectral parameter, we construct
two differential coverings and completely describe the nonlocal symmetry algebras associated with these
coverings. For all four pairs of coverings, the obtained Lie algebras of symmetries manifest similar (but
not identical) structures; they are (semi)direct sums of the Witt algebra, the algebra of vector fields on
the line, and loop algebras, all of which contain a component of finite grading. We also discuss actions of
recursion operators on shadows of nonlocal symmetries.

Keywords: partial differential equation, integrable linearly degenerate equation, nonlocal symmetry,
recursion operator
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1. Introduction and notation

In [1}, we began a systematic study of the symmetry and integrability properties of Lax integrable
three-dimensional equations, i.e., equations that admit a Lax pair with a nonremovable parameter. All the
two-dimensional symmetry reductions of

e the rdDym equation Uty = Uglzy — Uylgy,

the three-dimensional Pavlov equation Uyy = Utg + Uylzr — UgUgy,

e the universal hierarchy equation (UHE) uy,, = Utlhzy — UyUsz, and

the modified Veronese web equation (MVWE) ugy, = Utlzy — UyUgy
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were described. In [2], we studied the behavior of the Lax operators admitted by these equations under
symmetry reductions and showed that some two-dimensional reductions (one of them is equivalent to
the Gibbons-Tsarev equation [3]) inherit the Lax pairs. We also constructed infinite series of (nonlocal)
conservation laws for these reductions. Finally, we recently used expansion of the Lax pair for the rdDym
equation in formal series in the spectral parameter to construct two infinite-dimensional differential coverings
of this equation and completely described the nonlocal symmetries in these coverings [4]. All these equations
are linearly degenerate in the sense of [5], where such equations were classified.

Here, we use the same techniques to describe the Lie algebra structure of nonlocal symmetries for
the other three equations. In Sec. 2, we briefly introduce the terminology used. In Sec. 3, to make the
exposition self-contained, we briefly recall the results obtained in [4]. We consider the three-dimensional
Pavlov equation in Sec. 4, discuss the results for the UHE in Sec. 5, and describe the symmetries of the
mVWE in Sec. 6. In each case, we also discuss recursion operators and their action on the shadows of
nonlocal symmetries. We also describe a Biicklund autotransformation for the mVWE. Finally, in Sec. 7,
we summarize the obtained results. We omit the proofs: a detailed exposition in the case of the rdDym
equation can be found in [4], and all the other proofs are quite similar.

All the symmetry algebras in what follows have similar (but not identical) structures and are direct or
semidirect sums of the following Lie algebras (see Table 13, where the main results are aggregated):

e the Witt algebra 990 of vector fields e; = 2't18/0z, i € Z,
e its subalgebras 20, spanned by e;, ¢ <k <0, and QUZ spanned by e; with ¢ > k£ > 0,

e the algebra U[p] of vector fields R(p) 8/0p on R! with a distinguished coordinate p (we use the
notation [R, R) = RR -RR' everywhere in what follows for functions R and R of p, where the prime
denotes the derivative with respect to p),

e the loop algebra £[p] spanned by the elements 2! ® X, i € Z, X € Bp], with the commutator
' ® X,z Y] =2 ®[X,Y], and

o the algebra £ [p] spanned by the elements p(z) ® X, where X € B[p], p(z) € R[2]/(2¥) is a truncated
polynomial. We similarly define £ [o] with p(2) € Rz71]/(z7F).

Semidirect sums in the algebras of symmetries arise because of the natural actions of 25 on £[p], 2, on
S5l and 20F on £ (o]

All the considered equations admit scaling symmetries that allow introducing natural weights in the
space of polynomial functions on the equation. This structure is inherited by the symmetry algebras in all
cases except the case of the mVWE. Perhaps, this is why the Lie algebra structure of symmetries for this
equation differs a bit from the others.

2. Preliminaries

We everywhere consider second-order scalar differential equations in three independent variables z, y,
and t (see [6] for a general coordinate-free exposition). For this, we consider the space J°(R?,R) of infinite
jets of smooth functions u = u(z,y,t) on R3. This space is endowed with the coordinates

az‘+j+ku

= awagioe bhk20

xayat1u’i,j,k
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and its geometric structure is determined by the Cartan distribution spanned by the total derivatives

- a- + Z uz-}-l,], 6'1], = + Z ,j+1 kau )
4,5,k>0 bk 1,5,k>0 b3k
0 15)
Dy=o + > w Uigk+1,
6,,k>0 ik

An equation £ = {F = 0} C J®(R®) is the subset defined by an infinite system of relations D, (F) =
0, where F' = F(z,y,t, 4, Uz, Uy, Ut, Usg, Ugy, - - - ,Uzz) i a smooth function and D, denotes all possible
compositions of the total derivatives. Total derivatives and any differential operators in total derivatives
can be restricted to £, i.e., expressed in terms of internal coordinates on .
A symmetry of £ is a vector field
§=) Sijk

on £ that commutes with the total derivatives (here and hereafter, summation is taken over all internal

,J,k

coordinates on £). Any symmetry is an evolutionary vector field of the form

= » D.DiDf
E, =) @ gt
where ¢ is an arbitrary smooth function on & that satisfies the equation £¢ () = 0 and {¢ is the restriction
of the linearization operator
_OF OF OF OF OF oF

+2—Dy++ 2—Dy+ D+ ——D,Dy+ -+ —D?

=5t o Buy Dtigy Mty Bz

to £. The function ¢ is the generating function (or the characteristic) of a symmetry. Symmetries form
a Lie algebra sym(£) with respect to the commutator, and the commutator induces the Jacobi bracket on
the space of generating functions: {p1, 2} = Ey, (2) — By, (,). In what follows, we do not distinguish
between symmetries and their generating functions.

A symmetry of the form s = du + azu, + Byuy + ytug, o, B,7,8 € Z, is called a scaling symmetry
of £. If an equation admits such a symmetry, then we can assign weights to polynomial functions on £
by |z| = —a, |yl = =B, |t| = —v, Jusjk| = 6 — ia — j8 — kv, with respect to which the space P(£) of
such functions becomes graded: P(£) = @, o, Pr(€). If E, is a symmetry and ¢ € P(E), then we set
|Ey| = [¢| — |u|l. Then E,(P.(£)) C PriiB,((€) and |[Ey,,Ey,]| = |Ey,| + [Ey,|- Hence, the space of
polynomial symmetries becomes a Z-graded Lie algebra.

Let £ be an equation. A differential covering of £ (see [7]) is an extension £ of £ by a system of
first-order equations

ws =X"‘(x,y,t,...,ui,j,k,...,wﬁ,...),
=Y"‘(.’z,y,t,...,ui,j,k,...,wﬂ,...), (1)

wy =T°‘(m,y,t,...,ui,j,k,...,wﬂ,...),
a,8=1,2,..., that are compatible modulo £. The variables w’ are said to be nonlocal, and there exists

a prOJectlon 7: & — € such that the nonlocal variables are fiberwise coordinates of this projection. The
number of independent nonlocal variables is the covering dimension. The total derivatives are lifted to &

by
%) 0

~ ; ~ : 0
Dszz—l—ZXJ%, Dy=Dy+ZY‘7%, Dt Dt+ZTJ8

wi’

1091



and any differential operator D in total derivatives can consequently be also lifted to D. We say that a
covering is Abelian if the right-hand sides of its defining equation are independent of nonlocal variables. In
the case where system (1) can be written in the form of two equations, it is called a Lax pair.

Given a one-dimensional covering 7 (i.e., a covering (1) withw® =w, X*=X,Y*=Y,and T* =T)
that depends smoothly on A € R, we can consider the expansion w = Y. Aw; and also expand the
defining equations of the covering in formal series in the parameter. An infinite-dimensional covering with
the nonlocal variables w; then arises. If w; = 0 for ¢ < 0, then we say that this is a positive covering
associated with 7; if w; = 0 for ¢ > 0, then we have a negative covering.

A symmetry of £ is a nonlocal symmetry of £ Nonlocal symmetries are vector fields

;0
Bt ) 5
7

where ¢ and ®7 are smooth functions on £ that satisfy Zg((p) = 0 together with the system

- _ xe - aye
Da(p™) =txe(@) + ) 558, Dy(¢®) =lbra(p)+ D 559,
[/] [/
S ore
Di(¢®) = bra(p) + ) 55",
[/

A nonlocal symmetry is said to be invisible if ¢ = 0. Solutions of the equation Zg((p) = 0 are called
shadows. We say that a shadow ¢ is lifted (or reconstructed) if there exists a nonlocal symmetry ® =
(p,®,...,®7,...). Of course, lifts (if they exist) are defined up to an invisible symmetry.

Let &£ and & be equations and 7;: E— &; be coverings. Then we have the diagram

E 12— & 2, &,

which is called a Backlund transformation between £ and &;. If £ = &3, then it is a Bécklund autotrans-
formation. With any equation £ = £, we associate the system 7&

F(.’E, Yy Yy Uy Uy Uy, Uty Ugg, Ugy, - - '7utt) = 0,
@—v—l— 6F'u —I-a—Fv —l—a—Fv +—6F'u +—8F’U + +—8FU =0
Ou Oug Ouy Y Ous T Ouge Ougy Y Oug

which is called the tangent equation of £. A Bicklund autotransformation of this system is a recursion
operator for shadows of symmetries of £ (see [8]).

3. The rdDym equation: A synopsis

More information about the rdDym equation is available in [9]-[11], and a detailed discussion of
coverings, nonlocal symmetries, and recursion operators for this equation can be found in [4]. Nevertheless,
for completeness, we present a short overview of the previously obtained results. The equation is

Uty = Uglgy — UyUzpg. 2)

We assign the weights |z| = 1, |u| = 2, and |y| = |t| = O to the variables z, y, ¢, and u. Consequently,
the equation becomes homogeneous with respect to these weights. Local symmetries are solutions of the
equation

Le(p) = DiDy(p) — uzs Dz Dy(p) + uy D2() — tay Dz () + tza Dy () = 0.
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The space of solutions is spanned by the functions
o = —Tuz +2u, vo(Y) = Yuy,
00(T) = Tuy + T' (zuy — u) + %T”xz, 0_1(T) =Tuy + T'z, 0-2(T) =T,
where T' = T'(t) and Y = Y(y) are arbitrary functions of their arguments and the prime denotes the

corresponding derivative. The corresponding evolutionary vector fields have the weights [Eyy| = |Eyv)| =
0 and 'Egi(T)l =1, ¢ =0, ~1, —2. Commutators of the symmetries are presented in Table 1.

Table 1
%o | w(Y) 00(T) 01(T) 0_o(T)
o 0 0 0 6_1(T) 20_5(T)
v (Y) vo([Y,Y)) 0 0 0
60(T) 6(T. 7)) | 6-2(T,T)) | 0_o(, 7))
0_1(T) 6_o([T,T)) 0
0—2(T) 0
The rdDym equation: commutators of local symmetries.
The system
wy = (Ug — A)w,, wy = A"y w, (3)
is a Lax pair for Eq. (2). Setting w = ::foo Mw,; and substituting this expansion in (3), we obtain

Wi = UgWi,g — Wi—1,z and wyy = uyW;it1,,. The corresponding positive covering is defined by the system

Uy 1
qit = —, Q1,2 = —,
Uy Uy
Uz qi—1,y .
Qit = —¢i—1,y — i1,z Qip = —=, i2>2,
Uy Uy

with the additional nonlocal variables qz(j ) defined by the equalities q(O)

2

= ¢; and q§j+l) = (ngj))y. The

weights assigned to the nonlocal variables are |q§J ) | = —4,4>1, j > 0. The negative covering is defined by
the system
— 0,2 —
T,z = Uy — Ug, Tl,y = UzgUy,
Tiz = UzTi—1,0 — Ti—1,, Tiy = UyTi—1,z,

with the additional nonlocal variables rz(j ) obviously defined by 7_1(0) = r; and rz(j - (rfj ))t. We have
rD=it+2,i>1,5>0.

All the local symmetries of the rdDym equation can be lifted to both 7+ and 77, and we let the
corresponding capital letters denote the lifts: ¥q for the lift of 1y, ©y(T) for 6;(T), and so on.

Three families of nonlocal symmetries are admitted in 7+. The first consists of the invisible symmetries

Qik:nv(y)z(0""70780i1nv1""Q0;:nV"")’

k times
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where ¢ = Y(y), and another two are generated by the lifts ¥_; and ¥_» of the nonlocal shadows
¥_1 = qruy +x and Y_p = (2¢2 — q1q§1))uy using the relations U_; = [T_f4+1, U], k> 3, and T_4(Y) =
[¥_x—1,®L (Y)], k> 0. The constructed nonlocal symmetries have the weights |¥;| = |T;(Y)| = 4,4 <0,
|©;(T)| =34, 5 =0,-1,-2, and | (V)| =k, k > 1.

We then have the following result.

Theorem 1. There exists a basis in sym,+(E) consisting of the elements w;, 1 < 0, v;(T), j =
0,—1,—2, and v(Y), k € Z, such that they commute as indicated in Table 2. Therefore, the algebra
sym._+ (&) is isomorphic to Wy x (£3 [t] ® £[y]) with the natural action of Wy on £3 [t] & Lly].

Table 2
W v;(T) v;i(Y)
o ivies(T), —2<i+35<0, e

w5 (J — )Wits w50 . Jviri (Y)

0, otherwise

i ([T, T)), —2<i+3i<0,

0, otherwise

vi(Y) vigi ([Y,Y))

The rdDym equation: commutators in sym... (&).

Similarly, local symmetries are lifted to 7, and three families of nonlocal symmetries arise in this
covering. They are Uy, k > 1, 0;(T), i > —2, and &, and have the weights [¥x| = k, k > 0, |8, | = —1—2,
1>1,10;(T) =1,¢>—-3,and |To(Y)| =0.

The following theorem then describes the Lie algebra structure.

Theorem 2. There exists a basis in sym,.— (£) consisting of the elements w;, i > 0, v;(T), j € Z,
and v(Y) satisfying the commutator relations presented in Table 3. Hence, the Lie algebra sym, _(€) is
isomorphic to 207 x L£[t] ® V[y] with the natural action of 26§ on £[t].

Table 3
w; v;(T) v(Y)
W (G —DWirs | Gvies (T) 0
vi(T) Vit ([T, T1) 0
v(Y) v([Y,Y))

The rdDym equation: commutators in sym_— (£).

We note that the components of the invisible symmetries are constructed using the operator

5} >, . 0
Y= a3, +;(2+ 1)Qz+1%

(1
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Similar operators arise in studying other equations in what follows.
The algebra sym(£) admits a recursion operator ¥ = R.(x) defined by the system

Di(x) = u;l (ume(X) —uzDy(x) + (um‘uzy - uy“mm))’é\)y

Dy(X) = u;1 (umyj(\ - Dy(X))

(see [12]). This means that ¥ is a nonlocal shadow if x is. Another recursion operator x = R_(¥) is given

4)

by the system
D,(x) = Dy(X) — ug Dz (X) + taz X, 5)
Dy(X) = —ume(SC\) + uz‘y?-

The operators Ry and R_ are mutually inverse.

The actions of 'R+ and R_ on sym(£) can be prolonged to the shadows of nonlocal symmetries from
sym(é’ "‘) and sym(é' ) if we replace the derivatives D;, Dy, and Dy, in (4) and (5) with the total derivatives
Dt, 2z, and Dy in the Whitney product of the coverings 7+ and 7~ in the sense of [7]. The resulting
operators are also denoted by Ry and R_.

We note that the operators act nontrivially on the “vacuum,” R, (0) = 6_o(T) and R_(0) = vp(Y),
which follows immediately from Eqs. (4) and (5). Therefore, the actions can be reasonably considered mod-
ulo 6_»(T') for R, and vy(Y') for R_. Taking this remark into account, we have the following proposition.

Proposition 1. Modulo the images of the trivial symmetry, the action of recursion operators is of the
form

at;_1(T), i>-2,

R4(6:(T)) = R-(6:(T)) = a; 0;41(T), i> -2,
0, 1= -2,
. 3 Y ] ] ’
Ri(i(Y)) = ffvini(¥), i<o, R_(vi(Y)) = Oﬁz v ) Z ) :))
) t=0,
R () = % i1, R—(¥:) =7 Yip1, 1 €ELZ,

where of, 5, and i are nonzero constants.

We note that the recursion operators R, and R_ “glue” the shadows ¥m of nonlocal symmetries in
the coverings £+ and £~ and “tunnel” from the series of 60k (T') to the series of v;(Y) (see Fig. 1). In all the
figures here and hereafter, straight arrows denote actions up to scalar multipliers and modulo the image of
a trivial shadow. We also “compress” the notation and write 6; instead of 0:(T), vy, instead of v(Y'), and
so on. The notation (-)* is used for shadows in 7+, (-)~, for shadows in 7—, and (-)*, for shadows in
both coverings.

4. The three-dimensional Pavlov equation
The three-dimensional Pavlov equation, which, for example, was discussed in [13], [14], has the form
Uyy = Uty + Uylpz — Uglgy. (6)
We choose the internal coordinates on &

0 1
Uk =Ygzt ..t Upy = Ug . . zt.. . t» k120
(AL NS AL SN !

k times I times k times 1 times
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R_ R_ R_ R_
+ + -
m Yhi<g Y < ¥ <%
R_ R_ R_ R_ R_ R_ R_ R_
+ + + + + —
R+ v Ry Vo R 0 R+ = Ry = R+ b Ry b R+
Fig. 1. The rdDym equation: action of recursion operators (4) and (5).

The total derivatives in these coordinates are

Dz=a—$

+) (0
k,l
0
Dy=a—y+kgl(’ul
d
t=a—+g

,

1

k,l au%,l

(Uk H+1y

We assign the weights [t| =0, |y| = 1, || =2, and |u| = 3. Hence, |u),| = 3 — 2k and |uj ;| =3 — 2k — 1.

0

0

0

o +u kz+13 T

The symmetries of £ are solutions of the equation

le(y)

= Dj ()

~ D¢ Dy ()

- UyDg(‘P) + Uz Dz Dy(¢p)

)
k.l

o
1
“k+1,z—3ug z + Uk+1,0 5.1

— Ugy

The space sym(&) of solutions of Eq. (7) is spanned by the functions

P1 =22 — Yug,

6o(T)

6:,(T)

where T is a function of ¢t and the prime denotes derivatives with respect to t.
these symmetries are presented in Table 4. The corresponding vector fields have the weights |E,, | = —1,

2 = Ju — 2zuy

= Tus + T'(zug + yuy

= Tuy + T (yus — z) —

1
—mt 2’
2

- yuy,

1
—u)+ ET”(y2um —2xy) —

62(T)

= Tu,

- T’ys

knif.0 1,0 0,1 0
+ Dz Dy (Uu + UgoUzp — “10“10) Sul. ) )
&yl

Dy((p) + u:cyDz(w)'

1
_Tm 3,
6

95(T) =T

|Ey,| =0, and |Eg,| = —4, i =0,-1,-2,-3.
Table 4
o1 | w2 | 6o(T) 6.(T) 02(T) 83(T)
©1 0 | o1 0 —26,(T) | 203(T) 0
©2 0 0 —-0.(T) | —26:(T) | —363(T)
8o(T') o([T,T)) | 6:([T,T)) | 62([T, T)) | 6:([T, T))
01(T) 82([T, T)) | 65([T,T1) 0
62(T) 0 0
03(T) 0

The Pavlov equation: commutators of local symmetries.
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4.1. The Lax pair and hierarchies. The Lax pair for the three-dimensional Pavlov equation is
g = (A2 — Auy ~ uy)qq, 9y = (A — uz)¢z. Expanding q in integer powers of A, we obtain the covering
Qi = Gi-2,2 — UzQi—1,z — UyQi,z» Tiy = Gie 1,0 — Ugli,z, fOr all i € Z.

The positive covering corresponding to this system is

do,t + Uygo,z =0, do,y + uzQo,z = 0,
qi,t + UyQi,e = —UzG0,z, 91,y + Y241,z = qo,z,

Qi + Uylie = Gi-2,2 ~ UzGi—1,z, Qiy + Uiz = Qim1,2, 122,

with the additional nonlocal variables qgj) defined by qz@) = ¢; and qqu = qz(fz) . We have |q§j )| = —i—2j.
This covering is not Abelian.
The negative covering is given by

2
T,y = Ut + UglUy, T1,z = Uy + U,

Tiy = Ti—1,t + UyTi—1,z, Tig = Ti—1y t UgTi-1,z, @22,
with the additional nonlocal variables rz(j ) defined by ngo) =r; and r§j+1) = 7"5,72. We have Irgj )I =i+ 3.

4.2. Nonlocal symmetries in the positive covering.

4.2.1. Lifts of local symmetries. All the local symmetries can be lifted to 7+. In more detail, we
have the following results. The lift of 1 = yu, — 2z is ®; = (¢4, ol ..., ¢t,...), where ¢! = Yaiz + (i +
1)gi+1. The symmetry o = 22u; + yuy — 3u is lifted by ®3 = (2,99, ..., vk, . ..), where ¢§ = —190¢
and ¢§ = —1Gi,0 +YGi-1,0 +1gi, § > 1. The lift of 8(T) = Tug — T’y is O2(T) = (02, Tq0,05- - -y TGiey - - - )-
The symmetry

1
01(T) = Tuy + T (yuy — z) - 2"y
admits the lift ©1(T) = (61,69,61,...,6%,...), where 69 = —6,(T)go , and 8} = —02(T) iz +Tqi—1,2,% > 1.
The lift of . .
00(T) = Tus + T'(zus + yuy —u) + 7" (Eyzuz - xy) - ET”’y?’

is ©o(T) = (60,68,6§,62,...,6%,...), where 63 = —01(T)qo,2; 05 = —01(T)q1,5 — 02(T)go,z, and 65 =
—01(T)qix — 02(T)qi—1,6 + Tqi—2,, 3 > 2. Finally, for 83(T) = T, we have ©3(T") = (65,0...,0,...).

4.2.2. Nonlocal symmetries. Three families of nonlocal symmetries exist for the Pavlov equation
in 7%, The first consists of the invisible symmetries

k k.k+1 | k,k+2 k,k+1i —
(I)inv(y):(or“’oasoinv 3@inv 3+ Pinv z’---)a k—'la2a---’
k times

kb1 __

where >0 = R;_1(Q) for every i > 1. Here, Ry(Q) = Q(qo) is an arbitrary function of go, and for n > 1,

we set

1
Ra(Q) = -V (Ra1(@)),
where Y is the vector field
o0 ) 8
Y= ;(Z + l)qi-'_léa.
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We now explicitly define the nonlocal symmetry ¥_; = (¢1,49,...,%%,...) by setting

Yo = by, gy = (i 2 + BT
4o,z q0,x
The elements of the second nonlocal family are then ¥_j = [®;,¥_;], kK > 2. We have |¥_;| = —k — 1.
Finally, we define Z;(Q) = [¥_;, ®2(Q)], I > 1.
The distribution of symmetries over weights is |¥;| = —l —1,1 > 1, |®1] = —1, |P2]| = 0, |Ox(T)| =

k—2,k=0,1,23,|5;(Q)|=—j+1,j>1,and [®™(Q)| =11 > 1.

4.2.3. Lie algebra structure. We consider the spaces W spanned by @1, ®;, and ¥;, i < —1, Vt]
spanned by ©,(T), i = 0,1,2,3, and V]go| spanned by & (Q) and =;(Q), 4,5 > 1. We then have the
following result.

Theorem 3. There exist bases w; in W, i <0, v;(T) in V[t], i = 0,—1,-2,-3, and v;(Q) in V{go),
i € Z, such that their commutators satisfy the relations presented in Table 5. In other words, sym_. (£) is
isomorphic to 2y X (£[ge] ® £; [t]) with the natural action of the Witt algebra 20y on L[go] ® £y [t]-

Table 5
W v;(T) v;(Q)
o 3virg(T), —3<i+j<0 =

W; (j — ’L)Wi+j + . IVits (Q)

0, otherwise

j— i i+3 T’T I -3 S ] j S 0

0, otherwise

vi(Q) vi+;((Q, Q))

The Pavlov equation: commutators in sym_+ ().

4.3. Nonlocal symmetries in the negative covering.

4.3.1. Lifts of local symmetries. Similarly to the case of 77, all the local symmetries are lifted to
the covering 7~. Namely, the symmetry @1 = yu, — 2z has the lift ®; = (¢1,01,0%,...,¢%,...), where
o1 = yr1z —3u and @ = yri; — (i + 2)7-1, 1 > 2. The symmetry @2 = 2zug + yuy — 3u has the lift
@y = (2,05, 03, ..., ¥h,...), where @b = 2zr; 5 + yriy — (1 +3)ry, i > 1.

To describe the lift ©3(T) = (63,63,60%,...,6%,...) of 03(T) = T, we consider the operator

F] o o 0 > . 9

and set 0 = yT" and 64 =i V(g5 1), i > 2.
To describe the lifts of

0o(T) = Tug — Ty, 6u(T) = Tuy + T (yuy — 7) — %T” 2
00(T) = Tug + T’ (zug + yuy — u) + T”(%yzuz - :ry) - %T’”y33,
we need the nonlocal symmetry ¥ (see Eq. (9) below). Namely, we set
0:(T) = 5[0, 05(T),  O1(T) = —3[¥0,62(T)},  Oo(T) = ~[¥o, Ox(T)].
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4.3.2. Nonlocal symmetries. The invisible symmetries in 7~ have the form

k,k k,k+i
®1knv(T) = (0, e 7Oa ‘Pinv+1a' . 'awinv_H" . ')a

k times
where goﬁ;"f"'i = R;_1(T') for every i > 1 and the sequence of functions R,, n >0 is defined as
1
Ro(T) =T, Rni1(T) = n—+—1y (Rn(T)),
where the operator ) is defined by Eq. (8).
We now introduce the nonlocal symmetries
‘I’0=(¢0,¢5,---,¢8,---)a ‘111:(1p1’¢%1-"’¢i7"'), (9)

by setting 19 = 47 — 3uu, — 2zuy — yug, Y1 = Srp — dugry — yrip — Buuy — 2zu + yusug, and P§ =
(8 + )71 — ur ; — 2275y — Yrig, Y = (4 + 5)rige — Yrig1,e — 3uriy — 21 s — (411 — yug)ri, for ¢ > 1.
Using the symmetries ¥y and ¥; and induction, we define two new families of nonlocal symmetries by
Uy, = [‘Ilo, Uy_i], k> 2, and Qz(T) = [\Ill,gl(T)].
The weights of the obtained symmetries are |®;| = —1, |®3] = 0, Ukl =k+1, k>0, |0 =1,
1>1, |®"™(T) =—-1—38,l>1, and |9:(T)| = —i,i=0,1,2,3.

4.3.3. Lie algebra structure. We consider the subspaces W spanned by @1, ®3, and ¥, ¢ > 0, and
V[t] spanned by @4, (T), Q4(T), 1,5 > 1, and ©x(T), k > 0, in sym,._(£).

Theorem 4. There exist basesw; in W, > —1, and v;(T) in V[t], j € Z, that satisfy the commutator
relations in Table 6. In other words, the Lie algebra sym, () is isomorphic to 201, x £[t] with the natural
action of 20%; on £]t].

Table 6
W; v;(T)
w; (G = Dwirs | §virs(T)
vi(T) vir; ([T, 7))
The Pavlov equation: commutators

in sym__(£).

4.4. Recursion operators. We have the following result (see [12]).
Proposition 2. Equation (6) admits the recursion operator for symmetries defined by the system
Di(4) = ~uyDs () + uzy + Dy(p),  Dy(¥) = —ue Do) + tgwth + Da(p). (10)
The inverse operator is defined by the system
Di(p) = us Do) + Dy(¥) = toath,  Dy(p) = Do) + uy Dy (1) — gyt (11)

The action of the recursion operators on shadows is shown schematically in Fig. 2, where & and w;
are the respective shadows of Z,;(7T") and Q;(T).
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R_ R_ R_ R_ R_ R_ R_ R_
L=t T = .
';:1/)—27{:'!’ 1<—‘P1 R+‘P2R '/’o““/h R+¢2 Ty

R_ R_ R_ 7?._ R_ R_ R_ R_ R_ R_
— — ———>- — — —

il S Sl Sl el Sl Sl s I O el
Ry + + +

Fig. 2. The Pavlov equation: the action of recursion operators (10) and (11).

5. The universal hierarchy equation

The UHE was discussed in [15}, [16] and is
Uyy = Usllagy — UyUiz. (12)
We assign the weights [z| =0, |y| =1, |t| =0, and |u| = —1 to the variables z, y, £, and u.
As in Sec. 4, we consider the internal coordinates
H Kk 1=>0,

o _ 1 _
Upt =Ug ... .zt...t Upt =Uyg...xzt...
S N~ S N~

k times ! times k times 1 times

on £. Consequently, [u ;| = —1 and |u} ;| = —2. The total derivatives in the chosen coordinates are
7] 0 0
D = - + 'u,o —_— J,— 'u,]' [E—
z 8.7:' kz’l( k+1,1 aug’l k+1,1 aui’l )
0 0 2]
D, =— up ) =—o— + DEDL(ud uly — udoudy) =
V= 3y +;( kg, + D3 Di(ug 1o — Ugo ll)Bu,lc,l ;

0
+Z( Uk 4150 0 tu kl+1a T >

Local symmetries of £ are solutions of the equation f¢() = D2() — w; Dy Dy(p) + uyDeDi() —
gy Di(¢) +uazt Dy(p) = 0. The space sym(€) is spanned by the functions 6p(X) = Xuy — X'y, 61(X) = X,
wo(T) = Tus + T'yuy, ¢1(T) = Tuy, and v = yuy + u, where X is a function of x, T is a function of ¢, and
the prime denotes the corresponding derivatives. The commutators are presented in Table 7. Weights of

the evolutionary vector fields are |Ey| = [Egyx)| = |Eyo(r)| =0, |Eo,(x)| =1, and |Ey, (| = —1.
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Table 7
6o(X) 61(X) @o(T) o1(T)
v 0 —6:(X) 0 01 (T)
6o(X) 8o(IX, X]) | 6:([X. X)) 0 0
61(X) 0 0 0
0o(T) vo([T,T)) | @r([T,T))
¢1(T) 0

The UHE: commutators of local symmetries.




5.1. The Lax pair and hierarchies. The UHE admits the Lax representation a = A2 Dy — Uy )z,
¢y = A 'uyg,. Expanding in powers of A leads to the system @i = UtQit1,0 — Uylit2,z, Qiy = UyQitlz-
The corresponding positive covering has the form

U 1

q,y = E, d1,z = E;’
Uz Ti—1,y .

Qiyy = —qi-1,y — Gi—1, Qi = —=, 1>1,
Uy Uy

with the additional variables satisfying the relations qz(o) = ¢; and q(j ) _ qz(’]t) We have |q§j )| =i+ 1.

i
The equations defining the negative covering are

Tly = UgUy, T1,t = Ugly — Uy,

Tiy = UyTi 1z, Tit = Ulie1,p — Timl,y, &> 1,

with ) defined by pUtD = rz(fx) The weights are |r| = —i — 1.
5.2. Nonlocal symmetries in the positive covering.

5.2.1. Lifts of local symmetries. The local symmetries of the UHE are lifted as follows. The
symmetry v = yuy +u is lifted to T = (v,0',0%,...,0%,...), where v’ = —(i + 1)g; + ygiy. The lift
B0(X) = (00,65,63,...,85,...) of §o(X) = Xuy — X'u is defined by 8} = (X/uy)gi_1,,.

We now introduce the operator

d 0 | — 3
V=—y—+2q—+ E k+2 —
yat Q1 By k=1( k1 Dar
and define R;(T') by induction as
1 .
Ry(T) = -T"y, R,(T) = Zy(Ri_l(T)), i>2. (13)

The litt of o(T) = Tus + T'yuy is then &o(T) = (o, 0§, 9Fs- - - @, .. ), where 9§ = Tqi; + T'ygi, +
Ri1(T), and the symmetry ¢1(T') = Tuy is lifted by ®1(T) = (1,9}, 9%, ¢4, ...) with i = Tg;, —
Ry(T). Finally, the lift of 8,(X) is ©,(X) = (8,0,...,0,...).

5.2.2. Nonlocal symmetries. There exists a family of invisible symmetries

Q‘ILDV(T) = (07""Oa(pilnv""’goiknvv"')v

i times

where o, =T and ¢k = R;_1(T), i > 1, R;_1(T) is given by Eq. (13).

The UHE also admits another two families of nonlocal symmetries in 7+ defined as follows. We set
Yo = (o, 95,98, .-, %h,...), where %o = 2q1uy — yuy and ¥ = —(i + 2)gi41 — Ygie + 2015y, We
also introduce Wy = (1, 91,9%,...,%},...) with ¢1 = —3qauy + 2q194; — yuyqr and ¥i = (i + 3)gipe +
Yoi+1,t + 20150 — (3q2 + yq1,¢)¢5,y. We then set Wy = [T, Tg_q], k > 2, and 5(T) = (¥, 2:(T)], 1 > 1.
The distribution of the constructed symmetries over weights is given by |Y| = |6¢(X ) = |®o(T)| = 0,
©1(X)| =1, |21(T)| = -1, |[Tp| =k +1, k > 0, |®™(T)| = —I — 1, and E(T)|=1,1>1.
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5.2.3. Lie algebra structure. We consider the following subspaces in sym_,(€): W spanned by T
and U;, ¢ > 0; V[z] spanned by ©4(X) and ©;(X); Vt] spanned by ®o(T), ®1(T), ®%,,(T), and E,(T),
1,7 > 1. We then have the following theorem.

Theorem 5. There exist bases w;, i > 0, in W, vo(X), v1(X), in Viz], and vi(T), i € Z, in V[t], such
that their commutators satisfy the relations in Table 8. Hence, sym,, (£) is isomorphic to 20§ x (£3 [z]®L[t])
with the natural action of 26 on £J [z] and £[t].

Table 8
Wi vi(X) v;(T)
L jvirs(X), 0<i+j<1, =
Wi (7 —)Wiss e _ Jvip;(T)
0, otherwise
viri (X, X)), 0<i+j5<1, -
vi(X) (| 1) J ) 0
0, otherwise
vi(T) viri (T, 7))
The UHE: commutators in sym_+(&).
5.3. Nonlocal symmetries in the negative covering.
5.3.1. Lifts of local symmetries. The symmetry v = yu, +u is lifted to T = (v,v!,v%,...,v%,...),

where v* = (i + 1)r; + yuyri—1,, and ro denotes u. The lift of 6p(X) = Xu, — X'u is (X)) =
(60(X),08,63,...,65,...) with 6§ = Xr;, — Riy1(X) and R4y is given by Eq. (13). For ¢o(T) =
Tus + T'yuy, we have ®o(T) = (po(T), 95, P8, - --+@Phs...), where @y = Tris + T'yuyri—1,.. The sym-
metry o1 (T) = Tuy is lifted to @1(T) = (¢1(T), 9}, 9%,..., 4%, ...), where ¢} = T'r;y. Finally, for 6;(X),
we have ©1(X) = (01(X), R1(X), ..., Ri(X),...), where R; is again given by (13).

5.3.2. Nonlocal symmetries. In the 7~ covering of the UHE, there exists a family of invisible
symmetries of the form

q)iknv(X) = (Oa"-aoa‘Pilnv:---aQO:.nva"')’

k times
where ¢, = X and ¢}, = R;—1(X) (see Eq. (13) for the definition of R;).
We now consider two nonlocal symmetries ¥; = (¢;,%5,%%,...,%%,...), j = —1,~2, defined by

Yoy = 29 —Ultg, Y' | = (i4+2)rip1 —uri p and Yo = 3r2—2r1ug — urt o +uul, ¥i g = (i+3)ripe—urip1,e+
(uuy — 2r1)riz. We now introduce two families of nonlocal symmetries by setting ¥_ = (T_1, T _gy1],
k < —3, and (X) = [, ®5(X)], | < —1.

The 7~ -nonlocal symmetries are distributed along weights as |Y| = |©o(X)| = |®o(T)| =0, |21(T)| =
—1,10:(X)| =1, |¥i| = —k, k < -1, |®"(X)| =i+1,%>1, and |Q;(X)] =74, < —1.

5.3.3. Lie algebra structure. We consider the following subspaces in sym_ (£): W spanned by T
and Uy, k < —1; V[z] spanned by ;(X), | > 1, ©p(X), ©1(X), and ®F(X), k > 1; and V[t] spanned by
®o(T), ®1(T). We then have the following result.

Theorem 6. There exist bases w;, i <0, in W, vi(X), i € Z, in V[z], vi(T), ¢ = 0,1, in V[t] such
that their commutators satisfy the relations in Table 9. Hence, sym_ () is isomorphic to 20y x (£5 [t|®£[z])
with the natural action of %y on £5 [t] & £[z].
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R_ R_ R_ R_ R_ R_ R_ R_
'——>¢+——> +—>¢6}.:>Ui—>¢: ——>1p:2-72—>,¢':3—->_”
+ +

Ry 2 Ry 1Ry Ry 1Ry Ry
R_ R_ R_ R_ R_ R_ R_ R_ R_ R_
et b —> L ——> 4 — > + + -~ _
f— — - = —=( [ I w Wy ——
Ry & Ry o1 Ry Yo Ry ©1 Ry Ry 1 Ry 0 TRy U1 TR, Y2 R,

Fig. 3. The UHE: action of recursion operators (14) and (15).

Table 9
W v;(X) v;(T))

Wi U —DWirs | Vi (X) +(7) ,

0, otherwise
vi(X) vi; (X, X)) 0

viri([I,T]) -1<i+5<0,

vi(T) +(l 1) . J

0, otherwise

The UHE: commutators in sym, — (£).

5.4. Recursion operators. The following proposition describes recursion operators for the symme-
tries of the UHE (see [17]).

Proposition 3. Equation (12) admits the recursion operator 1 = R4 () for symmetries defined by

the system
Da(¥) = uy " (—Dy() + tiayth),
(14)
Dy() = Di(p) — “;1("4 Dy(p) + (uy ez — ug umy)¢)-
The inverse operator ¢ = R_ () is defined by the system
D) = Dy(y) ~ Ut Da(¥) + uizth, Dy(p) = —uy Dy(¢) + Ugy . (15)

The action of the recursion operators on local symmetries and shadows is shown schematically in Fig. 3.
6. The modified Veronese web equation

The mVWE was studied in [18] and is related to the Veronese web equation, [19], [20] by a Bécklund
transformation (see below). The mVWE has the form

Uty = Uty — Uylity. (16)

We assign zero weights to all the considered variables. Internal coordinates are chosen similarly to the
preceding cases, i.e.,

t y
U =Ury...T, Up 1 =Yg . . .zt.. .t U1 =UT...2Y...Y,
N —~ ! uv k.l g._/y Y
k times k times I times k times j tieg
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where k£ > 0 and [ > 0. The total derivatives are then

8 3 , 0 . 8
D, = % + ;Uk+la_uk + ;(uk“’lau—z‘, +Uk+1’lau—1;c,l),

d a 0 k-1 o
Dy = a_y + ;uz,lgu—k + ;(U%’Hla_ulg; + DD Hubyul) — u(ynulj‘il)au—z’l )

) 8 . ) 9
D, = Fri Zr:ufc,_\a—uk + ;(DmDy (upyudy — U%ﬂ’h)ﬁz’l + "ﬁ,z+1% -

Symmetries are defined by the equation
Dy Dy() — ut Dy Dy() + iy D Do(p) — uay Di(p) + stz Dy(p) = 0. (17)

The space of solutions is generated by the functions ¢(T) = Tut, v(Y) = Yuy, 6o(X) = Xug, — X'u, and
61(X) = X, where X = X(z), Y =Y (y), and T = T(t) are arbitrary functions of their arguments. The
commutators of the symmetries are presented in Table 10.

Table 10
¢(T) 60(X) 01(X) v(Y)
e(T) | (T, T)) 0 0 0
8o (X) 6o([X, X)) | 6:([X, X]) 0
01(X) 0 0
u(Y) v([Y,Y])

The mVWE: commutators of local symmetries.

6.1. The Lax pair and hierarchies. The mVWE admits the Lax pair

g =M+ e, gy =2 luygs (18)

Expanding in powers of A, we obtain g;_1+ + g;,+ = ©:¢s, and gi—1,y = Uyg; . The positive covering then
becomes

Ut 1
q1t = —, di,z = >
Uy Uy
_ Gi-1y

(7 .
Giz , Qi = —Gi—1y — -1, ¢>1,
Uy Uy

(0

with the additional variables defined as usual: g;

The defining equations for the negative covering are

=g; and q§j+1) = q%) with |q§j)| =0.

Tt = Ug(ug — 1), Tly = Uglly,

Tit = UWgTi—1z — Ti—1,6 Tiy = UyTi-1,z, %> 1.

The auxiliary variables are rz(j ), defined by 7'50) =r; and rgj ) 1'1(2 Similarly to the positive case, their

weights are trivial.
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6.2. Nonlocal symmetries in the positive covering.

6.2.1. Lifts of local symmetries. All the local symmetries can be lifted to the 71 covering. Namely,
the lift of ¢1(T') = T is ®(T) = (p(T), ¢, ..., ¢% ... ), where ¢ = Tq;;. The lift of fo(X) = Xuy — X'u

is given by ©9(X) = (60(X),65,-..,6},...), where 8§ = Xg; . To lift the symmetry v(Y) = Yu,, we

consider the operator
(e o]

d 0
Y= ‘Ila_y +I§‘1k+15q—k
and recursively set
1
Ri(Y)=Y'q1s, Ru(Y)= SV (Rn-1)- (19)

Then T(Y) = (v(Y),v',...,0%,...), where v} = Yg;y — Ry(Y). Finally, we have ©; = (6,(X),0,...,0,...)
for the lift of 6, (X) = X.

6.2.2. Nonlocal symmetries. There exist three families of “purely nonlocal” symmetries in 7+.
The first consists of the invisible symmetries of the form

‘I){cnv(Y) = (Oa---,OaQOilnv"-'a(piinv,"')v

k times

where ol =Y and ¥, = R;_1(Y), i > 1, and Ry(Y) is given by (19).

The second family is constructed as follows. The symmetries Uy and U; are defined by ¥y =
(8,9, ¥,-..), where ¥ = qruy, + v and ¢§ = —(i + Dgip1 — ig; + N1y, ¢ > 0, and ¥y =
(Y, 91,. ., 91, ...), where ¢ = (—2¢2 — q1 + q1q1,4)uy and ¢ = (i 4+ 2)gire + (6 + 1)gis1 — Q@ig1y +
(—2g2 — g1 + ©141,4)8i,y, ¢ > 0. We also set Uy = [¥g, Ug_1] + kTy_y, k > 1, by induction.

The third family consists of the symmetries Zx(Y) = [Ty, @1 (V)] — (E — D)IT(Y), k=0,1,....

mv
6.2.3. Lie algebra structure. We consider the following subspaces in sym_4(£): Vx| spanned by
©o(X) and ©1(X); V[t] spanned by ®(T); V[y] spanned by Ex(Y), T(Y), and & (Y); and W spanned by
Uy, We have the following result.

Theorem 7. There exist bases w;, i > 1, in W, vi(X), i =0,1, in V[z|, vi(Y), i € Z, in V[y], and
v(T) in V[t] such that their commutators satisfy the relations in Table 11. In other words, sym_.; (£) is
isomorphic to 207 x (L]y] @ £F[z]) ® [t] with the natural action of the Witt algebra 137 on £[y] @ £ [z].
Here, %6" denotes the subalgebra in QITg' generated by e; —eg, 1 > 1.

Table 11
Wj vo(X) v1(X) v;(Y) v(T)
w; U wt 0 (@) | i@ -v@) |0
iw; — jw;

vo(X) vo([X, X)) | vi([X, X)) 0 0
v1(X) 0 0 0
vi(Y) viy; ([V, 7))

v(T) v([T,T))

The mVWE: commutators in sym_, (£).
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Remark 1. The Lie algebra %{," is an example of a two-point Krichever-Novikov type algebra [21].
In the basis €; = e; —e;_1 = 2°(z—1) 8/82, i > 1, it has an almost-graded structure [€;,&;] = (§ —%)(€;1; —
€iyj—1)-

6.3. Nonlocal symmetries in the negative covering.

6.3.1. Lifts of local symmetries. The symmetry o(T) = T, is lifted to ®(T) = (¢(T), ¢, ..., ¢%
...), where ¢! = T'r; ;. To define the lift of 6p(X) = Xu; — X'u, we consider the operator

y—u£+2ri+i(k+2)r o
oz Y ou P LanlF ™

and define the quantities R,(X) by induction, setting
1
Ri(X)=X'u,  Ru(X) = =¥(Ra-1). (20)
Then O¢(X) = (60(X),85,--.,65,...), where 6% = Xr; . — Ri11(X) and Ry, is given by (20). For v(Y) =
Yu,, we have T(Y) = (v,v1,...,v%...) with v* = Yr; ;. The symmetry 6;(X) = X is lifted to ©:1(X) =
(6,,61,...,6%,...), where 6t = R;(X).

6.3.2. Nonlocal symmetries. Similarly to the positive case, three families of nonlocal symmetries
arise in 77 (&). The first consists of the invisible symmetries

k(X)) = (0,...,0, P00+ - Phayr -+ )

k times

where o} = X and ¢, = Ri_1(X), ¢ > 2. In addition, two nonlocal symmetries,

U_y =W 1,9ty ), U_o= (o, p ..., 00,...),

are constructed explicitly. Namely, we set 9¥_1 = 2r; — vty +u, ¥t ; = (i + 2)rip1 + (¢ + 1)ry — ur . and
P_g = 3rg — 211Uy — ury g +uuZ —u, Py = (i+ 3)rio — (6 + 1)1 — uriy1,0 + (uuz — 2r1)7ri 5. The second
family is then defined by ¥_j,_1 = [¥_1,V_4] — k¥ _ + (=1)*+1(k — 3)!1W_1, k > 1, and the third family
is Q1 (X) = [Ty, 84(X)] + (1)1 - 2)101(X), L 2 0.

6.3.3. Lie algebra structure. Let W spanned by ¥, Vx| spanned by ©;(X), ©o(X), ©1(X), and
®: (X)), VIt] spanned by ®(T'), and V[y] spanned by T(Y) be subspaces in sym, .- (£).

Theorem 8. There exist bases w;, i < —1, in W, v;(X), i € Z, in V[z], v(T) in V[t], and v(Y)
in V]y] such that their commutators satisfy the relations in Table 12. Hence, sym, _(€) is isomorphic to
%5 X L[x] ® Vly] ® Vt] with the natural action of the Witt algebra 20 on £[z]. Here, %E denotes the
subalgebra in 90, generated by the elements e; — ep, 1 < —1.

Table 12
W v;(X) v(Y) v(T)
w; (G — ) Wirs +iws — W5 | 5(vigs (X) — v3(X)) 0 0
vi(X) vit; (X, X]) 0 0
v(Y) v([Y,Y]) 0
v(T) v([T,T})

The mVWE: commutators in sym,__ ().
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Remark 2. The Lie algebra %5 is obviously isomorphic to %g. The isomorphism e_; — ey —
—(ex —ep), k > 1, is given by the change of variable z — z—1.

6.4. Recursion operators. To construct a recursion operator for Eq. (16), we use the techniques
in [22] (also cf. [23]-[26]). We find a shadow for Eq. (16) in covering (18). It has the form s = H (@g; 1,
where H is an arbitrary function in ¢. Because system (18) is invariant under the transformation g H(q),
we set s = g1 without loss of generality. Differentiating (18) with respect to z and substituting g, = s,
we obtain another covering

st =(A+ 1)_1(uts,,. — Uz 8), Sy = /\_l(uysac — UgyS) (21)

for Eq. (16). We note that s is a solution of linearization (17) of Eq. (16). We now set

o0

s= ) A" (22)

n=—oo

Because (17) is independent of ), each s,, is a solution of (17). Substituting (22) in (21) yields Sp~1,t+Snt =
UtSn,s — UteSn, Sn—1,y = Uy, aNd Sp gz — UzySp. Setting s, = ¢ and s, = 1, we obtain the following
proposition.

Proposition 4. The system
Di(y) = —Dy(y) + UJI(Ut Dy(p) + (wsuny — uyusz)¥),

Du(3) = uy ' (Dy(w) + Uy )

defines a recursion operator 1 = R..(p) for symmetries of Eq. (16). The inverse operator ¢ = R_ (1) is
given by the system

Di(p) = —Dy(9) + Ut Dy () — ugeth, Dy(‘P) = UyDz(w) — Ugyth. (24)

The action of the recursion operators R4+ and R_ on the shadows of nonlocal symmetries is more

(23)

complicated than in Secs. 3-5. It is described by the following proposition.

Proposition 5. The action of (23) and (24) on the shadows ¥, €F, and W] has the forms

i+1
Re(h) =Y ayyt, @1 £0, >0, (25)
j=1

i+1
Re(&H) =" Big;, Biit1 #0, >0, (26)

Jj=1

k+1

Ro(¥2) =Y vt Tokt1 0, k21, (27)
j=1
i+1

R_(wi“) = ZJZJUJJ_ +Ei00_, 6@'4.1 7é 0, i>0, (28)

=0

where aj, Bij, Yx;, and g; are constants. To find the action of R_ on 1/);" and f;" , we must apply R_ to
both sides of (25) and (26) and then solve the obtained triangular systems. The action of Ry on 1_; and
w; can be found in the same way.

These results are shown schematically in Fig. 4, where the wavy arrows indicate actions (25)—(28).
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R_ R_ R_ R_ R_ R R_
~—— ~—— A~ —e A e e e

: ST U ST Y S Y S YT, S
Ry Ry Ry Ry Ry Ry Ry

R_ R_ R_ R_ R_ R_ R_ R_ R_

—~—— —~—— — o e
ST <<t v 0¥ of oF Wy <Y wy =~
Ry Ry Ry R4 Ry Ry Ry Ry Ry

Fig. 4. The mVWE: action of recursion operators (23) and (24).

6.5. Biacklund autotransformation. We again consider the first and the second equations in the
positive covering of Eq. (16) (see Sec. 6.1) and replace ¢; with v in them:

1
w=t w=—. (29)
Uy Uy
This gives the expressions for u; and u,
Ut 1
=—, =—. 30
u= s U= o (30)

Cross-differentiation of this system with respect to y and ¢t gives vy, = v4Ugy — Uzvzy. This equation differs
from Eq. (16) just by the change of variables

THY,  y— L. (31)
We thus obtain the following proposition.

Proposition 6. The superposition of (29) and (31) gives a Bicklund autotransformation for Eq. (16).
The inverse transformation is given by the superposition of (31) and (30).

7. Conclusions

The equations discussed above have many common features:

1. They all admit differential coverings with a nonremovable parameter.
2. They are all linearly degenerate.

3. Each of these equations can be obtained as a symmetry reduction of the five-dimensional equation
Uzs + Uyy — Uts + Usllgs — Usthg, = 0 (see [27]).

4. As shown in [28], they are pairwise related by Bécklund transformations.

This similarity is manifested in a striking resemblance of their symmetry algebra structures (see Table 13).
Perhaps, the mVWE equation is somewhat unique: its symmetries are not graded in the same sense as the
symmetries of the other three equations.
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Table 13
7'+ T
rdDym equation Wy x (L5 [t] @ £[y]) W x L[t] & Vly]
3D Pavlov equation| 205 x (£{go] ® £7 [t]) Wt x £[t]

UHE

Wy x (£3[s] @ L[t])

W, x (£5[¢] @ £z])

mVWE

W3 = (Lly] & £ [z]) @ D[¢]

W, x £z] @ V]y) ® V]

Lie algebras of nonlocal symmetries.



We think that it would be extremely interesting to learn which properties of these equations, in addition

to their linear degeneracy, are responsible for such symmetry structures, and we plan to shed light on this

problem in future research. We also intend to clarify the invariant meaning of the operators ) that play

such an important role in the constructions discussed above.

Acknowledgments. Computations were done using the Jets software [29].
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COVERINGS OVER LAX INTEGRABLE EQUATIONS AND THEIR
NONLOCAL SYMMETRIES

H. Baran,* I. S. Krasil’shchik,t O. I. Morozov,! and P. Vojcdk*

We consider the three-dimensional rdDym equation Uty = UzUey — Uylzy. Using the known Lax represen-
tation with a nonremovable parameter and two hierarchies of nonlocal conservation laws associated with
it, we describe the algebras of nonlocal Symmetries in the corresponding coverings.

Keywords: partial differential equation, three-dimensional rdDym equation, nonlocal symmetry, recursion
operator

DOLI: 10.1134/S0040577916090014

1. Introduction

The three-dimensional rdDym (the rth dispersionless Dym) equation & (see [1]-[3]) is an example
of nonlinear integrable equations in three independent variables. Integrability here means the existence
of a Lax pair with a nonremovable parameter. Such equations have been studied quite intensively (see,
e.g, [4], [5]). In particular, in [6], [7], we recently fully described two-dimensional reductions of such
equations and studied the integrability of the equations obtained as a result of the reductions.

Using the known Lax pair with a nonremovable parameter for the three-dimensional rdDym equation,
we construct two infinite hierarchies of two-component nonlocal conservation laws corresponding to non-
negative and nonpositive powers of the spectral parameter. Two coverings correspond to these hierarchies;
these coverings are Abelian and infinite-dimensional in the sense in [8], [9]. We call them positive and neg-
ative coverings and let &+ and &~ denote them. Our main result is a complete description of the algebras
of nonlocal symmetries in these coverings.

The equation & itself has an infinite-dimensional Lie algebra of local symmetries parameterized by
three arbitrary functions of ¢ and one depending on y and also has an “isolated” scaling symmetry (which
allows assigning a weight to all considered polynomial objects; see Table 1 below). We show that all these
symmetries can be lifted to both the positive and the negative coverings. Nevertheless, in addition to the
lifts of the local symmetries, new purely nonlocal symmetries arise in both cases.

In the covering &, a new series isomorphic to the nonpositive part 20~ of the Witt algebra arises from
the scaling symmetry, while the y-dependent symmetries become a part of the loop algebra £[y], whose

*Mathematical Institute, Silesian University in Opava, Opava, Czech Republic,
e-mail: Hynek.Baran@math.slu.cz, Petr.Vojcak@math.slu.cz.

"Independent University of Moscow, Moscow, Russia, e-mail: josephkra@gmail.com.

IFa,culty of Applied Mathematics, AGH University of Science and Technology, Krakéw, Poland,
e-mail: morozov@agh.edu.pl.

The research of 1. S. Krasil’shchik was supported in part by a Simons-IUM fellowship.
The research of O. I. Morozov was supported by the Polish Ministry of Science and Higher Education.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i
Matematicheskaya Fizika, Vol. 188, No. 3, pp. 361-385, September, 2016.

0040-5779/16/1883-1273 © 2016 Pleiades Publishing, Ltd. 1273



coefficients also depend on y; moreover, 20~ acts naturally on £[y]. No new ¢-dependent symmetry arises
in &+, and the local symmetries form a graded ideal in sym(é~a *). The exact formulation of these results is
contained in Theorem 1.

In the case of &~ (see Theorem 2), the scaling symmetry yields the beginning of the nonnegative part
9+ of the Witt algebra, and the ¢t-dependent symmetries are included in the loop algebra £[t]. The algebra
90+ acts on £[t], and the local y-dependent symmetries form a direct summand in the Lie algebra sym(é~a ).

Finally, we show that the mutually inverse recursion operators found in [10] act in £[y] and £[t] and
also connect the two parts 25~ and 207 of the Witt algebra with each other.

This paper is organized as follows. In Sec. 2, we present basic definitions and facts needed for the
further exposition. In Sec. 3, we discuss the three-dimensional rdDym equation: local symmetries, the Lax
pair, and the coverings. We formulate and prove the main results in Sec. 4. In Sec. 5, we discuss the
recursion operators.

2. Preliminaries

In this section in a simplified coordinate form, we expound the basics of the geometric approach to
differential equations and differential coverings. We follow [9], [8].

2.1. Jets and equations. We consider R” with the coordinates z!,...,z™ and R™ with the coor-
dinates ul,...,u™. The space of k-jets J*(n,m), k = 0,1,...,00, has the coordinates z',...,z" and uZ,
where j = 1,...,m and o is a symmetric multi-index of length |o| < k; we set uly = w’. If u? = f(a',...,2")

is a vector function, then the collection of partial derivatives

ololyi
U%ZW’ j=1,...,m, lo| <k,
is called its k-jet.
We fix a point @ € J¥(n,m). The linear span %y of tangent spaces to the graphs of all k-jets passing
through this point is called the Cartan plane, and the correspondence €: 6 — % is called the Cartan

distribution. If k = oo, then a basis of ¢ consists of the vector fields

called total derivatives. Total derivatives pairwise commute, and this means that the Cartan distribution
on J®(n,m) is formally integrable.
We consider a submanifold in J*(n,m) defined by the relations

Fizt,ul)=- - = F"(z',ul) =0. (1)
This is a differential equation of order k. Its infinite prolongation & C J*°(n,m) is given by
Do(F'y=0, j=1,...,r, |o|2>0,

where D, = D,i, 0---0 D, for ¢ =1i;...4x. Everywhere below, we deal with only infinite prolongations
and identify them with differential equations themselves.

The total derivatives can be restricted to infinite prolongations, and these restrictions span the Cartan
distribution on &. Maximal integral manifolds of the obtained distribution are solutions of the considered
equation.
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2.2. Symmetries. We consider an equation & C J®(n,m). Below, we always assume that the
natural projection & — JO0 (nym) =R*"xR™ is a surjective map onto its image.! Consequently, the algebra
C>=(J%(n,m)) of functions is embedded in the algebra C>(&).

A vector field X: C®(£) — O (€) is said to be vertical if X ’ € (I%n,my) = 0> -, X does not contain
components of the form 8/8z*. A vertical field X is a (higher or generalized) symmetry of & if it preserves
the Cartan distribution, Le., [X,%] C . Symmetries of & form a Lie R-algebra, denoted by sym/(&).

A vector field is a symmetry if and only if it is evolutionary, i.e., has the form

0
E(p =ZD0(§0])__7a (2)
Oul
where the summation is over the internal coordinates on &. Here, ¢ = (..., ©™) is a vector function on

& called the generating section (or characteristic) of the symmetry. It must satisfy the equation

Le(p) =0,

where {¢ is the linearization of & defined as the restriction of the operator

OFJ
b= 5o

to &. Generating functions of symmetries form a Lie algebra with respect to the Jacobi bracket

tow = (nH 30 - D22

The Jacobi bracket can be defined without using local coordinates by setting {p, ¥} =E,(¥) — Ey(p).

2.3. Differential coverings. We consider the space & =R® x & » § < 00, and the natural projection
T & - & We say that T is an s-dimensional (differential) covering over & if & is endowed with vector

fields .53;1 y++ sy Dgn such that

[ﬁzi,ij] =0, T*(ﬁzi) =Dzi, i,j:l,...,n.

Let {w*} be coordinates in R* (they are called nonlocal variables). Then the covering structure is given by
5zi = D,: + X; such that
Dy (XJ) — Dy (X’t) + [Xi,XjJ =0,

where

0
K= 2 X
[s4

are 7-vertical vector fields.
There exists a special class of coverings that are associated with two-component conservation laws of
&. We fix two integers i and J, 1 <4< j < n, and consider a differential form
W=Xidz A AT A A da XA A AGRI A A da™,

!This means that the differential consequences of Eq. (1) do not contain functional relations.
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where dzi means that the corresponding term is omitted. Let the form w be closed with respect to the
horizontal de Rham differential, i.e.,

Dyi(X3) = (=1)"*7 1Dy (X;).

We consider the Euclidean space V with the coordinates w’, where ¢ is a symmetric multi-index whose
entries are any integers from 1 to n except ¢ and j. Therefore, dimV = 1if n = 2 and dim V' = 0o otherwise.
The system of vector fields

=~ ok O .
Dyr = Dys + :%;:1U k:zia;;, k#4,7,

~ ~ 9
Dyi=Dgi+) Dy(X3)5

Dyi = Dgi + (—1)4~ 1ZD

311)"

then defines a covering structure on &, =V x &. Such coverings are said to be Abelian.

2.4. Nonlocal symmetries. We let % denote the distribution on & spanned by the fields l~)x1, ceey
D~ and let X be a field vertical with respect to the composition & — & — R™. Such a field is called a
nonlocal symmetry if it preserves %. These syminetries form a Lie algebra on R denoted by sym. (¢€’). The
restriction X | Coo (&) C=(&) — C®(&) is called a nonlocal T-shadow. A nonlocal symmetry is said to be
invisible if its shadow vanishes.

In local coordinates, any X € sym_ (&) has the form

X = E¢+Z¢“

Swe’

where ¢ = (¢!, ...,¢™) and ¢* are functions on & satisfying the equations

Z£(¢0 =0,
S oXg
Doy =3 =D +Z 8w5

where Ep and ¢ are obtained from the respective expressions (2) and (3) by changing Dy: to .5zi. Nonlocal

shadows are the operators Ep, and invisible symmetries are obtained from general symmetries by setting
¢=0.

In particular, for coverings of the form &, where w is a two-component conservation law, the symmetries
become

where ¢ and 9 satisfy

- 5 S+ T 0% Botw)

6X

Bas () = (—1)”9‘-1(
agk

Ba(#))
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2.5. Bécklund transformations and recursion operators. Let & and & be equations. A
Biéicklund transformation between & and &> is the diagram

&
‘7/ \1’2& H
& &

where 71 and 7, are coverings. If & = &>, then it is called a Bicklund autotransformation. If 71 is finite-
dimensional and y C &) is the graph of a solution, then 72(7; (7)) in the general case is a finite-dimensional
manifold endowed with an integrable n-dimensional distribution whose integral manifolds are solutions of
&s.

We now consider an equation & given by ( 1) and the system

F(z%,ul) =0, lp(zt,ul,qd) =0,

where F = (F!,. .. ,F'"). This system is called the tangent equation to & and is denoted by &, and the
projection t: & — & is called the tangent covering. Sections of this covering that preserve the Cartan
distribution are identified with generating functions of symmetries of &.

Let #Z be a Bicklund transformation between & &1 and T &. It then follows from the above that it
establishes a correspondence between symmetries of the two equations & and &. If & = &5, then this
correspondence is called a recursion operator [11].

3. The equation

The three-dimensional rdDym equation & has the form
Uty = Uglzy — UyUgy. (4)

As the internal coordinates in &, we can choose the functions

i Yy
, T...2t...1 k! ¢ Y-y ’
k times k times { times Etimes § gimes

Hence, ug = u, 41 = uy, ud ; = u,, ub ; = g, ete. The total derivatives become
1 0,1 Yy %0,1
0 0 7] 0
Dx=—+z uk+1—+g uy — +ul =
k+1,1 ] k+1,0 9% )
or £ Oug, Py Ouy, Ouy,

) ) ) P d
Dy = a—y + Ek:uz’la_uk + ;(u%’l-’_lﬁz,l + Dth (umumy - Uyumz)% ’

0 ¢ 0 k -1 9 : %
D, = a + zr:uk’la*uk + ;(Dny (umuzy — uyum)% + uk,H_l'au_z,l

in these coordinates.
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3.1. Local symmetries. Local symmetries of Eq. (4) are solutions of the linearized equation
Le(p) = D;Dy(p) — uz Do Dy () + uyD2(p) — gy D) + sz Dy() = 0. (5)
The space of solutions is spanned by the functions
o = Uz — 2u, vo(B) = Buy,
0o(A) = Aug + A'(zug —u) + %A":ﬁ, 0_1(4) = Auy + A'z, 0_2(A) = A4,

where A = A(t), B = B(y), and the prime denotes the derivative with respect to t. To any solution ¢,
there corresponds the evolutionary vector field

o) 0 0
— kry 9 Epliy_ 9 k
on &.
The Lie algebra structure in the space sym(&’) is presented in Table 1.
Table 1
o vo(B) 6o(A) 0_1(4) 0_2(4)
%o 0 0 0 —0_1(4) —20_3(A)

v(B) | -+ | w(BB' —B B) 0 0 0

Bo(4) | - Oo(AA' — AA") | _1(AA — AA") | 6_5(AA' - AA))
0_1(A4) | --- 0_o(AA' — AA") 0
f_2(4) | -

The Lie algebra structure of sym(&).

3.2. Coverings. Three-dimensional rdDym equation (4) has the linear Lax representation

wy = (Ug — AWy,

(7)
wy = A tuwy,
where X\ # 0 is a nonremovable parameter. Expanding w in a formal series in A,
e .
w = Z wiA°,
I=—00
yields (cf. [2], [12])
Wit = UgWi gz — Wi-1,x,
(8)

Wiy = UyWit1,2-

This system is infinite in both directions, and the nonlocal quantities w; are therefore not defined properly.
To define them appropriately, we consider two reductions of (8): (a) w; = 0 for ¢ < 0 and (b) w; = 0 for
i > 0. Two hierarchies of nonlocal two-component conservation laws thus arise [2], respectively called the
positive and negative hierarchies. Our aim is to describe nonlocal symmetries of the corresponding Abelian
coverings.

We note that the positive hierarchy corresponds to the Taylor expansion of w and the negative hierarchy
corresponds to the Laurent expansion.
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3.2.1. The positive hierarchy. We assume that w; =0 for 4 < 0 and rewrite (8) in the form

Uy
Wiz = —W;1 4 — Wi—1,z,
Uy

w‘i—l,y

Wi,z =
Uy

From this assumption, we then have Wo,; = Wo,z = 0 or wo = G(y), and the defining equations of the
covering are

Uz Ug
Wi ="=G",  wip=Zwi g, —w g,
Uy Uy
4
_ G ’w,;_]_’y
wl,z — T wi,m = I
Uy Uy

where i > 0 and the prime denotes the derivative with respect to Y.

Without loss of generality, we can assume that ¢’ # 0 and change the variable y = G(y). This
transformation preserves our equation (because of the symmetry vo(B)). Letting @i, © > 0, denote the
resulting nonlocal variables, we obtain the covering defined by

Uy 1
= —-— = — g
Nz uy’ 91,z uy ( )
and
U qi—1,
Qit = U—:Qi—l,y —qi—1,z, Qi = ‘zuy L (10)

We note that the quantities ¢; do not form a complete set of nonlocal variables in the covering under
consideration. To have a complete collection, we introduce functions ng] ) such that

0 i+1 j
¥ =q ¢ '= (@),

The total derivatives on the space &+ of the covering are then given by

_ =1\ 8 E& O g
o pr (1) 2 S (1) o
e ® j;o Y\ uy quj) ;J;O Y\ uy 3qz_(1)
N o i+
i=1 =0 q;
=~ 2~ 0 X~ @ = © 0
Dy =D + D3<_x) 5+ Dj(_zqi_l—Dx(qul)) y
Jz:; “\uy /) 9g@) ; J:zo “A\uy 8g

where Dy, D, and D, are the total derivatives on & given above.

3.2.2. The negative hierarchy. In the case of the negative hierarchy, we set w; = 0 for i > 0. It
then follows from (8) that

wo,z =0, W-1,z = UgWp,z — W, Wo2,3 = UgW_1,7 — W_14,
Wo,y = 0, W-1,y = UyWo,g, W2,y = UyW-1,4,
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and consequently

~ ~ 1 .~
wo = F(t), w_i = —zF' + G(1), w_g=—Fu+ EwZF” -G’z + H(1).

Without loss of generality, we can assume that G = H = 0. Introducing the notation r; = w—;_2,

i =1,2,..., we then obtain the defining equations for the negative hierarchy:
2 ! 1 2
Tz = F(us — ul) + F'(u+ zuz) — 5-’3 F7, Ti,z = UgTi—1,2 — Ti—1,8»
(11)
Ty = “y(mFl — Fug), Tiy = UyTi—1,2

for i > 1, where F' = F’. The defining equations can be simplified.

Proposition 1. There exists a gauge transformation of the space &~ that “suppresses” the function
F, i.e., transforms (11) into

2
Ti,e = Uy — Uty Ti,x = UgTi—1,z — Ti—1,¢

(12)
T,y = Ug Uy, Ti,y = UyTi—1,z-

Proof. We define the new nonlocal variable 7 by
r=—Fr — Flzu+ %F”m?’. (13)
Substituting (13) in the first and third equations in system (11), we see that
T,z = ui — Ug, T,y = Uglly.

We now introduce the operator

and by induction set

e = ——=% (k1) (14)

for k > 2. Obviously,

where o(k — 1) denotes the terms that depend only on 71,...,Tk-1-
We now assume that k > 1 and the statement holds for the defining equations on 71, ..., 7x—1. Substi-
tuting (14) in the equations for %, we see that it transforms into

ka,z = F(uxfk_l,z — fk—l,t), ka,y = Fuyfk_l,z

by the induction assumption. =)
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We forget about the “old” variables % and change the notation from 7, to 7. A complete set of
nonlocal variables consists of the quantities r§’ ) defined by

O =r, O ),

The total derivatives on the covering space &~ have the forms

_ co 5 ®© oo F
Dy =D, + ZDf(ui - ut)m + Z Z D} (ugri—1,5 — Ti—l,t)m,
J=0 1 =2 j=0 i

o0 o0 00
~ =~ 0 = 0
Dy =Dy + ZDg(uzuy)m + ZZDg(uyri—l,z)Wa
=0 1 i

i=2 j=0

De=Di+} 3 n™—
i=1 j=0 37'¢

in these coordinates.
3.3. Weights. We assign the weights
2l =1, |ul=2 |y=Jt|=0
to the dependent and independent variables. Then
k] = [uf ] = |uf, | =2 — &,

and any monomial obtains the weight equal to the sum of its factors.
We say that a vector field X is homogeneous if

XN =1X]+17]

for any homogeneous function [, where the integer |X| depends only on X and is the weight of X. All
local symmetries from Sec. 3.1 are homogeneous in this sense, and their weights are presented in Table 2.
Obviously,

X, Y]] = |X|+ Y]

for any homogeneous X and Y.

Table 2

Weights -2 -1 0
(2

0-2(4) | 6.1(4) | 6o(4)

vo(B)

Distribution of local symmetries by weight.

From Eqgs. (9)-(11), we immediately calculate the weights
lesl =—i,  |nl=i+2, i=1,2,. .,
of the nonlocal variables in &+ and &—.
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4. Symmetries

In this section, we describe the nonlocal symmetry Lie algebras sym &t and sym é.

4.1. Symmetries in the positive hierarchy. Any symmetry of &+ is a vector field

Xe =E, +Z(<pz Z: J 30)) (15)

i=1

where Ep is given by (6) with the total derivatives l~). instead of D, and the collection of functions
(I)=<S00:§0a(p1a-'~a(pi"")7 (Piecoo(go+),

satisfies the equations

Zs(p) = DiDy(p) — uzDuDy () + 1y D2(9) — 1y D) + zaDy(0) =0, (16)
Dy(@)a1,e +uyDi(1) = Dal), (17)
Dy(@)q1,e + uyDale01) = 0, (18)

Dy(9)(gie + Gi-1,0) + uy(De(1) + Da(i-1)) = Da()ai-1,y + waDalipinn), (19)
Dy(#)¢i,2 +uyDa(s) = Dy(ic), (20)

i > 1. For any two symmetries ® and ¥, their Jacobi bracket {®,V} is defined by
Xie,91 = [Xa, Xg].

4.1.1. Lifts of local symmetries and hierarchies of nonlocal ones. We begin with the following
statement.

Proposition 2. The local symmetries 1o, 6_2(A), 0_1(A), and 6y(A) can be lifted to é+.
Proof. We let

Bo = (0, gy« s ¥bs- - )

©_2(A) = (8-2(4),6L5(4),...,05(4),...),

O_1(A) = (0_1(A),611(4),...,0-,(4),...),

B0(4) = (B(A), B5(A) .., B (A), ..

denote the desired lifts and set

Ue =ig + 2ie, 2> 1,
625(4) =0, 021 (4) = Agiz, 121,

85(A) =0_1(A)q1,0, 05(A) = 0_1(A)giz — Agi1,2, 1> 1.
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To establish that the functions introduced above are symmetries, we directly verify that they satisfy
Eqgs. (17)~(20). For example, we prove that g is a symmetry.
For Eq. (17), we have?

Dy(xuz - 2’”‘)Q1,:1: + uy-Dz(QI + $q1,:z:) = (zuzy)(h,x + uy ( + -'L'q1,a:a:)

1 1 Ugy
= TUgyQie + UyZ| — | = TUgy— — Tuy—r =
Uy /g Uy

Now Eq. (18) is

Dy(zuz — 2u)qr s + uyDi(q1 + 291,5) — Dp(zuy — 2u) =

= (xuzy )q1,t + uy("‘ -’EQ1,:ct) + Up — PUyy =

Ug Uy
= (TUzy — uy)— + TUy (—) +
Uy Uy T
Uy Ugply — Uply
+ Up — TUpe = (Tugy — uy)—= + Tuy 2 |y, = Q.
Uy u

Equation (19) becomes

Dy(zus — 2u)gi,e + uy Dy (i + 2ix) — Dy((i — 1)gi—1 + 2gi—1,2) =

= (xumy )Qz',z + 'Uy( (i + I)Qi,z + m%,zz) —(i— 1)‘112—1,11 — I 1,2y =

- . 1 0i—1,y Gi—1,y i—1 _

= | LUzy + (7/ - )uy Uy + Uy 7 _(Z - )Q'i—l,y — -'L"Ii—l,zy =
T

qi—1 Gi—1,zyUy — Qi—1,yUg

= 70 Y 4 oy oy Uy WYy
Ty uw Yy uz
y Y

— Z¢i—1,2y = 0.
Finally, for Eq. (20), we have
U . .
Dy(zuy — 2U)u—z¢h—1,y + uy(Di(igi + 2qiz) + Dy((i — 1) i1 + Tqi-1,z)) —
y

— Dy(zu, — 2u)gi 1,y — Uz Dy ((1 — 1)gi—1 + TGi—1,2) =

U, . )
= (@ty — 2u) 2 e 1,y + ([igiz ] + 20100 + +20i102) +
Y

+ (U:t - xuzm)‘]i—l,y - 'Ul:z((Z - 1)Qi—1,y + x‘h—l,my) =

U LU
= (xuzy) u_in—l,y + uy( zu_z%'—l,y + TQ; zt + -'L'Qi—l,mz) +
Y Y

+ ( - wuwz)q'i—l,y - uz( (Z - 1)Qi—1,y + a:Qi—l,zy) =
u.
= -'L'u:z:yu_w%—l,y + ny()z — TUgeQi—1,y — UzpZQi—1,zy =
Y

2Here and hereafter, boxed terms cancel each other.
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Ug Uy
= mumy"J‘Qi—l,y + Uy (u_q'i—l,y) — PUgpGi—1,y — UYzlQi-1,2y =
Y Yy T

Ug Ug Uy
= PUgy——di~1,y -+ Ty ((_> qi—1,y + —gi—1,zy > =
Uy Uy / ¢ Uy

— PUgzQi—1,y| —UrZqizy |—

1 gy, teety ~ Yalay .
= zuzy Qz 1,y T TUy w2 Qi—1,y — TUzaGi-1,y
Yy

and this finishes the proof.
The proofs for the other symmetries are similar. o

We now need a description of invisible symmetries in &+. We say that @ is an invisible symmetry of
depth k if its first k components vanish, i.e.,

& =(0,.. Otpmv,...,go;“", D
h,_/

k times

The defining equations for invisible symmetries are
Da(¢™) =0, Dy(e) =0,
uyDale™) = Dy, uy(Bulel™) + Dulpl)) = waDul™), §>1

Then ¢! = B(y) and any homogeneous symmetry of depth k is completely determined by the function B.
We let T;(B) denote such a symmetry. We have

|Tk(B)| = k-
Proposition 3. For any integer k > 1 and a function B = B(y), the symmetry Y (B) exists.

Proof. We consider the operator

7] o]
%’_qla—y+z (i+1) q“’la,

and define
O =By), @M= z_d”&’(so‘“” ), i>1. (21)

We note that the defining equations for invisible symmetries can be rewritten in the form

o Somv a—B

Bq 1 oy’
a go?inv 6(pmv 6 (piinv a(pmv
0qi—1  Ogi2’ oq1 dy
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We prove the equalities
awlnv 8S0"1V

a‘JJ aq j—1

by induction (we formally set go = ). The case i = 2 is verified by direct computation. We now suppose
that the statement holds for some i > 2 and note that

) )
— | = .
[qu J Jaqj—l

Then
690?-}-"1 1 ( a(pmv ( agamv )) ( mev ( &p“‘" ))
= - -+ 4 — =+ ,%f =
Og; i\’ d¢j—1 Og; I 0g;—1 0q;-1
( asomv ( ) ) a(pmv 0 bl !/ﬁl/y'(goir_x_vl ) B
Og;— o 0gj—2 0g;—1
1 v 1 . a@lnv
= in 4 (v ):— 1nv+ i— 1)ty —
e ( () = § g i+ = gty = 287
which finishes the proof. i
Direct computations now show that the functions
br=quytz, Yoo =202~ g1 M), (22)

are shadows in the positive covering, i.e., they satisfy Eq. (16).
Proposition 4. Shadows (22) can be extended to symmetries of &+.

Proof. We set

\Il—l = (T/)—lﬂ/’iu e 7¢ili' . '>5 ‘II—Z = <¢—21¢12a . "¢i2) ce ')1

where
Y= —(i+ Vg1 +aVq, g, = +2)gi2 + 01giP + 2 — 1 g")gh.
The rest of the proof is similar to the proof of Proposition 2. a
Obviously,

[T_q] = —~1, |T_o| = —2.
We now define two hierarchies of nonlocal symmetries by
U_p = ad*73(W_y), k>3,

T k(B) ={¥_4_1, T1(B)}, k>0,

where
ad_1(<I>) = {CD, \I/_l}.

Obviously,
Vi = [T_x(B)| = ~&,
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and To(B) is an extension of the local symmetry vo(B) to &+. Elements of the algebra sym(£+) are
distributed by weight as shown in Table 3.

Table 3
Weights | --- -1 -2 -1 0 1 k
v, U_p W1 o
©_2(4) | ©6-1(4) | 60(4)
T(B) | | Ta(B) | Tu(B) | To(B) | Tu(B) | - | Yi(B)

Distribution of nonlocal symmetries in &t by weight.

4.1.2. The Lie algebra structure. To compute the commutators, we need asymptotic estimates
for the coefficients of symmetries that constitute a basis of sym((go"').

We begin with the symmetries ¥_j, & > 1, and we are interested in the higher-order terms (with
respect to g;) of the coefficients of 8/0q¢;. Using notation (15), by definition, we have

. . 0
Xg_, =+ (-G +1)gp1 + lhqz(l) +o(i — 1))£ + a9,
. (1) 0
Xg_, =+ (—(z +2)gir2 + Qg3 + o(z)) EJ_ +...,
(3

where o(k) denotes terms containing g; with j < k. We now assume that

0

Xg_, =+ (a};qﬂ_k + b};qlqgi)k_l +o(i+k— 2))%- + ...
Then
Xv_ oy = [X‘I’Ak’X‘I”—l] =+ ((7/ +k+ 1)“2 - (7‘ + 1)a'z+1(.Ii+k+l +
, ; , ; . 5}
+ (G + BB, — (6 + 1)bE M )g1g Dy + 0 + k — 1)) TR
%
Hence,
abiy = (i+k+1)ak — (i +1)af, o = (i + k)bl — (6 + 1)BEH,
and by elementary induction with the base a = —(i + 2), b} = 1, we immediately obtain
at = —(k —2)i(k +1), b = (k—2)! (23)

for all ¢ > 1 (we formally set (—1)! = 1). To comply with this result, we change the basic element ¥o by
Ty — —Vy.
We now estimate the elements T(B). For k& > 0, we use Definition (21) and by simple computations
obtain
@™ = B'g;_1 + B"q1gi_2 + 0(i — 3)

and consequently

inv 8 s a
XTk(B)=¢1 E}Z-l_“.—l_(pﬁv’“"'la_(h_l—”-:

0 d
=B— 4+ (B'gi—. + B"q1qi—— i—k—2))— +....
aqk+ + (B'¢i—k + B "q1qi—k—1 + o(d ))6q¢+

1286



Further,

XT_k(B) = [X"I’—k—l’XTl(B)] =

' ; . a
= [ A (Qh g1 Qi1 + bk+1q1qfi)k +o(i+k— 1))% +.on,
B2 + -+ (B'gi-1 + B"q1gi—2 + o(i — 3))i + - ] =
0q1 dg;
=+ ((G’Z::—ll — @} 41)B'gigk — b)ic+1quS.)k +
+ (“;-21 — @y — b)) B @1Gigk-1 +
i— ; : 0
+( k+11 - bi:+1)B,Qqu_)k_1 +o(i +k— 2))% 4w =

o}
= (k— 1)!(- -+ (B'giyi — Bqﬁ)k +B"q1qirk-1) 30 +uss )

We are now ready to compute the commutators using the obtained estimates.?

Proposition 5. We have the commutation relations
(k—=2)!(1 —2)!
(k+1-2)
(—1— 1)k —2)!

(—-k—-1)
(—k —D)I(=1~
(—k-1-1)

{‘I!—ka \I'-—l} = (k - l)“Il—k—la k,l 20,

{¥_ &, Ti(B)} = l

Tl—k(B)a k> 0,l¢e Z,

{Tx(B), Ti(B)} = !1)’ T (BB —B'B), k,leZ.

Proof. The proof is a neat use of the above deduced estimates. W
We change the initial basis of the algebra sym(é~a *) by

\I/_k s ;‘I/_k, T[(B) [ d 1

k—2)! [YuB)

(=1-1)

and recall a standard construction. Let g be a Lie R-algebra and R, [2] = R[z]/(z™) be the ring of truncated
polynomials. Then the Lie algebra gp,; = Ry, [2] ®g g with the bracket

[a®9,b®h] =ab®[g,h], g,h€g, a,becRyz],

is a graded Lie algebra, where go = --- = g,_; = g and all other components g; are trivial. A similar
construction for polynomials in 2=! is denoted by 9[—n)- We also let [t] denote the Lie algebra of vector
fields A(t)0/0t on R. We then have the following result.

Theorem 1. The Lie algebra sym(é;“L) is isomorphic to the semidirect product of the nonpositive part

1o}
- _ — —k+1
20 _{Zk—z *az‘kENU{O}}

SEverywhere below, we assume that s! = 1 for s < 0.
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of the Witt algebra times the direct sum £[y] ® U[_3[t] of

Lyl = {Ym(B) = 2™ B(y) (% ‘ m € Z, B e C®(R) }

and

Bt)[_3) ={X8(A)=23A()§t s€{0,1,2}, A€ C®(R )}

with the natural action of 2~*+19/0z on £[y] and U[t][—3).
In Theorem 1, the isomorphism maps W_j to Zx, Trm(B) to Y. (B), and ©_,(A) to X,(4).

4.2. Symmetries in the negative hierarchy. Using Proposition 1, we set F' = 1 in the defining
equations of the negative hierarchy. After such a simplification, the study of the negative case becomes
quite similar to that of the positive case. Any symmetry in &~ is a vector field

-, +Z(% ijﬁzm)—a—.), (24)

where Ep with the total derivatives on £~ and

¢=<§00:¢’KP11"'7¢”1"">1 Qozecoo(g_%

satisfies the equations

U5(¢) = DeDy(p) — uaDe Dy () + uyD2(#) — usyDa(0) + useDy() = 0, (25)
Da(p1) = Dul) — 2us Do (i), (26)
Dy(¢1) = —uyDa() — usDy (), (27)
Da(9s) = i1, Da(0) + uaDu(pi-1) — Di( i), (28)
Dy(¢i) = ri-1,6Dy () + uyDa(pi-1), (29)

i > 1. As in Sec. 4.1, the Jacobi bracket {®, U} for any two symmetries ® and ¥ is defined by
Xa,vy = [Xe, Xy

4.2.1. Lifts of local symmetries and hierarchies of nonlocal ones. In what follows, we need
the operator

0 b} 8 o
Yy = —wp + 2p- +3r16——|—2(z+3 Ter g, (30)

Proposition 6. The symmetries v, v(B), and 0_5(A) can be lifted to &~ .
Proof. We let

To = (Y0, %0, »%gs---)»

Yo(B) = (vo(B),v5(B), .- -, v5(B),--.),

O_o(A) = (0-2(A),015(A),...,0"4(A),...)
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denote the lifts and set
W=+ 2Qri+arig, 21,
v§(B) = Briy, i>1,
01,(4) = —cd!, 6% ,(4) = %@/+(01_21(A)), i>1

The rest of the proof is similar to the proof of Proposition 2. i}

The next step is to describe invisible symmetries. These symmetries must satisfy

D-'I:(Qal) =0, Dy(‘pl) =0,

Dao(pi) = uzDa(0i1) = Dilpic1),  Dyls) = uy Dalipim1),
where i > 1.

Proposition 7. For every A = A(t) and k > 3, there exists a unique invisible symmetry ©_j(A) of
weight |©_i(A)| = —k.

Proof. We use notation (24) and set

; 0 ; 0
X — pinv . inv
o) =1 5 + " Breis
where Y = A4 and
. 1 : ]
i = = (PT), P> 1,
. 1—1
The proof is by induction on 3. 1]

We now consider the two functions
Y1 = 3r1 + zup — 2uug, o = dry + xrgl) + 2uu; — (zue + 3r1)ug.
It can be directly verified that they are shadows in -, i.c., satisfy Eq. (25).
Proposition 8. The shadows 1, and 5 can be extended to nonlocal symmetries of &~

Proof. It suffices to set

\I!l = <¢11¢%;'~"¢i,"')7

where
M = {1+ 3)ryp1 + :m‘gl) - 2ur; 5,
and
Uy = <¢2a¢ga' .. 7'([)%1‘ . ')a
where
Vs = (i + A)riqa + :L'rg_)l + 2u’r‘§1) — (zus + 3r1)75 2.
The rest of the proof is a direct verification of Eqs. (26)—(29). g
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Obviously,
| =1, [Ty = 2.

Similarly to the positive case, we now define the first hierarchy of nonlocal symmetries by setting
Uy = a‘dlcl-_lz(‘ljz)’ k>3,

where ady;(®) = {¥;,®}. We have
|Tk| = k.

We define the second hierarchy in Sec. 4.2.2-(see equality (31)).

4.2.2. The Lie algebra structure. As above, we need asymptotic estimates to compute the com-
mutators. Similarly to the positive case, we establish the estimates for the symmetries ¥;, by induction:

. . , 8
Xy, = -+ (abriss + bior$ | +o(i+k— 2) g+

where
al = (k—2)!(i +k+2), ¢ = (k—-2)L

To unify the signs, we change ¥y — —¥,. Using this estimate, we easily prove the following statement.

Proposition 9. We have the commutation relations

{@r, Wi} = = 2();(16_ 1__2)2'55 —%) LY

for allk and | > 0.

After the natural change ¥y — Uy /(k — 2)!, we obtain the commutators
{k, i} = (1 — k) Ur-

Moreover, for the new Wy, the estimate becomes

) 0
Xa, =+ (G +k 4+ 2ropn + or_ tolitk—2) g +....
We now complete the hierarchy of symmetries {©_;(A)} by setting
1
ek(A) = —g{\I’]H.g, 9_3(.14)}, k Z —2 (31)

We have |0y (A)| = k, and the elements of sym(&~) are distributed by weight as shown in Table 4.

Table 4
Weights | --- -l -2 -1 0 1 k
W, U, | .- 0,
O-1(4) | -+ | ©-2(4) | ©0-1(4) | ©0(4) | O1(4) | -+ | Or(4)
To(B)

Distribution of sym(&~) by weight.
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The coeflicients of the invisible symmetries are
e = 4,
(Pi2nv =z A,,
inv 1 2 AN
w3’ = —uA+ 5T A",

(pzlnv — —7‘1A' +uzd’ — %x:;A”’,

and we have the estimates
O = —Alri_ s+ A4+ o(i — 5)

for ¢ > 5. Therefore,

) o @
Xo_i4) = Am +o +90z'lvk+357:; tee=

_ 49 ' " . )
= ABrk_2 oot (—Arik + A T +o(i — k —2)) B +

for k > 3.
Using the obtained estimates for ¥, and ©_3(A), we obtain

1
Xowa) = — E[X‘Ifwa’xe-a(m] =

0
oot (i 4k + 2)ragn +xr§i)k_1+o(i+k—2))%+...,
k]

ot (—A'riss + A g + o(i — 5))(,])i + - ] =

T4

0
= ..+ (—A”l"i+k -+ $Al/Ti+k_1 =+ O(Z -+ k - 2))¥ +e

T

for all K > —2. The following statement follows from these estimates.

Proposition 10. We have
{0k, 01(A)} =1 Ogpi(A)

forallk >0 and! e Z.

Finally, we have the following statement.
Proposition 11. We have
{Ok(4),01(A)} = O (AL — A'A)

for all k, | € Z, and smooth fiunctions A = A(t) and A = A(t).
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Proof. The result easily follows from the above estimates for £ < —3 or [ < —3, but the method does
not work when both & > —3 and | > —3. Nevertheless, in this case, we have

{B1(4), B1(A)} = 3 {{hss,O0-3(A)}, €1(A)} =

_ 1

({{ 43, 0:(A)}, 0-3(A)} + { Ui13, {©-3(4), 0u(4)}}) =

(1{Okt143(A), 0_3(A)} + {Tkts,O1-3(AA' — A'A)}) =

(—1 Ok i(AA — A'A) + (1 - 3) Oppi(AA — A'A)) =

Lol = W= W

= O (AA" — A'A),
and this finishes the proof. i

We hence have a result similar to Theorem 1.

Theorem 2. The Lie algebra sym(&~) is isomorphic to the direct sum (20 x £[t]) ® Bly] of the
semidirect product of the positive part

z

2wt = {zk"'l aﬂ ‘ ke NU{O}}
of the Witt algebra times
Llt] = {zmA(t)% l meZ, Ac CW(R)},

where the vector fields 2*119/0z act naturally on £[t] and

vy - {B0) . | Beo>®)}

is the Lie algebra of vector fields on the line.
5. Action of the recursion operators

We discuss the action of recursion operators in the hierarchies of nonlocal symmetries described above.

5.1. Action of the recursion operator to local symmetries and shadows. The algebra sym(&’)
admits a recursion operator ¥ = % (x) defined by the system (see [10])

Dy(x) = u;l (uy D.(x) — vz Dy(X) + (uzuzy - Uy“:cm))%),

(32)
Dy(x) = u;l (uzyf( - Dy(X))-

This means that ¥ is a solution of (5) whenever x is. Another recursion operator x = #_(X) is given by
the system

Dz(x) = Dt()z) — Ug D:c()%) + Uze X
(33)
Dy(x) = —uy Dz(X) + tay X-

The operators Z. and #.. are mutually inverse.
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The actions of Z, and Z_ on sym(&) can be prolonged to the shadows of nonlocal symmetries in
sym(&7+) and sym(&~) if we replace the derivatives D, D, and D, in (32) and (33) with D,, D,, and ﬁy
defined as

.- £ EEUE)

F=0 =2 j=0 aq(J)

+Zﬁ§(u§ (J)—FZZD UgTi—1,2 — n_lt) (J),

j=0 ]—0
B=Dyt Nl s 4 3 ) 5 ¢ 353 Bltwrin) 2
v dq (J) (A P! ) ‘ £ t\tyli-lz P! (N
i=1 j=0 =0 71 i=2 j=0 T3

] N Us 1) A [ (0 (G+1)
D, = Dt+ZD3 —5 + 2. 2. D3 = - Do ¢ (J) +ZZ (J),
0g; Uy dq _

j=0 =2 j=0 i=1 j=0

i.e., if we consider the Whitney product of the coverings & and &—. The results of the replacement are
also denoted by #Z. and Z. .

We note that the operators act nontrivially on the “vacuum”:
Z+(0) =0_2(4),  #-(0) =wvo(B),

which immediately follows from Eqs. (32) and (33). Hence, the actions are reasonable to consider modulo
6_2(A) for Z and vg(B) for #Z-.. Taking this remark into account, we have the following statement.

Proposition 12. Modulo images of a trivial symmetry, the action of the recursion operators has the
form

ag-gi—l(A% i> _2’
Z+(0:(A)) = . L, R (6:(A)) = 07 0:11(4), iz -2
3 = —z,
i Ui B ) ] 3
Z+(vi(B)) = B vir1(B), <0, Z-(vi(B)) = {Oﬁz v Z <2
) L= 3
R+ (i) = 7 i1, B (i) = v; bir1, 1 €L,

where af, ,Bii, and fyii are nonzero counstants.

Proof. It suffices to note that the weights of Z.. and %_ are respectively —1 and +1, that their action

(modulo images of 0) does not change the dependence of shadows on y and ¢, and that the only shadows
that can be taken to 0 are 8_2(A) and vp(B). |

We note that the recursion operators 2, and #_ “glue” the shadows 9, of nonlocal symmetries in
the coverings &+ and &~ to each other and connect the series of 0 (A) to the series of v;(B):

Z_ Z Z_ R_
@, -1 %o z .,
R 7 Z_ Z_ R R
—_— _— —_—  — — _—
- 7 U_l(B) W 'UO(B) <‘%+— 0 <_,Q: 9_2(A) @3&}_— 9_1(14.) E— fee
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5.2. Recursion relations for symmetries of the positive covering. We describe an operator
providing an alternative way to construct elements of sym(e€7’+). For this, we express the functions u, and
Uy in (9):

_ e
T kl
d1,z
3
o (30
Y d1,z ’
The compatibility condition for this system is the equation
Q1,2 = 91,691,2y — 91,z91,ty, (35)

known as the universal hierarchy equation (see [13], [14]). This means that systems (9) and (34) define a
Bicklund transformation between (4) and (35) (see [15]). Substituting (34) in (10), we obtain

kit = 91,69k—1,y — 9k—1,z,

(36)
Gk, = Q1,29k—1,y>
where k& >. The compatibility conditions for this system after the change k¥ — 1 — k become
Qk,xx = Q1,t9k,zy — 91,24k, ty, kE>2. (37)

Proposition 13. Systems (34) and (36) define a Backlund autotransformation for infinite system of
partial differential equations (35) and (37).

Proof. The compatibility conditions of (34) and (36) are definitions of (35) and (37). From (36), we
obtain the inverse transformation

Qh-1,2 = —Gkt T &t Tk,
q1,z

qr—-1,y = L

e Q1,m’
whose compatibility conditions also coincide with (37). 5]

Corollary 1. The linearizations of (9) and (36)

Dy(x1) = Ugjz(uy Dq(x0) — uz Dy(XO))v (38)
Dy(R1) = —uy” Dy(x0), (39)
Di(%x) = q1,6Dy(xk-1) + qe—1,4 D1 (1) — Dax-1), (40)
D:z:()zk) = q1,mDy(Xk—l) + Qk-—l,yDz(Xl) (41)

define a recursion operator

Q((XO:X11X2a-~-,Xk,-~)):(X01)21a)22a-~-a>2k,---)

for sym(&+).
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We note that the symmetries ¢ and 2(¢) have the same shadows and consequently differ by an invisible
symmetry. Therefore, the recursion operator 2 seems useless at first glance, but this is not the case: it
provides an alternative way to lift shadows to nonlocal symmetries in &*+. More precisely, we take a local
symmetry or shadow xo, then (38) and (39) allow calculating x1; applying (40) and (41) with k = 2 to X1,
we obtain x2; applying (40) and (41) with k = m to xm—1, we obtain x,,, and so on.

Proposition 14. For allk > 1 and j = 0, 1,2, we have the relations
2(to) = ¥y, 2(45) = ¥,
2(0-5(4)) =62;(4),  2(6%;(4)) = 6551 (A).
Moreover, we have the equalities
2(vo(B)) =vy(B),  2(v§(B)) = vg*'(B).

This proposition is proved in the same way as Proposition 2.
Unfortunately, we could not construct a similar recursion operator for symmetries in the negative
covering.

6. Conclusion

We have completely described nonlocal symmetries associated with the Lax representation of the
three-dimensional rdDym equation. The revealed Lie algebra structure of these symmetries seems quite
interesting, and we intend to further study nonlocal symmetries of other Lax integrable equations in [5].

Acknowledgments. All computer calculations were done using the Jets software [186].
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In our recent paper [1], we gave a complete description of symmetry reduction of four Lax-integrable (i.e.,
possessing a zero-curvature representation with a non-removable parameter) 3-dimensional equations. Here we
study the behavior of the integrability features of the initial equations under the reduction procedure. We show
that the ZCRs are transformed to nonlinear differential coverings of the resulting 2D-systems similar to the one
found for the Gibbons-Tsarev equation in [17]. Using these coverings we construct infinite series of (nonlocal)
conservation laws and prove their nontriviality. We also show that the recursion operators are not preserved

under reductions.

Keywords: Partial differential equations, symmetry reductions, solutions, the Gibbons-Tsarev equation, Lax-

integrable equations
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Introduction

In [1] we gave a complete description of symmetry reductions for four three dimensional systems:
the universal hierarchy equation, the 3D rdDym equation, the modified Veronese web equation, and
Pavlov’s equation. The result comprised more than 30 equations, but the majority of them were
either exactly solvable or linearized by the generalized Legendre transformations. Nevertheless,
there were 10 ‘interesting’ reductions, among which two well-known equations, i.e., the Liouville
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and Gibbons-Tsarev equations, [3, 5]. The rest eight can be divided in two groups by their symme-
try properties: five equations admit infinite-dimensional Lie algebras of contact symmetries (with
functional parameters) and three others possess finite-dimensional symmetry algebras. These are

Uyllyy — Ugllyy = € lyy 0.1)
(reduction of the universal hierarchy equation),
Uyy = (U + X) Uy — Uy (s +2) 0.2)
(reduction of the 3D rdDym equation), and
Uge = (X — sty )ttxy + (2y + 1 )ty — 1ty (0.3)

(reduction of the Pavlov equation)?®. These equations are pair-wise inequaivalent (see Section 5).

We deal with these three equations below and study how the integrability properties of the initial
3D systems behave under reduction. More precisely, we construct (Section 1) the reductions of the
zero-curvature representations for Equations (0.1)—(0.2) and show that they result in differential
coverings of the form

a2w2+a1w+ao b2W2+b1W+b0
Wy=—5———, Wy = —5——————,
w4+ ciw+cp we+c1w+co

where a;, b;, c; are functions in x, y, u, u,, and u,. These coverings are similar to the one found
in [17] for the Gibbons-Tsarev equation and this resemblance, by all means, reflects the relations
between generalized Gibbons-Tsarev equations and integrable 3D-systems [18]. In Section 3, for
every nonlinear covering we construct an infinite series of conservation laws and prove their non-
triviality.

We also study the behavior of the recursion operators for symmetries of three-dimensional sys-
tems and show that these operators do not survive under reduction (Section 4).

In Section 2 local symmetries and cosymmetries of the reduction equations are described. The
corresponding conservation laws are presented in the Appendix.

Throughout the text the notion of (differential) covering is understood in the sense of [9].

1. Reduction of the Lax pairs

Using Lax representations of the 3D equations, whose reductions are the equations at hand, we
construct here nonlinear coverings of Equations (0.1)—-(0.3).

1.1. Equation (0.1)
This equation is obtained as the reduction of the universal hierarchy equation®

Uyy = Ugllyy — Uylly; (L.1)
with respect to the symmetry

O = Uz + Uy +yuy +u. (1.2)

2All the reductions of the modified Veronese web equation were either exactly solvable or linearizable.
bTo save the notation here and below, we denote by u the dependent and by x, y the independent variables. These are nor
the same as in the initial equation; see the details in [1].
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Equivalently, this reduction may be written in the form
Uyy = Uylixy — (Ux + U)thyy + Uity (1.3)

and Equation (0.1) transforms to (1.3) by the change of variables x — y, y — x, u — —e’u.
Equation (1.1) admits the following Lax representation

w, = (Wi, — uy)w"wa,

1 (1.4)
Wy = W™ wy.
The symmetry ¢ can be extended to a symmetry & = (@, x) of (1.4), where
X=w;+wy+ywy,+w
and the corresponding reduction leads to the covering
Wy = — W
W= (e tuw)w—u,’
(1.5)
Wy = -

w2 — (uy +u)w —u,

of Equation (1.3). Note that the first equation above is cubic in w, but by an appropriate gauge
transformation it can be converted to a quadratic one, see Subsection 3.2 below.

Remark 1.1. Equation (0.1) can be written in the potential form

()~ ().

the corresponding Abelian covering being

u e
== v=— (1.6)
Uy Uy
Then v enjoys the equation
Vy — Vyy = WyVxx — VyVyy, (1.7)

which also admits the rational covering

WV —XVy 1 vy

TR (—2x+vi)w+x2 —xve + vy’
T W (2 v WA — vty
of the same type. O
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1.2. Equation (0.2)
This equation was obtained as the reduction of the 3D rdDym equation

Uy = Uxllyy — Uylhyx
with respect to the symmetry

Q = u; — Xty — Uy + 2u.
The Lax representation for Equation (1.8) is

wr = (Ux + W)Wy,

— —pow-l
Wy = —UyW ™ Wy.

The symmetry @ extends to the one of (1.10): ® = (@, x), where
X =Wy —xwy—wy+u.

Reduction of the covering (1.10) with respect to ® leads to the covering

w2

w2 (g —x)wtu,’
_ Uyw
oWt (- )Wty

Wy =

Wy
over Equation (0.2).

1.3. Equation (0.3)

Finally, Equation (0.3) is the reduction of the Pavlov equation
Uyy = Uy + Uyllxy — Uxlxy
with respect to the symmetry
Q= uy — 2xuy — yiy + 3u.
The Pavlov equation possesses the Lax pair

wr = (W? — Wity — Uy )Wy,

wy = (W — Uy Wy.
The symmetry @ lifts to the symmetry & = (¢, y) of (1.14), where

X =W — 2xwx — YWy +w.

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

Reduction of the covering (1.14) with respect to this symmetry results in the nonlinear covering

w(w—uy)

w2 — (uy + X)W+ xuy — 1y — 2y’
w

w2 — (uy +x)w+xy — uy — 2y

Wy = —

Wy = —
of Equation (0.3).
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Remark 1.2. Equation (0.3) has a close relative. Namely, if we accomplish reduction of the Pavlov
equation using another symmetry

O = u — yu,+2x
the resulting equation will be
Uyy = (Uy +Y)x — Usltyy — 2. (1.16)
The symmetry ¢’ can also be lifted to (1.14) by @' = (¢, ¥'), where
X' =wi—ywe+1,

and the reduction of (1.14) will be

1
W2 —uw —uy —y
W-—ux

Wy = — ’

(1.17)

wy = — .
7 W2 —UyW — Uy —y

By the change of variables u — u —y?/2, Equation (1.16) transforms to the Gibbons-Tsarev equa-
tion, see [5],

Uyy = Uyllxy — Ugllyy — 1,

while (1.15) becomes

1
Wy —= —————
* w2 —uyw—u,’
W—uy
Wy — ———
Y w2 —uw —uy’
cf. [17]. O

Remark 1.3. Equations (0.1), (0.2) and (0.3) are known to admit linear Lax representations with
non-removable parameter (see [10,11,19] for the universal hierarchy equation, [13,20] for the 3Drd-
Dym equation, and [4, 19] for the Pavlov equation). Nonlinear Lax pairs (1.4), (1.10), and (1.14)
can be obtained from their linear counterparts by the standard procedure proposed in [21] or by the
methods used in [13, 14].

2. Local symmetries and cosymmetries of the reduced equations

We present here computational results on classical symmetries and cosymmetries of Equa-
tions (0.1)-(0.3), i.e., solutions of the equations

le(9)=0

and

Le(y) =0,

where £¢ is the linearization of the equation at hand and £ is its formally adjoint and ¢ and y
depend on X, y, u, uyx, uy (see, e.g., [7]). The conservation laws corresponding to classical cosym-
metries are presented in the Appendix below. The spaces of solutions are denoted by sym(&)
and cosym (&), respectively.
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All the equations under consideration happen to possess a scaling symmetry and thus admit
weights (which we denote by |- |) with respect to which they become homogeneous.

2.1. Equation (0.1)
We consider this equation in the form (1.3), i.e.,

Uyy = ylhey — (U U)Uyy + Uxlhy.
The weights are

M=0, Bl=1, ll=-1, lul=-1, lol=-2

Symmetries

The defining equation for symmetries is®

D§(¢) = uyD)%((P) — (ux + u)DxDy (@) + (tty — Uxy) Dx(®) + (tx + 1) Dy (@) — Uy @-
The space sym.(&) is generated by the symmetries

X

D1 = Uy, (p():yuy-l_u, q)(’)=ux, (01:6_ )

where the subscripts coincide with the weightsd.

Cosymmetries

The defining equation for cosymmetries of Equation (0.1) is

Dﬁ(‘l’) = “yD,%(V’) — (ux+ 1) DDy (W) + 2(thxy + tty ) D (W) — 2(thx + ) Dy (YY) — Sty Y.

The space cosym.(&) is 6-dimensional and is spanned by the following cosymmetries:

Y3 = Y3 + 8% + 10uu, +2uy), Yoo =e¥(ut2uy), yo1= e
and

1 2uy — yuy +2u

V==, W=,
us 3

—Auxyuy + 6uny + 3u? - Ayun, + 32+ 2uy —I—yzug
Ys = . :
u

b

where superscript coincides with the weight®.

2.2, Equation (0.2)

The weights are

W=1, =0, =2 ful=1, |o|=2.

“Here and below D, and Dy, denote the total derivatives with respect to x and y.

9To a symmetry @ we assign the weight of the corresponding evolutionary vector field Eq.
®To every cosymmetry we assign the weight of the corresponding variational form, see [8]
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Symmetries

The linearized equation is

D§(‘P) = (uy +x)DyDy(@) — ”yD,%((P) + UyyDy (@) — (urxx +2)Dy(9).

The space sym¢(&’) is generated by the symmetries
1
0_2=1, QO 1=u+x, Q=u— >, ) = uy.

Cosymmetries

The defining equation for cosymmetries reads
D() = (ux +x)DxDy (W) — D5 (W) — 23, Da() + (2tx + 3)Dy (¥).

The space cosym,(&£’) is generated by the cosymmetries

—2y
e Uy +x
yy = U] v=1,
uy
e_y
Voo=—, V3 = ux+2x.
uy

2.3. Eguation (0.3)

The weights of variables are
=1, [y=2, lul=3, |ud=2, |uy|=1.

in this case.

Symmetries

The symmetries are defined by the equation

DZ(@) = (x—uy)DxDy(@) + (2y+ux)D3(9) — Dy(9)

and the space sym¢(&’) is generated the symmetries

1 2 1
(Pﬂz_gxux_gyuy'i'u, (P—1=ux_xuy+y_'2'x2,
Q-2 = uy + 2x, P_3=1.

Cosymmetries
The defining equation for cosymmetries is of the form
D)zc(‘l’) = (x—uy)DxDy (W) + (2y + ”x)Dg —tyyDy +3(2 — uyy) Dy,
The space cosym,(&’) is 6-dimensional and and is spanned by the elements
54 164

256 4 12 36
Y= 5 iy + —5 Y + ?xzy + 2xu+ ity + ?ugux +4yuy + ?uiy
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512 32 32 512 3,
xzux-}- x3uy+ 5x +—x2 2 y2+ 5 4+—5— u; +uy 4
_49 +4xu+3uu+9 +—x2 +21 2_'_343 3+1 .
Vo = Mtk ol T o WY ty -y + o - qut

2
Vs = 4o, + 6> + 2y + §ux+u§,

5
Yy = '2_x+uy7
l,/3:1’
1
Yoy =

(—xuy +ux +2y)%

3. Hierarchies of nonlocal conservation laws

Using the nonlinear coverings presented in Section 1 we construct here infinite hierarchies of non-
local conservation laws for Equations (0.1)—(0.1).

3.1. A general construction

The initial step of the construction is the so-called Paviov reversing, [21] (see [6] for the invariant
geometrical interpretation). Let & be an equation in two independent variables x and y and unknown
function # and

Wx=X(x’y, [u]’w)7 W}’:Y(xaya [u]7w)

be a differential covering over &, where [u] denotes u itself and a collection of its derivatives up to
some finite order. Then the system

WxZ_X(x,ya [u]ﬂl)w}.a %z_Y(xaya[u]a;L)Wl 3.1

is also compatible modulo & (thus, the nonlocal variable w turns into a formal parameter in the new
setting).
Assume now that

X= X—1/1+X0+ RS

Al
Y = VoA 4 Yot 2 g +Y+
1 ot~ 7
where X;, ¥;, i > —1, are functions in x, y and [u], and also expand  in formal Laurent series
w:%@+%+?+ +ﬁ+
Then (3.1) implies
Vie=— Y kXjy, Vipy=— Y, kY,
JHk=i+1 Jk=i+1
or
Vo= —X Y-, Yoy =—Y_ayg
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Vox = —XoY_1, Yoy =—Yoy-1;
Vix=X1—-X1y_y, Viy=Y_ 1-Y1y_y;
Vo =2X 1y +Xoy1 — Xo g, Vo, =2Y_ 1y +Yoyh —hy_y;
and
Vi = kX Wi+ (k— 1)XoWi 1+ -+ X2 Wi — X1,
Wiy = kY1 W+ (k= D)Yowi_1+ -+ oy — Yy
forallk > 2.

In general, this system defines an infinite-dimensional non-Abelian covering (which may be
trivial generally) over the base equation &, but in the particular case X_; = Y_; = 0 the covering
becomes Abelian, i.c., transforms to an infinite series of (nonlocal) conservation laws. Indeed, the
first pair of equations reads

YVoix= 0, Yoiy= 0

in this case and without loss of generality we may set y_; = 1. The rest equations read

Wo,x = —Xo, Yoy = —Yo;
Wiy = —Xi, Wiy = = (B
Yo = Xoyh — Xa, vy =Yoyh — ¥,
V3, = 2Xoh + X1 Y1 — X3, Vs = 2Yoyh + Y1y — Y3,
and
Vix = (k— D)XoWg—1 + (k=2)X1 Y2+ -+ + Xia Y1 — Xi,, (3.2)
Viy=(k—1DYoWe1+ k—2)Y1¥e2+ -+ Vroyn — ¥,
for all £ > 3.

Remark 3.1. The first two pairs of equations define local conservation laws (probably, trivial) and
the potential ¥, does not enter the other equations. This means that the obtained covering is the
Whitney product of the one-dimensional Abelian covering 7y associated to Y and the infinite-
dimensional 7, related to Y1, y»,... We shall deal with 7, below. O

We now confine ourselves to the case

_awtawta o bW +biwtb

X = 3.3
widciw+co w2dciw+co (3.3)

where a;, b;, and ¢; are functions in x, y, and [u], and deduce the needed Laurent expansions, One
has

a2/12+a1}» +ay (
A2+cid+co

A2 =L __
a+ 7 +)LZ 1+01ﬁ+c
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_ a  ap aA+c)’
—(“”TLIE)';](‘—ﬂ )

Let us present temporally the second factor in the form

Then
wA2+a1d +ap _ ( ai ao) d;
A2+ciA+cy a2+l+l2 ,;]l"
aydi+ardy  axds +aydy +apdp ad;+aidi—1 +apd;—>
——t E +ot 5 +...
Compute the coefficients d; now. One has

A+ i (il
(o8 g ()

Jj=0

= amdo+

from where it follows that

d():la d1=—C1

and
zk" (—1)k (k;,j) ki if i = 2k,
dy= {72 b li+j+1 . (3.4)
J);‘z)(—l)k—f+ ( 241 )co TP ifi=2k+1
for i > 1, Or, in shorter notation
b [gj (1)) ([i/i_]ﬁ %)(i)) A1 21400 (35

where p(i) =i mod 2 is the parity of i and [k/2] is the integer part.
Gathering together the results of the above computations, one obtains that in the case of cover-
ings (3.3) we have X_; = Y_; =0, while other coefficients are

Xo = az, Yo =by;

Xy = ay —acy, Y1 = b1 —bacy;

Xy = ag —ajcy +ax(c? —cp), Ya = by —bic1 +ba(c — co);
X; = apdi—» + a1di—1 + apd;, Y; = bod;_»+ bidi—1 + bad;;

euy

where the functions d; are given by (3.4).
Let us now show how these general constructions look like in the particular cases of the equa-
tions under consideration.
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3.2. Equation (0.1)

Note first that the covering (1.5) is not of the form (3.3). Nevertheless, it can be transformed to the
needed form by the gauge transformation w — we—*. Then (1.5) acquires the form

(ux + u)Ew? — uje™w uye*w?

W= (uy + u)e*w — uye?’ W= (uy + u)eXw — uye®’

We have |w| = —1.

Thus,
—_ — 2x —
ap=0, a; = —uye a = (uy+u)e*,
bo=0, by =0, by = —uye,
co = —uye™, c1 = —(ux+u)e*.

Let us compute the coefficients d;. By (3.4), we have
k (k+j k= ;
dy = Z (=1)% ( 2},]) (—uye™) (g +u)e)?
J=0

k -
k+Jj\ 4_; ;
_ 2k k 2
=e JE:O( 2 )uy Iy +u)™/

and

k .

. k+j+1 k—j ;

o1 = Z(—l)k JH( 2jJ+1 ) (_”y"zx) J(—(ux‘l'u)ex)zﬁl
]=

k .
1 : .
= o(Zk+1)x Z (k+‘]+ )u’;_l(ux-l-u)zjﬂ,

=\ 2j+1
or
8 (/214 i+ p6)\ 21 el
d; = e~ . . u[l/Z]—J Ue+u 2]+p(t). (3.6)
]go( 2j+p(i) ) 7 et)
Hence,
Xo = (up+u)e, Yo = —uye';
X = ((ux+u)2 —uy) ezx, Y = (ux+u)uye2x
and
[(+1)/2] . ..
S Dx i+1 t1—J _ 1—7 j i2j41
Xi=e ((ux+u) + J;l ((i—Zj) (i—2j+1)>uy(ux+u) ),
e 2 /204 4 PN i -
Y, = _litDx ( . J .p )u[l/Z]—_H-l ue+u 2j+p(i)
j;() 2]+p(l) y ( X )
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for { > 1 (we assume (g) = 0 for # < 0). Obviously,
|X;| =—i—1, Y| =—i—2.

The functions X;, ¥; define, by Equations (3.2), the infinite number of nonlocal variables ¥; for
Equation (0.1) with

lyi| = —i— L.

The corresponding conservation laws have the same weights and the first three of them coincide (up
to equivalence) with the local conservation laws @_», ®_3, @_4 described in Section 2.1. The first
essentially nonlocal one is associated to 3.

3.3. Equation (0.2)
Due to Equations (1.11), one has

a(]=0, a]=0 a2=—1’
bo = 0, b] = uy, b2 = 0,
Co = Uy, C1 = Uy —X.
Hence,
Xp =—1, =0
Xi = u,—x, Y1 =uy;
Xo = —(uy —x)2 +uy, Yy = —uy(uy —x)
and

i/2 . . .
X = —d; = [Z](_l)[i/21—j+p(i>+1 ([l/ 2+ +P(l)) WP 2t

j=0 2j+P(i)
[(-=1)/2] _ o
Y =uydiy = Z (_1)[(!—1)/2]—J+p(t—1)><
j=0
((-1)/2]+j+p(—-1) ((-1/2)—j+1,  \2j+p(i-1)
X( 2j+p(i—1) .l (24 =)
for i > 2. Consequently,

Yor,=—Xo=1, Yoy =Y =0
Vip=—X1 = —uet+x, Yiy=-"=—u
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and one may set

52
Yo = x, Yy =-—u+ X
while
2 x2
Yo = (e —%)"+uy+u— 7 Y= (y — x)uy
and fori > 2

. . x2
Vip=—(i—DWi1+ (- 2)X1¥i2+- -+ Xi3¥2+ (3 —u) X2 —X;,

: 2
Viy=(-2"yio+ --+Y 3y + (?_u> Yio—Y,

where X, Y are given by the above formulas.
One has

Xi=i, [l=i+1, |yl=i+l.

The conservation law corresponding to y; is of the weight i + 1 and the first two ones, up to equiv-
alence coincide with those described in Section 2.2, while all the others are essentially nonlocal.

3.4. Equation (0.3)
By Equation (1.15), we have

ag =0, a; =1y a=-1,
by =0, by =—1, by =0,
Co = Xty — Uy — 2, c1 = —(uy+x).
Consequently,
Xo= —1, Yo =0;
X1 = —X, Y] = —1;
X2=—ux—x2—2y, o=—uy,—x
and
X,-=uyd,-_1—d,-, Y,=—d;,

for i > 2, where

(i/2] o (/2] + 5+ p(i) A o
d=Y (-1 [t/21—1([’/ j+p ) Sty — hy — 2)F2 3 g, )P0,
One has

1X;| = i, ;| =i—1.

Thus we have

Yix =X, Wiy = 1
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x2
‘I’Z,x=ux+5+y’ Yoy =uy+x

and we may set

3

x x
V=51 Vo=utxyt+ o

Then the other potentials are defined by
Yix = —(—D¥i1— (= 2)¥i2(i—3)X0¥3+...
e 2
-+ 3Xiayn + 2u—|—2.xy+§— Xi3+ 5ty Xio—Xi,
iy =—(-2)yi2(i-3)hy3+...
2 2
o 3Yimays+ | 2ut 2y o )Y+ | 5y | Y2 =Y
i > 2. We have
|yl =i+1.

The conservation laws associated with ys,..., ¥y are equivalent to @u,..., @ introduced in
Section 2.3. The first essentially nonlocal conservation law corresponds to ¥g.

3.5. Proof of nontriviality

We shall now prove that the above constructed conservation laws are nontrivial. To this end, intro-
duce the notation &, o = 1, 2, 3, for Equations (0.1), (0.2) and (0.3), respectively, and

T Gia— bu
for the coverings defined by the nonlocal variables Yy,..., ¥;. Let
Die, Di’a
be the total derivatives on &; q.
Proposition 3.1. For all i > o, the only solutions of the system
D*(f)=0, Dy*(f)=0 (3.7)
are constants.

Proof. Let us present the total derivatives in the form
Dy* =D%+X"%, D;*=DJy+Y"?,

where D¥, D are the total derivatives on & and X**, Y% are the ‘nonlocal tails:

. i 9
xhe yhe =Yy y:%—,
_]Za ! al,ll j=x ! an

X;’a, Y}’a being the right-hand sides of the defining equations (3.2) for the potentials .
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From the constructions of Sections 3.2-3.4 one readily sees that the quantities XJ’:’“ andY }’a are
polynomials in u, and u, and, moreover,

, . . : . .0
X = ﬂ:e(’“)xu;“a—% +o, Y = :I:e(’“)xuiuya—% +o;
. . . ., d
Xt,2 =4y : Y1,2 =4+ i—-1_< :
uxawi +o U, v +o
X3 = 42y i+0 ) 4 =iui"li+o
y xal[/, ’ y a% 4

where o denotes terms of lower degree.

Now, the proof goes by induction. For small i’s the result follows from the fact that the cosym-
metries corresponding to the local conservation laws do not vanish and these conservation laws are
of different weights. Assume now that the statement is valid for all k < i and consider Equation (3.7).
Then from the above estimates it follows that d f/dy; = 0. O

Evidently, nontriviality of the constructed conservation laws is a direct consequence of the
Proposition 3.1.

4. On reductions of the recursion operators

We show here that symmetry reductions of Equations (1.1), (1.8), and (1.12) are incompatible with
their recursion operators and thus the latter are not inherited by Equations (0.1), (0.2), and (0.3),
respectively.

4.1. A general construction

We treat here recursion operators for symmetries as Bicklund transformations of the tangent cover-
ings, cf. [12]. More precisely, let & be a differential equation given by the system

&={F=0}, F=(F'(xyu),....F(xy[u)),

F/ being functions on some jet space, [7]. Here, as above, [4] denotes the collection of u and its
derivatives. The tangent covering t =tg: J & — & is the projection (x,y, [u], [q]) — (x,y, [u]) of the
system

TE = {F(x7y7 [u]) =0a EF(JC,y, [u]’ [q]) = 0}

to &. The characteristic property of t is that its sections that preserve the Cartan (higher contact)
distribution are identified with symmetries of &
A Bicklund transformation between equations &1 and &3 is a diagram
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where 7) and 7, are coverings. It relates solutions of & and & to each other. A recursion operator
between symmetries of &7 and & is a Bicklund transformation of the form

géa]i-}g]

y

74

(7]
t
ﬁgz ﬁ—) 692.

In particular, if & = & = & it relates symmetries of & to each other. Then % may be considered as
an equation

RCTERQTE

in the Whitney product of te with itself.
Any symmetry @ = @(x,y,[u]) of & admits a natural lift & = (@,¢’) to T &. To this end, it
suffices to set

I ¢

‘P'=—CI+"'+WCIG+---
[}

u

Choose a symmetry ¢ of & and denote by ry: & — & the corresponding reduction map. Then
the diagram

TE e &

tgq,

(TE)o = T (&) —2— &

is commutative. An immediate consequence of this fact is

Proposition 4.1. Let Z C TE ®¢ T & be a recursion operator for symmetries of equation &
and @ be a symmetry of &. If % is invariant with respect to ¢ then X is a recursion operator for
symmetries of &p.

4.2. Recursion operators for symmetries of 3D systems

We briefly recall here the results on recursion operators for symmetries of Equation (1.1), (1.8),
and (1.12) obtained in [15, 16]

The universal hierarchy equation

Equation (1.1) admits the following recursion operator
Dy(®) = uyDx(@) — uxy @, @1
D () = u; Dr(¢) —Dy(@) — e @

that acts on its symmetries.
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The 3DrdDym equation

The Bicklund transformation

Dx(¢) = uxDx((o) —Dy(9) — uxx @,

B 4.2)
Dy(¢) = uyDx(@) —ury @
is a recursion operator for symmetries of Equation (1.8).
The Paviov equation
The relations
Dy(®) = uxDx(9) + Dy(@) — uxx @, 43)

Dy(@) = Di(@) +uy Dx(@) — sy .

are a recursion operator for symmetries of Equation (1.12).

4.3. The negative result

Here we show that the general construction of Section 4.1 produces no recursion operator for the
reduced equations under consideration,

Proposition 4.2. Recursion operators (4.1), (4.2) and (4.3) are not invariant with respect to the
natural lifts of the symmetries (1.2), (1.9), and (1.13), respectively.

Proof. By direct check. O

Remark 4.1. The same fact holds for the reduction of the Pavlov equation that leads to the Gibbons-
Tsarev equation.

Remark 4.2. We also tried to construct recursion operators for all the equations at hand directly,
but this did not lead us to positive results either.

5. Discussion

Let us first establish the following fact:

Proposition 5.1. Equations (0.1), (0.2), and (0.3) are pair-wise inequivalent with respect to an
arbitrary contact transformation.

Proof. Let us first compare dimensions (see Table 1). Consequently, only Equations (0.1) and (0.3)

dimsym(&) | dimcosymg(&’)
Equation (0.1) 4 6
Equation (0.2) 4 4
Equation (0.3) 4 6

Table 1. Dimensions of symmetry and cosymmetry spaces

may be equivalent. Now, the Lie algebra structure of sym¢(&) for Equations (0.1) and (0.3) is
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Weights: —-3-2-101234567

é”(3) 1 L . i o o o
éa(z) - ! e - - o o ’ 3 : 13 | S E—
éa(l) = ° L A S S, S 4

Fig. 1. Distribution of cosymmetries

presented in Table 2. One can see that dimension of the commutant in the first case is 2, while in
the second case it equals 3. Thus, the algebras are not isomorphic. O

Remark 5.1. The equations under consideration are not equivalent to the Gibbons-Tsarev equation,
because the symmetry algebra of the latter is five-dimensional.

Nevertheless, as we saw, all these equations have several common features. In particular, we
would like to indicate how local cosymmetries of our equations are distributed with respect to
weights (see Figure 1). In all three cases, they fit into two disjoint groups with certain gaps between
them: the first one consist of cosymmetries whose corresponding conservation laws are members of
infinite series (these are underlined by arrows, and the arrow itself indicates the direction to which
the sequence of conservation laws goes). The second group includes ‘standing-alone’ cosymmetries.

Remark 5.2. A similar picture is observed in the case of the Gibbons-Tsarev equation. It also
possesses a ‘standing-alone’ cosymmetry of order three.

A natural question arises: does there exist a construction, similar to the one of Section 3, that
allows to embed the conservation laws corresponding to the ‘standing-alone’ cosymmetries into
other infinite hierarchies?

Another question relates to the algebras of nonlocal symmetries in the infinite-dimensional cov-
erings constructed above. It seems that such an algebra for Equation (0.3) should be similar (or iso-
morphic to that of the Gibbons-Tsarev equation), while the algebras for Equations (0.1) and (0.2) are
different: all these Lie algebras are graded, but in the first two cases all homogeneous components
are one-dimensional and for other equations this is not the case.

Finally, it is interesting to study the structure of symmetries and cosymmetries of the reductions
that admit symmetry algebras with functional parameters (see the Introduction) and compare them
with the results described here.

All these problems are subject to future research.

6. Appendix: Conservation laws

We present here the conservation laws that correspond to the cosymmetries described above. Every-
where below |@;| = i. We also use the notation Yy, € cosym (&) for the generating function of a
conservation law .

Eq.0.) | &% @ @ Eq.(03) | o2 @ o
¥ -1 0 O -3 0 0 -3
o) * 0 @ P-2 * =03 30,
@ * . 4 P * * 10

Table 2. Commutators in sym, &, 1) and sym &g 3)
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Equation (0.1)
The space of corresponding conservation laws is 6-dimensional and is spanned by the following
elements @; = P,dx+ Q;dy:

Py = ¥ (uluy + 8ulu, + 136212 + 2u> + 8ulu, + u§ — Bun ity + 2y

— 2ustlyy — 2uligsity),
Q4 = ue™ (—2uytytiye + 3uluy — Wity + Sunzity + 2ttty + 4u§
~ i)
P5= e3x(—uuxy + uyit, + 3ulu, + uu,zc — 2Uity ity ),
Q3= ue3"(—uyuxx — Uxltyy + Uty + 205y );
P,= —ezx(—uy + Uty + Uity ),
Q-2 = —ue™uyy;
1

P=——,
Uy

1
;= _(ux+u);
Uy

1
P3 = ﬁ(ugy + 2uuxy — Uy — 2uxu}’)7
y

1
Q3 =~

3 (udy + wiily + 20 Uy — WPty + 2Uththy — Attty — 2uhlty
Y

- uazc“y)§

1
Py = 3 ( —u3y2 — duuyyuyy + 2uu§y + 4uxu§y - uzuy + Guntyityy
y

— 2utaxy — 2ttty — 3uduy — U),

1
Q1= - (uu;’y2 + uxuiy2 + 4u2un,uyy - 2u2u§y + 4unxltyyityy
y
— Suuxuiy - 4uuxxu§y — 2u,2qu2,y + u3uy — 6u2uxuxy -+ 3uzuxuy

— 6unl sy + Suntuy, + Uttt Usity + Uty — 2uttyytty + 4uu§).

Here |y,| = || + 1.

Equation (0.2)
The space of conservation laws is 4-dimensional and is generated by @; = P,dx <+ Q;dy of the form

—2y

1 e
Py= > (2uyy — 251y — uyx) W’
e

w’

1
Qo= 5 (2unxtery — 2unygity + 2unyyx — ujzcuy — 2uuyx — uyx2 — 2uuy)
y

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
228



H. Baran, 1.8. Krasil'shchik, O.1. Morozov, P. Vojcdk / Integrability properties of some symmetry reductions

e_y
P=-
Uy
e_y
Q1= _(ux"l'x)_
Uy

P = unyy + 3u+uy,

03 = Uity + Uyx;

1 1
Py= —Euuxy+2uyx+ 3 Euxuxx+uuxuxx+8ux+ Euux,

1 1
Os= 2uyf + Euxuyx+ 2uityyx + 5

Uxlty +

Uty Uy + —Ulyrlly + Ully.
xtxy y y

2
Again, |y| = |0 - 1.

Equation (0.3)

The space of conservation laws is 6-dimensional; elements @; = F,dx + Q;dy of a basis are

1 116 162 229
P = u3uxuyyu—|— guxu3uxy + —uxzuxuxy + ——uxuyity, + ——ux3uyuxy

Y 5 15
379 758
5% 15 iy’ + T3 Ut y+2u Uyy Uy

184 348 48 6
+ ——uyyuxy + —uxzyuxy xyuxu +Z
5 5 5
164

UYUyUyy — xzyuxuy

+ uxzu uxy+ uxuxyu+

72 ,
uyuyuxy + ?“y“yy“y

12 36
+ -5—uyu2uyyu + 80uxyuy + 5 yuxu xzuxu
1024 48 18 164
5 **yuy + 43uxuy + ?uyug +— 5 uuxug - _S_xyz 2

1 14 204

- gxuxu; + ?uy2uxy + —5—x2u2uy - —)czyu3 +
82 32

Tyt

5

16
ux2y + 2yu§uy —+ ?uxu;

2 64 , 132
Uyl UyyUX + — 5 yuyyuxy+24uxyuyu,o,+ 5 UalbyyUxy

2 3
5 5 5 "
3, 256 2 4096 4 2412 4 24 5,45 64 2
st 5w g S gl — oy = oy = S
8 512 64 113 512 16
+ 5uu2——x2 2 Uy +— u.x2u2+—ux2ux———x3y 3 —S—xyu;—4y2uxuy
32 4 6 , 256 4 127 4
-3 uxu +5u Uyl — 15xuxuy—|— 3 uxuxy+x
36 72 42 92 32 5,
?uyuxuyy — ?xyuxuy + —s—-uyu Uy + ?uxyuxy + —S—uxu Uy + Auxitylyy
64

256 12
=’
Yot g E 3

96 56
+ 1201y uyyuy + T Uy Uy UK+ ——— Uy X 2y 4 5 — UXUxlhyllxy + —

+

2
iy
Os =

3 72 36
UxUxylylt + —UX uyuyy—i— —ux*u? yidyy + 3 — Uylylsy

28 52
+ ——uxuyuyy + ?ufuxuyy + ?uxzuyuxy + 3uyuxuyyu + ?uy Uyy

5
62 4 4 32 , 94 379
+ guxuyyu +uyuyyu+ Ux yy + ?xy Uy -+ 5 Wiy + T

5 3
e ux'u

15 e
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256 17 32
- —xzyux + ?uxux + 16uxu§ — ?xuﬁuy + u;uxyu + —5—uuxuy

5
133 256 4 512 176 64
5 *Y uy + Tuxy+ 3 ——Uxyuytyy + —5—uxuxuyuyy-l- 5
1 2 1
2048m}+5 2 Py — 2y —%y2ux——x2 2 51152 4ux—§u3,

x3uxuy +

W

13 25 2 65 1, 23
P = Tuyuxuyy - Txyuxuy + 2uyu,uyy + 7 Wytzy + 7 WXy tzy + 7 Wity

3 65 47
—Uylyltyy + ?uxzuxuyy + ?uxzuyuxy

4
45 391
7y + ﬂuﬁuxy + 2uxuy
49 5 343 , 343 1 4
Ulxly — —8— Uxlly — Hx yiy + Tuxy — quxuy

65 3
+ T iy + =

o Uixlhxyltylh +

9 2
Txy L[y+

2 1 2
—UY Uyy + U Uyl —

2 2

7 2.3 -
+ 5wy + 2ty +

2
+ Uy Uty +

2
) 21 21

- yuxuy+7uxyuyuyy+7
2 L4 33, 7 3

9 1 49 7 131
— §y2u3 + 4u2u - Eyu - ?u 2xyuy - —fyuy - —xzuxug + ?uXZuy,

UXUyUylyy + —UU, + ——— UX

21 21 11 35 9 5
0= 7 Xlhxllyy + 7 UXlhylixy + - Wytkyllyy +— uxzuyuyy + > Wxityityy
9 343 1 343
+ 2uyuityyis + 14uxyuy, — Rl + —ux2 + — y 2xu’ — Euzuy — U
343 5 1 49 65
+ 2uuy + Ex"’uy & 5uu§ & 5 txlhylh + Ixzyuy + ?ufuyy + ?uxzuxy
— Py + 31y ?x2uxuy + u;uyyu + u%uxyu;
2 5 2 1, 2 5 7
Ps=12uy+ guu +36ux” + Fialty — gyu + = Uklxltyy + ?uxyuyy + Uylxltyy
8
+ 2uyuyityy + 3 Wity + 2uxuyuxy 3yuxuy + 3ty + Uyt + uxzuxy
— 12x2yuy 2x2uxuy 4xyu — xuxu 4y2uy uux,
1 10 5
Qs = 12xu — 6x%uy — 2yuy + 6x"uy - §ux + 3 WAhyllyy — FXUzlhy +4uxzuyy
2 7 8
+ Uyityyu + §uxuxy + §uyuyy + Uyltyylh + UyUylt + 2X1yY;
1 1
P5 = —Sxuyy — Exuxuy - u%y — Eugux + Exu + Euxuyyu + uytyy — Euxyuyu
1 1
+ o Whlizy — Sully,
1 5 35 1 5 1
Qs = > Ulhxy + S~ ¥x— Euyux—i- Exzuy - 2xu§ - 5”3;
Py = —uyuy — 2uyy + 4u,
O4= —u§ + Xty — Uy;
Rh=—2

Xty — Uy — 2y’
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1
Xty — Uy — 2y

Qo=—
Here |yp| = |@] - 1.
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We present a complete description of 2-dimensional equations that arise as symmetry reductions of four 3-
dimensional Lax-integrable equations: (1) the universal hierarchy equation uyy, = u;lxy — uyity;; (2) the 3D
rdDym equation usy = txitxy — Uylixy; (3) the equation uyy, = wrteyy — uyyx, which we call modified Veronese
web equation; (4) Pavlov’s equation uyy = uyy + Uyltyy — Uyliyy.
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Introduction

We consider four 3-dimensional Lax-integrable? equations:
e the universal hierarchy equation (Sec. 2)
Uyy = Ugllxy — Uyllyz, 0.1

see [11].

*Permanent address: Independent University of Moscow, B. Vlasevsky 11, 119002 Moscow, Russia
4We say that an equation is Lax-integrable if it admits a zero-curvature representation with a non-removable parameter.
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e the 3D rdDym equation (Sec. 3)
Ury = Uxllyy — Uylxy, 0.2)

see [3,13,15].
o the equation (Sec. 4)

Upy = UsUxy — UyUsx, (03)

see [1,6,8,16]. In [8] it was shown that the equation at hand is related to a particular case
of the 3D Veronese web equation by a Bécklund transformation. Below we call Eq. (0.3)
the modified Veronese web equation.

e Paviov’s equation (Sec. 5)

uyy == utx + uyuxx - uxux_y, (0.4)

see [5, 14].

Some of these equations arise also in [7] as integrable hydrodynamic reductions of multi-
dimensional dispersionless PDEs.

All the above listed equations may be obtained as the symmetry reductions of the following
Lax-integrable 4-dimensional systems:

Uy; = Upx + Uglixy — Uylxx
and
Uty = Uglhyy — Uylly,
introduced in [7] and [11], respectively, while the latter two, in turn, are the reductions of
Uy; = Ups + Uslyg — Uzllys-

Here we give a complete answer to a natural question: what 2-dimensional equations are the reduc-
tions of the 3-dimensional ones? The result comprises 32 equations of which

sixteen can be solved explicitly,

one reduces to the Riccati equation,

five can be linearized by the Legendre transformation,
while the rest ten are ‘nontrivial’.

The latter are presented in Table 1 (in the third column, we exemplify the simplest relations). The
first two of these equations can be transformed to the Liouville equation and the Gibbons-Tsarev
equation, respectively. The other eight, to our strong opinion, may possess interesting integrability
properties and we plan to study them in the nearest future. More detailed, but also concise, infor-
mation on the reductions may be also found in Table 6.

In Sec. 1, we briefly expose necessary preliminaries (see, e.g., [10]). In Sec. 6, we present the
obtained results in a concise form.
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Reduction of Eq. Relations with the initial equation
20 = PP, — DD, 0.1) u= —%Q
pr = (£ +Dp)Ppy — PpPry — 2 04) u=®E,n)+12E—2un,
é =y, n=x+1y,
Dpp = PPy — DD, 0.1) u=®(x,&)e % E=ye?,
(1—*—&4)2)(1)55 —6@6‘1)51-}—@5(1)1 =0 0.1) u=®(z,&)e*, E=ye 7,
q’nq)én _q’éq’nn = en(I)gé 01 u= dD(éa T’)e-—x’ é = ye_zv n=x—z,
(E+@p) Dy, — Dy(Pre +2) =0 02) u=(,y)e¥, & =xe,
By = 40Dy — EDE + 26 DD, 02) u=9(,0)x, &=xe7,
@y +(E+ @) Py = P2+ Pee) 0.2) u=d&,n)e¥, E=xe', n=y—t,
X
(482 —3®)Dps — D, — 66D +BF+6@ =0 (0.4) u=D(§, ), &= 7
Bpp = (& —Py)Ppn+ (20 + )Py — Py 04 wu=@(,me, £ =yef',n =xe*

Table 1. ‘Nontrivial’ reductions

1. Preliminaries

Let & be a differential equation given by

F(x,...,%l—lf‘-,...)=o, (1.1)

where u(x) is the unknown function in the variables x = (x!,...,x"). A symmetry of & is a func-
tion @ = @(x,...,uUq,...) in the jet variables us, ¢ being a multi-index, ug = u, that satisfies the
linearized equation

oF
ts(9) =L 5—Do(9) =0, (1.2)
o JlUc
where Dg = D; 0---0oD;, for ¢ =1iy...i, while
0 d
D; = 9‘;+;uo—ia—ua (1.3)

are the total derivatives restricted to &. Symmetries of & form a Lie algebra symé& over R with
respect to the Jacobi bracket
ap ap
P} = —Ds(p)—=—D . 14
(0.0 =1 (5200() - 52-Do(0)) a4
A solution u to Eq. (1.1) is said to be invariant with respect to a symmetry @ € symé’ if it enjoys
the equation

go(x,...,%tl—u,...)zo. (1.5)
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The reduction of & with respect to @ is Eq. (1.1) rewritten in terms of first integrals of Eq. (1.5).

2. The universal hierarchy equation

Recall that the equation is

E0.1): Uy = Ugllyy — Uyllxs.

2.1. Symmetries
The defining equation for symmetries for this equation is
D§(¢) = u; DDy (@) — uyDxD (@) + yyD; (@) — . Dy (9). 2.1
Its solutions are
Q1 = yuy +u,

P2(X2) = Xoux — Xou,

03(Z3) = Zyu, + Zyyuy,

P4(Zs) = Zauy,

¢5(Xs5) = Xs,

where X; are functions of x, Z; are functions of z and ‘prime’ denotes the derivative with respect to
the corresponding variable. The commutator relations are given in Table 2.

¢ %) ¢ (%) Pa(Z4) ¢5(Xs)
[ 0 0 0 04(Z4) —s5(Xs)
PX) | ... XX -X%X) 0 0 @5(XsX; — XpX5)
®(Z3) | ... ... 0(BY,-1aY;)  eu(Ya¥j—1s¥)) 0
(P4(Z4) 0 0
(pS(X5) 0

Table 2. Lie algebra structure of sym&q.1)

2.2. Reductions
Thus, the general symmetry of Eq. (0.1) is
0 =Xou,+ (ay +Z§y+Z4)uy +Zzu, + (o —Xé)u + X5,
where o € R is a constant. Thus, invariant with respect to ¢ solutions are given by the system

dx dy dz du
—= === 2.2)
X (a+Z3)y+Z4 Z; (a —X,Z)u +Xs

We consider the following basic cases below:

Case 00 X, =0,7;=0;
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Case 01 X, =0,7Z3 #0;
Case 10 X, #0,Z3 =0;
Case 11 X, #0,Z3#0.

Let us study them in detail.

2.2.1. Case Q0
System (2.2) takes the form

Its integrals are
(ay+Z4)u+Xsy =const, x=const, z=const
and the general solution is given by
¥((oty+Z)u+Xy,x,z) =0,

where Z = Z4, X = Xs. Hence,

P(x,z) — X
— —_(a’ ;ZLZ Y. (2.3)

To simplify the subsequent exposition, we consider two subcases:
Subcase 00.0 o = 0;
Subcase 00.1 o #0.
Then we have:
Subcase 00.0 After redenoting @ — ®/Z, Z # 0, we have

u=(x,7) - ’% @.4)

Substituting to Eq. (0.1), one obtains

1
2 M (X@xz —Xl¢z) = 0,

which leads to the following class of solutions

D(x,z), ifX=0,

XP(z)+QO(x) — )%, if X #0.
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Subcase 00.1 Making the change ® — ® — XZ, one gets

Ty+zZ

Substituting to (0.1), one arrives to the equation

20 = 0D, — O, D,

After the change ® = ¢¥ we obtain the Liouville equation

¥, =27,
see, e.g. [4].
2.2.2. Case 01
Now we have
dx dy _dz du

0 (a+Z)y+2z4 T 7 autXs

The integrals of the system are

adz Xs adz
uexp / Z + Z—Sexp / Z dz = const, x = const,

o+ 7 Z a+Z
yexp <— Z 3 dz) — / Z—:exp (—/ ;3 3dz) dz = const.
We introduce new functions

dz - Zy /a+Z§
z=[2 z=[Z _ dz) dz, X =2X;.
/ 7% / Zs e"p( 7z ¢4 >

Note that Z’ # 0, We again distinguish two subcases:

Subcase 01.0 aa=0;
Subcase 01.1 a #0.

Let us study them.
Subcase 01.0 In this case, the system of integrals transforms to
u+XZ=const, x=const, yZ'—Z=const,
and thus
Y(u+XZ,x,yZ ~Z)=0 (2.5)
is the general solution. Consequently,
u=®(x,&)-XZ,
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where & = yZ' — Z. Substituting the last expression to Eq. (0.1), we obtain the equation

Dgp = XDy — XDye. (2.6)

When X = 0, we obtain the solutions

u=ay(yZ' —Z) +ay, a; = a;(x).

If X # 0 Eq. (2.6) can also be solved and the general solution is

u="a® (yZ'——Z+/%) +af(x),

where ® is an arbitrary function in one argument.

Subcase 01.1 We can set o = 1 and the general solution is
Y((u+X)e?,x,2' e 2y~ Z) = 0.
Hence, after the change Z +— InZ, we have
‘= %@(x, £)-X, @7

where & = Z'y/Z? — Z. Substituting (2.7) to Eq. (0.1), one obtains

Dz = Dy — POy

2.2.3. Case 10
System (2.2) is now of the form

dx  dy dz du

X, oy+Zs 0 (a—XD)u+Xs

Then the integrals are

uexp(/ _X2d> / (/ 2X2dx>dx=const,

ex _/adx Z4 ex _/adx dx = const, z = const
yexp X, Xz p % = ) 2= .

Let us introduce the notation

dx X5 o—X, _
X2 =X, ECXP(/ % 2dx)a'sz, Zy=Z

and consider the subcases

Subcase 10.0 a =0;
Subcase 10.1 o #0.

Consider them in detail.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
649



H. Baran, LS. Krasil' shchik, O.1. Morozov, P. Vojédk
Subcase 10.0 In this case the general solution is given by
Y(X'u+X,y—XZ,2)=0, X #0,
and thus
1 _
u= fq)(évz) =X,

where £ = y — XZ. Substituting this expression to Eq. (0.1), one obtains

(1 +Z¢Z)CI>§§ = Zq);::q)gz +Z/q>€ .

The equation can be solved explicitly. Indeed, dividing b ®? one obtains
& 0y D¢

Dot i, PePe— PP

v 2 ’
<I>§ <I>g
or
(&), #=2(3),
P/ P/
Hence,
1 ] o,
- _ =7-=

where ¢ = ¢(z) is an arbitrary function. Thus,
Z®,+ (Z'E+ @)D = -1

and

o=1¢-9)- [%

is the general solution, where § = Z [ %dyz.

Subcase 10.1 We may set & = 1 and then obtain the general solution in the form

¥ (X'ue* +X,e7*(y+2),2) =0,

or, after the change X — InX,

where & = (y+Z)/X. Substituting to (0.1), one has

(1 +§(I)Z)<I)§§ — &P P, + PP, =0.
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22.4. Case 11
‘We have here

dx _ dy _dz du
X, (a+Z)y+Zy Zz  (¢—X)u+Xs’

where X, # 0, Z3 #£ 0. The integrals are

o—X, -X d d
uexp (/ % 2dx> (/ 2dx) x:const,/)—fg—/z—: = const,
Z Z!
yexp (— ;3 dx )‘/Z—:EXP (—/OHZ; de) dx = const.

As before, we introduce the notation

Xz_X’/X (/ a') =X, 23_2’/23 ( 3 dx ) dv=Z

and consider two subcases

Subcase 11.0 o =0;
Subcase 11.1 a #0.

Then we have:

Subcase 11.0 The general solution is given by
Y(X'u+X,Zy-7Z,X~-Z)=0

in this case and thus

u= W, E=Z'y-7Z, n=X-12Z

After substituting to Eq. (0.1), one has

Pig = P Pyn — Py Pen-

The equation can be linearized by the Legendre transformation, [12].
Subcase 11.1 Setting o = 1, we obtain the general solution

W(X'eXu+X,Z'e%y—2,X-7Z)=0
and, after the change X — InX, Z — —InZ, one has

u= qé’){ﬁ’ 5 =Z’y—Z, n= ln(XZ). (2-9)

Substituting (2.9) to (0.1), we obtain the equation

Py Pzy — PePon = €7D
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3. The 3D rdDym equation
As it was said above, the equation is

E02):  Usy = Uxlxy — Uyllyy.
3.1. Symmetries
Symmetries of Eq. (0.2) are defined by

D/Dy(9) = DDy (@) — uyD3(9) + ryDo(9) — s Dy (). (3.1)

Solutions of (3.1) are

O1 = xuy —2u,

1
0 (T2) = Touy + Ty (xu, — u) + ETz"xz,

(03(Y3) = Y3uya
04(Th) = Taux + Ty,
(PS(TS) = TS,

where ¥; = Yi(y), T; = T;(¢) and ‘primes’ denote the derivatives. The commutator relations are given
in Table 3.

o (D) ¢3(1)  @u(Ta) ¢s(7Ts)
? 0 0 0 04(14) 2¢5(T5)
%(R) | ... @bBX-BT) 0 o(LT -DT))  os(I5T, — BI3)
o) | ... ... 0 0 0
Pa(Ta) | ... ... os(TuT{ - TT;) O

Table 3. Lie algebra structure of sym &g 2

3.2. Reductions
The general symmetry of Eq. (0.2) is

1
¢ = (ax+Tix+ To)uy + Yauy + Doy — (200+ T3 )u+Ts + Tyx + ETZ”xZ,

where ¢ € R is a constant. Consequently, @-invariant solutions are defined by the system

dx _dy dt du
@I AT ¥ B a+Tu—To-Tix— 3y G
(a+T)x+T4 3 2 Qu+T)u—-T5-Tjx—5T,'x

In what follows, we consider the following cases

Case 00 ¥3=0,1, =0;
Case01 ¥3=0,T7 #0;
Case 10 340,75 =0;
Case 11 Y3 750, T #O.
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3.2.1. Case 00
Eq. (4.2) takes the form

dx dy dt du
ax+Ty 0 0 20u—T5—Tjx

As before, two subcases must be considered:

Subcase 00.0 a =0;
Subcase 00.1 « #0.

One has the following:

Subcase 00.0 Here we have

dx dy dt du
T, 0 0 T5+Tx

and the general solution is given by
1 -
v (u+ —2—Tx2 + Tx,y,t) =0,
or
1 -
u=>o(yt) - ETXZ —Tx,
where T =T, /T4, T = T5/T4. Substituting (3.3) in Eq. (2.9), we obtain

The general solution is

@ = p()e! T + y (),

which leads to the following family of solutions to Eq. (2.9):

u=@(y)el T4+ y(r) - %sz ~Tx.

Subcase 00.1 Setting & = 1, we obtain
dx dy dt du

4T3 0 0 2u—Ts—Tix
The general solution of this system is

u=(x+T) @00 +T'(x+T)+T,

where T =Ty, T = (T5s — T4T}) /2. Substituting to (0.2), we obtain the equation

¢yt = 2¢¢))”
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Integrating over y, we come to the Riccati equation
=&+ (1)
Thus, to any choice of ¢ there corresponds a family of solutions to Eq. (0.2).
Examples. Let us consider some particular cases.
(1) If o =0then
-1
v—t

Here and in all the examples below W is an arbitrary function of y.
(2) For ¢ = a?, a = const, one has

® = atan (a(t + v)).

(3) If ¢ = —a® then

1 + eZa(t+l[l)

@ = al — g2a(t+2y)

(4) For ¢ =1t¥, x € R, one has

P A 3k 23%H\ Lieq1 1 3 3k o125
W (53 )+ wi( )ﬂ Y( )+Y (53,255

b= K+2' K+2 Kk+2° x+2 K+2) xk+2 x+2?
ﬂ x+1 %3 rc+1)
(IVJ(K+2’ K+2 )+Y(x+2’ x+2 ))
where

oo (—l)m 0 2m+a
160)= % imiasn(3)

m=0
J(a,0)cos(am) —J(—a,0)
sin(ar)

Y(a,0)=

are Bessel functions of the first and second kinds, respectively.
(5) If p =¢, then

B yY(1,2e2) J(1,2e3) ok
WY (0,2¢%) +J(0,2¢5)  w¥(0,2e%)+J(0,2e2)
(6) For ¢ = (1—1)/(1+1) the solution is

2y Ei(1,—2—2¢)t + we** % +2¢

®=
2y (1+¢)Ei(1,—2—2t) + 2t + pe2t2 + 2’

where

o ,—0Ot
. e 'do
Ei(a,1) = fl -

is the exponential integral function.
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3.2.2. Case 01

We have
dx dy dt du

n = (2a+T2’)u_T5_7xx_%Tzux27

(@+T)x+Ty 0

where T, # 0. Its integrals are

T'xe T — T = const, y = const
4 )

- - (TY _ _
T'ue 2T +-T + (aT + (F) ) (T'xe T —T) — TP (T'xe=*T — T)? = const,

where
dt .
T= | =, T=/(T4-(T’)2-e“”) dt,
1;
- 1., -
T:/(Ts-(T’)2-e—Z“T+7:{-T-T'-e-°‘T+5T2”-T2> dt.

Then the general solution is

- = _ T\ -
V) (T’xe"aT T,y T'ue"zaT‘f‘T‘i' (aT+ (F) ) (T'xe—aT —T)

1 TII _ _
—E(T,)z(T'xe aT—T)2> =0,
or
- _ T / 1 TII eZaT
= ~T—laT+ (= g2
’ (fb(é,y) P (a +(T,))5+2(T,)2§) -
where

E=T'xe T —T.

Substituting to Eq. (0.2), one obtains

(@€ + D¢ )Py, — Py (Pee +20) = 0. 3.5

3.2.3. Case 10
The defining equations are

dx d_y_ﬂ_ du

D e 3.6
oax+T; Y3 0 2au—T5—T4’x’ (3-6)

where Y3 # 0. Below we consider the following subcases:

Subcase 10.00 ¢ =0,7, =0,
Subcase 10.01 a =0, Ty #0;
Subcase 10.1 o #0.
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Subcase 10.00 In this case, T5 # 0 and System (3.6) takes the form

Denote 75 = T. Then the integrals are
x=const, t=const, u+YT =const.
Then the general solution is given by

Y(u+YT,x,t) =0,

or
u=o(x,t)-YT.
Substituting to Eq. (0.2), one obtains
—Y'T' =Y'T®,,
or,since Y =1/¥3 #0,
TI
P =~

This delivers us the following family of solutions:

u= —%xz +o(t)x+y(t)-YT.

Subcase 10.01 The defining equations are now

Let us introduce the notation Ty =T, T5 /Ty = T. Then the integrals are
T -
x—YT =const, t=const, u+ ﬁxz + Tx = const
and the general solution is
T -
Y(u+ ﬁxz +Tx,x—YT,t)=0,
or
T -

where £ = x — YT. Substituting to (0.2), we obtain the linear equation

T -
(?é + T) Pz + P, = 0.
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The general solution of this equation is

e=@MmT+y{), n= %—/;dt,

which gives the family of solutions to (0.2):

u=o(m)T + v(t) - ;F—sz—fx.

Subcase 10.1 We can assume & = 1 and the defining equations become

d. dt d
* _pay=fo A
x+Ty 0 2u-T5-T)x

The integrals of this system are

u—T T’
(x+T)2 x+T

(x+T)e™" =const, ¢ = const, = const,

where T =Ty, T = (Ts — T'T) /2, and thus the general solution is

u—T T’ _
T((x+T)2 —x+T(x+T),e Y,t) =0,

or
u=(x+TP2EN+T' x+T)+T, E=x+T)e".

Substituting to (0.2), one obtains the equation

Dy, = 4DD; — EDF + 25D

3.24. Case 11
Letus set Y’ =1/¥3 # 0 and T’ = 1/T; #. Then System (3.2) becomes
dx du
= Ydy=Tdt= 2
@+ Tx+n Qa+Tu—Ts— Tjx— 1T

The integrals are

T'xe *T —T =const, Y —T = const,

. _ [ TY I B 4 _
T'ue™* + T+ (OtT + (F\) ) (T'xe " —T) — EW(T’xe_aT —T)? = const,
where, as before,
T = %, T=[(Ty-(T') e ") adr,
2

= 1 -
T=/(Ts.(T')2-e—2“T+T;-T-T’-e‘“T+ET;'-TZ) dr.
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Thus, the general solution is given by

7 !
¥ (T’xe‘“T —T,Y—T,T'ue T +T + (af + <_) ) (T'xe=%T —T)

or

_ 7\ 7/ 7 eZaT

E=T'xe T —T, n=Y-T.

where

Substituting the last expression to Eq. (0.2), one obtains

4. The modified Veronese web equation

The equation is
B03): Uty = Urlhyy — Uylipx.
4.1. Symmetries
Symmetries of (0.3) are defined by
DyDy(9) = w,DyDy(9) — uyDiDx(@) + usyDi (@) — urxDy(9), (4.1)

whose solutions are

o1 (1) = Ty,

0 (X2) = Xouy — Xyu,
¢3(Y3) = Yauy,

01 (Xy) = Xa,

where X; = X;(x), ¥; = Yi(y), and T; = T;(t). The commutator relations in sym &g 3) are given in
Table 4.

4.2. Reductions
The general symmetry of Eq. (0.3) is
¢ =Xouy+ Yauy + Tiuy — Xqu+ Xy

and the corresponding invariant solutions must satisfy the system

dx dy dt du

— === 4.2

X 3 T Xu-X4 (4:2)
We consider below the following cases:
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¢1(Th) P2(X2) P (1s) Ps(X4)
o1 (1) (P](T1T1’ — T]T{) 0 0 0
®(Xz) | ... 0 (XX, - XoX7) 0 04(X4X3 — XpX3)
o) | ... (P3(Y3Y3{—Y3Y3’) 0
(p4(X4) 0

Table 4. Lie algebra structure of sym & 3)

Case 100 X2 # 0, Y3 = 0, Z4 = 0;
Case 010 X, =0,Y3#0,Z4 =0;
Case 001 X, =0,Y3=0,Z4 #0;
Case 011 X2=0, Y3#0,Z47&0;
Case 101 X, 75 0,3 =0,274 79 0;
Case 110 X2 #0,13#0,Z, =0,
Case 111 X, #0,Y3#0,Z4 #0;

and use the notation 1/X, = X', 1/Y3 =Y’, 1/Z4 = Z' when it is well defined.

42.1. Case 100
The defining equation is

dx _dy dt _ du
X 0 0 Xu—-Xi

The integrals are
Xu—X = const, y = const, t = const,
and thus
Y(Xu—X,y,t)=0

is the general solution, where X = [ X4X’ dx. Consequently,

D(y,t)+X
—

Substituting to (0.3), one obtains

Hence, ® = ¢(y)+ w(¢) and

is a family of solutions to (0.3).
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4.2.2. Case 010
The defining equation is

de dy dt  du

0 ¥ 0 X4
The integrals are
u+XY =const, x=const, = const,
where X = X4. Then
W(u+XY,x,t) =0
is the general solution and
u=®(x,t)—XY.

Substituting to (0.3), one obtains ¥’ (X®,; — X'®;) = 0 and since ¥’ #0,

XDy —X'®, =0.|

Thus, if X = 0 we obtain the obvious family of solutions
u=>o(x,t).

If X # 0 the corresponding family of solutions is

u=Xo(r)+y(x)—XV.|

4.2.3. Case 001

The defining equation is

dx _dy _di__du

0 0 T Xy

Then, again denoting X = X4, we get the integrals
u+XT =const, x=const, y=const
and the general solution in the form
Y(u+XT,x,y) =0,
or
u=®(x,y)—XT.

Substituting to (0.3), one obtains
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since T’ # 0. Then in the case X = 0 we get the family of solutions

|u=2(x,y)

and when X # 0 the family

u=Xo@y)+ y(x) - XT.

424, Case 011
The defining equation is
dr _dy_di__du

0 ¥ T Xy
Its integrals are
x=const, Y —T =const, u-+XY = const
and the general solution is
Y(u+XY,x,Y —T) =0,
or

u=0(xE Xy, E=Y-T.

Substituting to Eq. (0.3), one obtains

Bz = X,z — X'D;.

If X = 0 then

u=@(x)+y¥ -T)-XY.

In the case X # 0 the corresponding family is

u=X<p(Y—T+/d3;f)+w(x)—XY.

4.2.5. Case 101
The defining equation is
ds_dy_di__du
X, 0 T Xu-X
The integrals of this system are
X'u+X =const, X—T =const, y= const,
where X = [(X')2X4dx and the general solution is given by

®(X'u—X,X—T,y)=0,
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or

20,0 +X

>  E=X-T

After substitution to Eq. (0.3) one obtains

(1 +‘I>§)(I>y§ = (qu)éé.

The general solution to this equation is

¥=T(E+v0)-¢,

where Y is an arbitrary function in one argument, and thus we get the family of solutions

YX-T+y(y)-X+T+X
XI

u=

to Eq. (0.3).

4.2.6. Case 110

The defining equation is

dx _dy _di_ _du

X, 5 0 Xu—Xs4
The integrals of this system are

X'u—X =const;, X—Y =const, y= const,
where X = [(X’)?X, dx and the general solution is given by
Y(X'u+X,X—Y,y)=0,

or

L, P08 +X

212, &=X-T.

Substitution to Eq. (0.3) leads to

(1 +(I>§)¢’t§ = Dy P

Similar to the previous case, we solve this equation and obtain the following family of solutions to
Eq. (0.3):

u_r@—Y+wu»—X+Y+X
- i g
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4.2.7. Case 111

The defining equation is

dx _dy _dt _ _du
X2 v T Xu-Xi

The integrals are
X'u—X =const, X—Y =const, X—T = const,
where, as before, X = [(X')2X4dx. This delivers the general solution
W(X'u—%,X-Y,X-T) =0,
i.e.,

L PEm+X

o §=X-Y, n=X-T

Substituting to (0.3), we obtain the equation

DDge + (P — P — 1) By — PP = 0. (4.3)

The equation linearizes by the Legendre transformation, [12].

5. Pavlov’s equation

The Pavlov equation reads

E04): Uy = Uy + Uylley — Uxllyy.

5.1. Symmetries
The defining equation for symmetries of (0.4) is
D3 (9) = DiDx(9) + uyDi(P) — uxDaDy(@) + xDy(P) — iy Ds()- 5.1)
Its solutions are
¢1 = 2x — yiuy,
02 = 3u — 2xuy — yuy,
95(79) = T + T e+ 3ty — )+ 57 (P — 29) = 7,
0a(T) = T — Ty,
B5(13) = Ty + Tt —3) — 3 T35
96(Ts) = Te,

where T; are functions of z. The Lie algebra structure in sym &g 4) is given in Table 5.
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¢ 0 ¢(D) ¢a(Ta) o5(T5) 6(Ts)
¢ 0 o O 205(14) —24(T5) 0
¢ .. 00 —2¢u(Ty) —¢s5(T5) —3¢5(Ts)
03(T3) »(BTL -BE) e(Lh-1I) os(LL-BL) ¢(Ih-BI)
oa(Ty) | ... .. 0 ¢(I5T —Tuls) O
Os(Ts) | ... .. ... oo(TsT: —T5T2) 0
96(7s) : 0

Table 5. Lie algebra structure of sym &g 4

5.2. Reductions
The general symmetry of Eq. (0.4) is

1
¢= (—ay— 2px+Tx+ ;Y + T+ T5’y> wy+ (—By+ Tsy+ T5)uy + Ty

1 1
+(3ﬁ—.’l§')u+2ax—T3"xy—6 "'y3—Tx—§T5y +Ts— Ty,

where o, B € R are constants. Then the @-invariant solutions are determined by the system

dx _ dy _ £1£
(T -2B)x+(Ti—a)y+iniy+1, (L-Bpy+T T
_ du .2)
(I3 (T —2a)x+ Ty + Txy+ 3Ty + Ty Ty
We consider the following tree of options:
‘ .| CaseO|— -m - » -m
‘ éﬁ(r) T J J, ‘ l
Case 1: | Subcase 01: Subcase 001: Subcase 0001: Subcase 00001:
T3#0 B#0 Ts#0 a#0 I, #0
5.2.1. Case 0
The defining equations are
dx dy dr du

2Px+(T{—o)y+Ta  —By+T5 0  —3fu+(T{—20)x+Tjy+ LTIy~ T5’
Due to the above picture, consider the following subcases:

Subcase 00001 §=0,T5=0,x=0,74 #0;
Subcase 0001 B=0,75=0, ¢ #0;
Subcase 001 f=0,7T5 #0;

Subcase 01 B # 0.
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Subcase 00001 The defining equations are

dx_dy _dt_ _du
T, 0 0 Thy-Ts

Then the integrals are
u— (Ty—T)x = const, y = const, t = const,
where T =T, /Ty, T = Ts /T Thus,
W(u—(Ty—T)x,y,t)=0
is the general solution and
u=®(,1)+ (Ty—T)x.
Substituting to Eq. (0.4), one obtains
@, = (T'-TH)y+TT - T,

which gives the family

1 1 _
u=c(T'- )y + ST - TV + @)y +w(t)+ (Ty—T)x.

of exact solutions to (0.4).

Subcase 0001 We may assume & = —1 and the defining equations become

dx _ﬂ_ﬂ_ du
y+Ts 0 0 2X=x+Tjy—Ts

Then the integrals are
(y+ Ta)u—x* — (Tjy — Tg)x = const, .y =const, t= const.
Consequently, the general solution is given by

R4 ((y+ Ty)u—x* — (Tjy— To)x,y,t) =0

and thus
Lo} 'y — T
y= 2O+ + Ty~ Te)x. (53)
y+1
or
- 2 —Tx
=®(y,t)+Tx+—==,
u=>o(yt) SET

where T =Ty, T = T, T + Ty. After substituting to (0.4), we obtain the equation

29,
yy_y+T

" T/ TZ

+T" - + .
y+T  (y+T)3
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Solving this equation, we obtain the following family of solutions to Eq. (0.4):

22 —2Tx+ T2

_ 3_1 " 2 1—/
=pOO+TP =T O+ TP 45T 0+ )+ ="

+T'x+ y(t).

Subcase 001 The defining equations are
dx _dy _dt _ du
(Ti—ay+Ty Ts 0 (T-2a)x+T)y+iTiy-Tg

Let us introduce the notation T = 1/Ts, T = Ty/Ts, T = Ts/Ts. Then the integrals acquire the form
1 /T 7
t=const, x4 A +aT ) y°—Ty = const,
1 TII TI _
u+ (67 +al' += a2T2> = (T"+2aTT)y* + (<? +2aT) x—l—T) y = const.
Hence, the general solution is
1 TII TI -
‘P(u+ (———-HxT +-a T2> T’+2aTT)y +((?+2aT)x+T)y,

6T
1/7 -
| =—4aT = =
x+2(T+06 )y2 Ty,t) 0,
or

17" 2 1. _ T
u=®E,1)— <——+aT’+ asz) y3+§ (T'+20TT)y* - ((7

£ T 3 +2aT>x+T)y,

where
1 /T i}
.‘,‘=x+§ (7+aT) y> —Ty. (5.4)

Substituting to Eq. (0.4), one obtains

! - — -
((%+2aT)§+T2+T) Qg — Dy, — 0T P +T' +20TT = 0.

Of course, the equation can be solved explicitly, though the final result is too cumbersome: it is

easily shown that
q’é — (Z <§ef“dt—/befadtdt> +/ceadetdt> e_adet,

where Z is an arbitrary function in one variable and

T! _ = - _
a= 7+2ch, b=T?>+T, c¢=T'+2aTT.

Thus,
d=7 (‘Sefadt _ /befadtdt> e—2adet+ </Ceadetdt) ée_adet-f-(p(t),
and the corresponding family of solutions is
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u=2 (é’ef adt _ / be! "‘”dt) e2e Tdr ( / ce®’ T‘”dt) Ee T4 4 gt

17" 1. _ T -
— (g?+aT’+§a2T2) y3+5 (T'+2aTT)y* - ((? +2aT> x+T) y

with & given by (5.4).
Subcase 01 Since 8 # 0, we can set § = —1 and the defining equations become
dx _dy dr du (5.5)
2+ (T —a)y+T y+T5 0 3u+(T{—20)x+Tjy+iTi¥ T '

Let us introduce the notation T = 75, T = Ty — T5(7¢ — ). Then the integrals of (5.5) are

x+3T T«

t = const, + = const
y+7T)* y+T
ut (3TN —20)+ 3T (T'—a?+4iT" 1 77 const
y+7T)3 (y+T)? 2y+T ’
where

| o 1
T = —E(T’—Za)T— (T'+T1'(T" - a)+TT”)T+-2—T2T”—T ,

Consequently, the general solution is

w (u+(x+ IT)(T —20) + 4T

(T'—a)*+37 1 1
O0+1)° i

(y+T)?

x4 5T L= )
2y+T’ (y+T)*  y+T’ ’

or

W=
u’ﬂu

4= O+ TPO(E )= 510+ Tf = (' =@+ 57') 0+ 1) - (7' ~20) 5+ 37) -

where

£ x+1T +T’—a
T O+T? " y+T

Substituting to Eq. (0.4), one obtains

(487 —3®)®g; — D, — 6EPg + DF + 6D = 0.
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5.2.2. Case 1

The defining equation is now

dx dy _dt
(T —2B)x+ (T — Qy+ 3Ty + T (G—By+T5 T
du

(T =3B)u+ (TL—200)x + Ty -+ Ti'xy+ ATIy2 + LTy — Ty
and since T; # 0 we may set T’ = 1/T3. The integrals are

T'yeBT — T = const,

T'xe?PT + %T;éz — ((%)’ - BT’ — ak(ﬁ)) & — T = const,

T'uePT — Ty — Tyo& — Torm — Tao&% — Ti€n — Tao® = const,

where
é = leeﬂT - Ta
1 Y
n=Tx*"+ ETs'éz - ((7) BT’ - ak(ﬁ)) £—
T= / Ts(T')%ePT dt,
T= / (T4(T PePT 4 (TL — a)TT'ePT + 2T"(T)2>
T; / T”TT+ L’ 3 TTT + (T{ —2a)T' + . BT —Ty(T')?ePT ) dr

TIII(T) - T ! 7
Tm:/( R (T+ ((F) —ak(B) - BT
!

+ (TS”T+ (T3 —20) ((T,) — ak(B) —ﬁ7>> eﬁT+T4'T'ezﬁT) d,
-t o)

([T (T k LHF) 4L (1 - (1 —20)T") T | d
I= T3 2T/+ T’ —ak(B)— T_§3 +§(5_(5_ a)T')e &
m :/TéldtzTé’

Ig” 1 1 1 2
o= | (@—sz”Ts’ d=gBTh— 31
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and
T
k(ﬁ):/TleﬂTdtz 77 ﬁ;é(),
T, B=0.

Thus, the general solution is

_ (@& m) +Too + T1o& + Tonn + 108> + T1nén + 108>\ spr
u= T ePr, 5.6)
Substituting (5.6) to Eq. (0.4), one obtains
Pyr = (BE — Py) Pey+ (281 + @k + g ) Py — BPr — 20K,
where
K= ePT — Bk(B),
i.e.,
K:{a B #0,
é’ .B =0.
Thus, the reductions are
@ge = (BE — @) Pey + (281 + Pe )Py — By
for B # 0 and
Dy = (a6 +Pg )Py — PnPgpy — 202 (5.7)

for B = 0. Note that in the case a # 0 Eq. (5.7) transforms to the Gibbons-Tsarev equation (see [9])

Pzz = PePan — PnPen — &

by @ s @ — aé?/2.

6. Summary of results

Below, a concise exposition of the obtained results is given® in Table 6 on p. 28.
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Eqn | dim(sym&) Reductions Comments
(0.1) | 1400"* 4002 X®,—X'P,=0 Solves explicitly
20 = dd,, — P, P, Transforms to
the Liouville eq.
Dpp = X'Pg — XDy Solves explicitly
Dpr = DDy — DD,
(14+ZP,)Pgp = ZPe Py, + 7' CI% Solves explicitly
(1+ éq)z)q)gg - éq)éq)éz +(I>§q)z =0
Dig = PPy — Py Pey LLT
CI)T,(I)E n— ‘I’E‘I’Tm = e"fb_::
(0.2) | 1400'Y 400™ d, =T, Solves explicitly
P, =200, Reduces to
the Riccati eq.
(06 + g )Pey, — Py (Pge +200) =0 Solves explicitly
T®, =T Solves explicitly
fora=0
T®,, =T Solves explicitly
(TT'C + T) Dpe+Pg =0 Solves explicitly
D, = 40P — EDF +25 DD
Dy + (06 4+ Py) Py = P2+ ;) LLT for ¢t = 0
(03) | 0™ F 400!Vt ool ? | @y =0 Solves explicitly
Xo, —-X'®, =0 Solves explicitly
X®,, - X'®,=0 Solves explicitly
Dy = XDy — X' Solves explicitly
(14 @) Py = Pyde, Solves explicitly
(1+Pg)Pye = DD Solves explicitly
By ®D:: + (By — s — 1)z, — PPy =0 LLT
(0.4) | 2+ oo™ ®,, = (T'—T*)y+TT T’ Solves explicitly
d,, = ZT,%_TT, +T"+ G%;—)g Solves explicitly
((%’ + 2aT) E4+T%+ 7="> D Solves explicitly
~®g — AT Dg + T'+20TT =0
(482 —30)@¢; — Py, — 66D +BF +62 =0
Opr = (BE — @) Pey+ (281 + P )Py — fPy | LLT for f =0
‘I’.ﬁg = (a§ -I-CID{; )‘I’rm — ‘an’én -2 Reduces to the
Gibbons-Tsarev
eq. fora #0
LLT for ¢ =0
Table 6. Summary of reductions
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Abstract

In this paper we classify Weingarten surfaces integrable in the sense of soliton
theory. The criterion is that the associated Gauss equation possesses an s[(2)-
valued zero curvature representation with a nonremovable parameter. Under
certain restrictions on the jet order, the answer is given by a third order ordinary
differential equation to govern the functional dependence of the principal
curvatures. Employing the scaling and translation (offsetting) symmetry,
we give a general solution of the governing equation in terms of elliptic
integrals. We show that the instances when the elliptic integrals degenerate
to elementary functions were known to nineteenth-century geometers. Finally,
we characterize the associated normal congruences.

PACS numbers: 02.30.1k, 02.30.Jr, 02.40.Hw

Mathematics Subject Classification: 53A05, 35Q53

1. Introduction

Already the classical works of nineteenth-century geometers have established a
major connection between differential geometry and the theory of partial differential
equations. Powerful solution-generating techniques, such as the Bicklund and Darboux
transformations [36], have origins in the prototypical relationship between pseudospherical
surfaces and solutions of the sine—Gordon equation.

Methods available for solving nonlinear partial differential equations were substantially
extended in the 1970s to include the inverse scattering transform and its numerous
developments; see, e.g., [8,15,29,42]. An important open problem is to describe the class
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of partial differential equations solvable by these powerful methods. Indirect detectors such
as the symmetry analysis have been involved in obtaining extensive complete classifications
of integrable evolution equations and systems; see [31] and references therein. The known
theoretical answer given in terms of the existence of the associated one-parametric zero
curvature representation

Ay — B, +[A,B]=0

has been considered as a classification tool in conjunction with the gauge cohomology by
one of us [28]. These methods are not limited to evolution equations, although the necessary
computations are rather complex, resource consuming and unthinkable without substantial
use of computer algebra. However, certain partial differential equations of geometric origin
are particularly well suited for this classification method, namely the Gauss—Mainardi—
Codazzi equations of immersed surfaces. These equations always possess an associated
linear zero curvature representation, albeit without the spectral parameter. If a nonremovable
parameter can be incorporated, then the corresponding class of surfaces is said to be integrable,
see [7,36,37] and references therein. There exists a remarkable way to associate surfaces with
solutions of integrable equations—the generalized Sym-Tafel formula [10, 18, 19, 37].

Since their introduction by Weingarten [39], immersed surfaces in R that satisfy a
functional relation between the principal curvatures have been of continuing interest in
differential geometry, see, e.g., [21,23,25,38]. It is therefore not surprising that attempts
have been made to identify classes of Weingarten surfaces such that the corresponding Gauss
equation is integrable in the sense of soliton theory. The work of Wu [41] and Finkel [17]
indicated that all integrable cases are classical, characterized by a linear relation between the
Gauss and the mean curvatures (linear Weingarten surfaces [13, section 812]; see also [20, 40]
and references therein). In other words, the integrable Weingarten surfaces were conjectured
to be either minimal or parallel to surfaces of constant Gaussian curvature. This conjecture
was, however, disproved by the present authors in [1], henceforth referred to as part I. In part [
we found another integrable class, consisting of surfaces with a constant difference between
the principal radii of curvature, which we called surfaces of constant astigmatism. Surprisingly
enough, this extra class turned out to be classical as well, apparently first mentioned by
Beltrami [3, chapter 9, section 20], covered by Bianchi [4] and Darboux [13], see also [34],
yet forgotten today.

In this paper we continue the work begun in part I and complete the classification of
integrable classes in the simplest possible case. The integrability criterion we adopt is the
existence of an sl(2)-valued zero curvature representation depending on a nonremovable
parameter. We apply the same method of formal spectral parameter, introduced in {28} and
briefly reproduced in part I. The underlying symbolic computations, done with the help of
Maple and our own package Jets [2], are omitted. To stay within the limits given by available
computing resources we had to restrict the jet order (order of derivatives).

The answer is given by a third-order nonlinear ordinary differential equation (10) to govern
the functional dependence of the principal curvatures. Incorporation of the actual spectral
parameter is achieved in section 3. This can be considered a proof of integrability, opening
up the possibility to obtain explicit solutions by the methods of soliton theory [8, 15,42].
However, we had to resign ourselves to following this road. Neither were we able to establish
a Backlund or Darboux transformation [26, 29, 36], which would allow us to construct families
of exact solutions depending on an arbitrary number of parameters. We only remark that seed
solutions could be conveniently found among the rotational surfaces, see [25, equation (1)].

The governing equation (10) is explored in section 4. We identify two basic symmetries,
scaling and translation (offsetting), and solve equation (10) in terms of elliptic integrals. The
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generic class of integrable Weingarten surfaces we obtained depends on one essential parameter
(apart from the scaling and offsetting parameters) and is believed to be new. In section 5 we
establish the integrable Gauss equation (39 in the generic case as well as in a number of special
cases when the elliptic integrals degenerate to elementary functions. All of these special cases
could be located in the nineteenth-century literature.

Geometrically, surfaces are related by an offsetting symmetry if they are parallel to each
other, i.e. if they share the same normal line congruence. Therefore, the offsetting symmetry
indicates that the concept of integrability naturally extends from surfaces to their normal line
congruences. Section 7 grew out of our attempt to characterize the normal congruences of the
integrable Weingarten surfaces. We obtain certain relations satisfied by suitably chosen metric
invariants of the pair of the focal surfaces. Naturally, we expect the corresponding focal surfaces
to be integrable as well, but a detailed investigation had to be postponed to the next paper.

2. Preliminaries

We consider surfaces r(x, y), parametrized by the lines of curvature. This is a regular
parametrization except at umbilic points. The umbilic points are isolated by the Hartman—
Wintner theorem [21] except for spheres and planes, which are, therefore, the only surfaces
excluded from consideration.
The fundamental forms can be written as
I=u?dx?+v2dy?,
2 2
m=2L ax?+ L ay? M
P o
where p, o are the principal radii of curvature. The radii transform in a very simple way under
the offsetting symmetry (21) of the integrability problem (unlike the principal curvatures
p=1/p,q = 1/c we used in part I).

Choosing the orthonormal frame ¥ = (r;/u,7y/v, ), we consider the Gauss-
Weingarten equations
u, u
0o -2 2 o Z o
u v u
y v v
v,=| = 0 0w, v,=|-—= 0 —|w 2)
v u v @
u
= 0 0 0O —— 0
P o
or, more explicitly,
Uy Uy u? 1
Tax = —Tx — —5 Ty +—mn, Ny = ——Tx,
u v
u Uy
Txy = —y-'l"_x + —’I‘y, (3)
u v
vor vy v? 1
Ty =——Ty+—=7,+—n Ny = ——Ty.
¥y SIS S v oY

Consequently, the Gauss—Mainardi—Codazzi equations, which are the compatibility conditions
for (3), read as
2.2

v uv
Ullyy + VU — —UgVUx — —UyUy + —— =0, )
i u v po
and
iy 0Py Ux POx

u+p(p—a)=07 7+U(U—P)= ©
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As with part I, we concentrate on Weingarten surfaces, which are characterized by the
existence of a functional dependence between p and 0. We often resort to a parametric
representation p(w), o (w) of the dependence.

Recall that parameters x, y label the lines of curvature; otherwise they are arbitrary. In
line with Finkel’s approach [17], we use this reparametrization freedom to solve the Mainardi—
Codazzi subsystem (5). The following proposition is a mixture of classical and new results.

Proposition 1. Away from umbilic points, a Weingarten surface can be parametrized by the
lines of curvature in such a way that

oo 0 o’

u=expf—dw, v=ex /—dw. 6)
(0 —p)p P (p—o)o

The Mainardi—Codazzi subsystem (5) is then identically satisfied, while the remaining Gauss

equation can be written in the compact form

Ry + S+ T =0, )

where R, S, T are appropriate functions of the unknown w. Moreover, the constraint

(l—l)uv=l (8)
p o

can be imposed as an additional condition, and then T = 1/(c — p).

Proof. Writing p(w), o (w) for some function w(x, y), the general solution of the Mainardi—
Codazzi subsystem (5) is

I I
u = ug(x) exp/ el dw, v = v(y) expf =L dw.
(6 —p)p (p —0)o

Obviously from formulae (1), the multipliers up(x), vo(y) can be removed by an appropriate
relabelling ¥ = ¥(x), y = y(y) of the surface’s curvature lines. With ug = vy = 1, we have

oo po’ ) po
Uv = ex + dw=c ,
p/((p—a)p (o — p)o o—p

where ¢ is an arbitrary constant multiplier. Setting ¢ = 1 by the same relabelling argument
proves the last relation.

Having solved the Mainardi—-Codazzi subsystem, we are left with the Gauss equation (4)
alone. Multiplied by 1/p — 1 /o, equation (4) can be written in the compact form (7), where

! l _
R= p—uz dw, S=-— -o‘—v2 dw, T = uzvzu. )]
02 o2 0202

Substituting 1/(1/p — 1/0) for uv completes the proof. ]

3. The classification result

Employing the Maple package Jets [2], we completed the computer-aided cohomological
classification outlined in part I. We have no computer-independent proof of the following
result.

Proposition 2. The third-order ordinary differential equation

" _ i{p"z _ p - lp,,+2(p’ — 1)p’(P;+ [}
2p p—a (p—o0)

p 10)
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determines a unique maximal class of Gauss—Mainardi-Codazzi equations of Weingarten
surfaces whose initial s\(2, C)-valued zero curvature representation

iu_y A SRR v
|20 2 | 2« 2
Ado=|"7, iuy |’ Bo=| T in an
20 2v 200 2u

admits a second-order formal spectral parameter under the condition that the normal form of
the zero curvature representation can depend on derivatives of u, v, o, p of no higher than the
first order.

Here and in what follows we assume that p is a function of ¢ and the prime refers to
derivatives with respect to o. A kth order formal parameter A means a power series in terms
of A up to order k. Part I should be consulted for the other unexplained notions.

Remark 1.

(1) The last proposition provides a complete classification of integrable Weingarten surfaces
under the following assumptions: the one-parametric zero curvature representation takes
values in the Lie algebra s1(2), includes the initial zero curvature representation (11) as a
member, depends analytically on the parameter and its normal form involves derivatives
of no higher than the first order. All these limitations can be overcome, in principle [27],
at the cost of requiring significantly more computational resources.

(2) We would like to stress that the only part relying on machine computations is the
completeness of the classification. All the other proofs in this paper are traditional.

In the rest of this section we establish integrability of the class determined by equation (10).
The equation itself will be solved in the next section.

Proposition 3. The nonremovable spectral parameter exists for all dependences p (o) allowed

by the governing equation (10).

Proof. Inspired by the results of the computer-aided classification, we depart from the
following ansatz for the parameter-dependent zero curvature representation:

Uy
01117 +a1100% apu
— uy ,
au —daiii 7 — 41100
Ux
bii1— + b1100y biav
B = u vy ,
biov —171117 — by100y

with a1, b111, @110, P110, @12, @21, by being the unknown functions of o. The problem is to
solve the zero curvature condition DyA — D, B + [A, B] = 0 for matrix functions A, B of
u, v, o, p and their derivatives. However, the derivatives are not independent quantities, being
subject to the Gauss—Mainardi-Codazzi equations. The proper way to deal with this situation
is to introduce the manifold determined by the equation and its derivatives (a diffiety [9]).
This is fairly easy if the order of derivatives is restricted as it is. Initially the derivatives are
considered to be independent (jet space coordinates). Considering p as a function of o and
solving the Mainardi—-Codazzi equations (5) for uy, vy, we can express uy, vy as functions
of u, v, 0, 0y, 0y. Similarly, the derivatives of the Mainardi-Codazzi equations (5) can be
solved for uxy, Uyy, Usx, Uxy, IVING Uyy, Uyy, Vxx, Uxy as functions of u, ux, v, vy, 0, 0%, Oy.
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Consequently, the Gauss equation (4) can be written in terms of u, ux, v, vy, 0, 0y, Oy, Oxx, Oyy,
and then solved for oy,. The explicit formulae are somewhat cumbersome, hence omitted.

With A, B chosen as above, the left-hand side § := Dy,A — D, B + [A, B] of the zero
curvature condition § = 0 is a matrix function of u, u;, v, vy, 0, 0y, 0y, Oyx, 0xy. From
05/00,, = 0and 35/90,y = 0 we obtain

b = —a, b11o = ano.

From either 325/302 = 0 or 3°§ /BO‘y2 = 0 we get aj;; = 0. Hence, a1 is a constant, which
we rename A in anticipation of its role as the spectral parameter.
Now, 35/d0, = 0 if and only if

A ap +a
ano= —t 22T P b+ Aan — an)), (12)

20(0—p) b2 oo —p)
while 35/d0, = 0 can be rewritten as
o ’
ail = 2ay10a12 + —p(au + 2)»b12),
p(p—o) (13)
) op’
a5 = —2an0a21 + ——— (a1 — 2Ab12).
plp—o0)
Modulo these relations, vanishing of § is equivalent to
A
b2 = (14)

~ po(ann —ax)

We claim that the governing equation (10) arises as the condition that system (12)—(14)
be compatible for arbitrary A s 0. To prove this, we denote P = ajp + ap;, @ = a12 — aa.
With a;19 and b, taken from formulae (12) and (14), respectively, equations (13) turn into

O'p’ - P2p3 4)\.2p’ 1

P, _ Po.p/_ Q2p3

) Q=0 + —, 15)
p(p—a) plp—0) p*p—o) Q
and the second equation in (12) into
p*(Q* — PHQ* + p (' — 1)P? +42%p' =0. (16)

Now the question is whether equations (15) and (16) are compatible. Modulo equation (15),
the derivative of (16) with respect to o is

2p6(P2_ Q2)P2Q2+2(1 —SPI)p4P2Q2—4PI)»2P2

+ (@3 + p20P)[40'0* 0% + (p — 0)p”" +2p"* = 2p'1 = 0. (17)
This is equivalent to
[(p—0)p” — 29 +2(1 +84%)p'1p* Q> + 422[(0 — 0)p” — 2p"* —20'1 =0 (18)

modulo (16), since (18) is the remainder after division of (17) by (16) as polynomials in P.
Similarly, dividing (16) by (18) as polynomials in Q, we get
[(p—0)p" =207 = 20"1[(p — 0)p” — 2p" + 2(1 + 8A3)p'1p* P?

— 41 +42D)[(o — p)*p" — 4p"* +8(1 +80H)p> —4p 1 = 0. (19)

Differentiating (17) once more and taking the result modulo (15), (19) and (18), we get the
governing equation (10) immediately.
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Summing up, we obtain a zero curvature representation

rop’ 1 p? 1
M A~ 2 _PpQe, ~(P+ Q)
Aa=| Plo—0)u 2p-o , 2 )
1 rAop’ u 1 p
(P — ———— =0y + = P
\ 2( Qu p(p —0o) v 20 —o Qox
A 1 p? A
R A Eorx =" PQo, v
g=| cle—o)u 2p-0 opQ
A Ap v 0
————0y+~———P
orva (7(,0—0r)ua)c 2p—o0 Qay
where P and Q are the square roots to be determined from equations (19) and (18),
respectively. Away from umbilic points (where p = o), matrices A, B actually exist

unless (p — 0)p” — 20> — 2p’ = 0 when P is undefined. This excludes exactly spheres
and the linear Weingarten surfaces. The latter surfaces are, however, well known to be
integrable, being parallel to surfaces of constant curvature (either Gaussian ormean), see [41] or
[36, section 1.5.2].

If A = i/2, then we have P = 0 and Q = 1/r?, which reproduces the parameterless zero
curvature representation (11) we started with. O

Nonremovability of the parameter is ensured by the method [28] (follows from nontriviality

of the first gauge cohomology group).

4. Solution of the governing equation

Apart from the discrete symmetry p <> o, the governing equation (10) has two obvious
continuous symmetries, which should be expected in every integrable class of surfaces: the
scaling symmetry

p>elp, orrelo 20
and the translational symmetry
p—p+T, og—o+T. 21)

The geometric meaning of the latter symmetry is offsetting, also known as taking the parallel
surface. In terms of position vectors, 7 is transformed to » + Tn, where n is the unit normal
vector and T is the distance.

With the help of these symmetries we can reduce the order of equation (10) by two. This
can be done by rewriting the equation in terms of the symmetry invariants. Since rescaling
applies also to the offset, the translational reduction should precede the scaling reduction. For
the two lowest order translational invariants we choose

n=yp' (22)

(recall that the prime denotes the derivative with respect to o).

1. If ¢’ = 0 (equivalently, p’ = 1), then p — o = const, which are the surfaces of constant
astigmatism we dealt with in part 1.

2. Otherwise, more translational invariants can be computed as derivatives of n with respect
to &:

§=p-o,

" 72

R
D2 (' —1*

Nse = (23)

(0 —
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etc. In terms of these invariants, the governing equation (10) reduces to the second-order
equation

2£%(n — V)nmee — £°(n — 3)ng +26(n — Dane — 4(n + Dy* = 0. (24)
As expected, this equation is scaling invariant. To reduce it with respect to scaling, we proceed
as follows. In addition to n, one more scaling invariant is

=& —Dne. (25)
Although dispensable, the factor n — 1 simplifies the computations to follow.

2.1. Ify =0,ie. p” = 0, then (10) reduces to p’ = ¢, where ¢ is either of —1,0, 1. The
corresponding surfaces are, respectively, the constant mean curvature surfaces (a subclass of
linear Weingarten surfaces), the tubular surfaces (surfaces swept by spheres of constant radius
moving along a space curve) and once more the constant astigmatism surfaces.

2.2, Otherwise p” # 0 and we have

"

L=2(p-0)+p —1.

pll
In terms of n, ¢, the reduced governing equation (24) becomes the Bernoulli equation
3 3 -
by == s + 277 n
2n ¢

with the general solution ¢2 = 4(n? + 2con + 1)n?%, where cp is the integration constant.
Substituting from equation (25) yields the separable first-order equation

gj_g = 2 zl\”ﬂ“ch’"“ 26)
containing the parameter cy. Being written in terms of the scaling and translation invariants,
this equation determines the integrable Weingarten surfaces up to rescaling and offsetting.
Depending on the value of the parameter cy and on the choice of the ‘+’ sign, we obtain the
following cases.

2.2.1 Letcy = 1. Equation (26) becomes
d +1
£31 _
dé n—1

(27)

2.2.1.1.  With the choice of the plus sign in (27), the general solution is (n + 1)> = ¢ n&>2.
Substituting from equation (22), we obtain

(P +17? =ci(p —0)?p.
If ¢; = 0, the general solution is p + o = const. Otherwise, we apply the transformation

K=p+o, E=p—-0 (28)
to get
2 de)? 2
(15" —4) (E) =af”
The equation is separable with a general solution (k — ¢3)? — 2 +4/c; =0, i.e.
4+cic2

4poc —2c(p+0) + =0.

In both cases, ¢; = 0 and ¢; # 0, solutions correspond to the linear Weingarten surfaces.
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2.2.1.2. With the choice of the minus sign in (27), the general solution is (1 + 1)262 = ¢17.
Substituting from equation (22), we obtain (o’ + D2%(p — 0)? = ¢1p'. For ¢; = 0 we have the
special linear Weingarten surfaces p + o = const again. Otherwise, we apply transformation
(28) to get

dic\?
4g? — — ) +a =0
45— 1) ( df,—‘) a
The solutions are
1 —_—
K= :l:?/—cl 1n(2\/—01§ + \/'cf — 4c1’§2) + ¢,
where ¢; is the integration constant.

2.2.1.2.1. For¢; < 0 we can write

_Cl

&= sinh (:l:

2 —C1

(K —c2) — ln(—cl))

or

p—0 . p+o
= +sinh +Co ).
C1 Sin: ( C1 ())

2.2.1.2.2. Similarly, solutions corresponding to positive ¢ are

- +
pC 7 _ sin (pcla + Co) . 29)

1

2.2.2 Letc = —1. Equation (26) becomes

d d
n — 1) (sé - 2n) (sé +2n) =0. (30)

Solutions corresponding to 7 = 1 belong to case 1 (constant astigmatism surfaces).

2.2.2.1. The general solution of £(dn/d&) = 2nisn = ¢1£2. Substituting from equation (22),
we obtain the Riccati equation p’ = ¢;(p — )%

2.2.2.1.1, Forc; > 0 we get

p=o— tanh(,/c10 + c2) or p—o— coth(,/c10 +¢3) 31)
NG NG

according to whether the integration constant is positive or negative.

2.2.2.1.2. Similarly, for ¢; < 0 we get

— t —
p=o - B/ Taore) w o p=o+tWTCO¥C) V\/i‘_::c” (32)

2.2.2.2. When solving &(dn/d&) = —27, we get (31) and (32) with p, o interchanged.
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2.2.3.  We are left with the generic case ¢y € {—1, 1}. Equation (26) has the general solution
(n+co + /12 + 2con + D(con + 1+ /52 +2con + 1) = 1%, (33)

If ¢; = 0, then n = 0in view of ¢y & {—1, 1}, which yields the tubular surfaces p = const.
Let us, therefore, assume that ¢; % 0. Upon substituting from (22), equation (33) becomes a
first-order ODE, separable in terms of variables (28) and having the elliptic integral

§ —eracd — 1
K = / 7 £l 0 dr
V et — 2(co + 1)(co + 3)c1 122 + (& — 1)2

as the general solution. The two cases the ‘+’ symbol refers to can be converted one into
another by the substitution ¢; — (cg — 1)?/c;. Therefore, we can safely choose the sign to be
‘+’, which we do in the following. Moreover, if « is a solution, then so is —« (as a combination
of the p <> o switch and a scaling by factor of —1). This is why we often ignore the sign of
in what follows.

. / .. .
Substituting t — s/m, m = v ler/(1 — c%)l, we simplify the integral above to

£ 1+ 52

Kk =—IL.(m§,c), 1.(§,0) = ———ds, 34
me =G V1+2cs2 +54

where ‘+’ refers to the signum of ¢; /(1 — c%); in particular, is unrelated to the ‘4’ sign in (33).
The real parameter c is related to ¢y by ¢ = (co + 3)/(co — 1).

Formula (34) describes possible dependences p(o) via the substitution x = p + o,
¢ = p — o. Three independent parameters are involved: m, ¢ and the integration constant
(the lower limit of the integral). Obviously, m plays the role of the scaling parameter. The
integration constant can be easily identified with the offsetting parameter 7 from (21).

Each dependence between « and £ has a unique representative modulo scaling and
offsetting, obtainable by fixing the lower limit of the integral I.(£,c) in (34). This is
straightforward when ¢ > —1; we simply redefine I (£, ¢) to be

£ 1462
I:E(g,C) =f —:Sds (35)
o0 V1+2cs?+s4
If, however, ¢ < —1, then the integrand in (34) is real in three separate intervals (—o0, —./¥+),
(=./v=, J/¥-) and ( /¥y, 00), where
Yr=—ct+/c2~1>0, (36)
‘We choose the representatives —I;(—i,-‘, c), I.(&, c) and I (&, ¢), respectively, where I, (§, ¢)
is given by (35) in the interval —y_ < & < y_, while
§ 1452

——————4ds, 12

v V1 +2c52%+ 54

N
Fasy

L, 0)= (37

5. Summary of the solutions

Asdemonstrated in the preceding section, each integrable class is determined by certain relation
between the radii of curvature, which can be subject torescaling p — ¢, p,0 — ¢10, offsetting
p — p+cy, 0 = 0 + ¢ and the twist p < o,

With the help of proposition 1, we can find the corresponding integrable Gauss equation.
To start with, we investigate the generic class determined by formula (34); we fix the scaling
for simplicity.
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Proposition 4. Assuming

£ 2

p+o =1I(p—0,0), I:(§,¢) = \/—E%mds, (38)
the Gauss equation (4) for § = p — o reads as

REy + R'E + 8+ S"EL+T =0, (39)
where

R,=1+c§2+A(§,c) ,_cF1 g2

E2A(E,0) 2 (1+cE2+ A, 0)AE, )’
A, ©) = V1+2cE + &%, T=—é

The metric coefficients u, v in (1) are

_
_§+LG.0 o _E—I:E.0) |[1F8—AG 0
u——ZE—VI:FEZ"'A(é'aC), v= 2% \/ 212

Proof. We parametrize p and o by &, i.e. we solve (38) as
I(§,c)+& I.(§,0)— &
p=———, g = —"".
2 2
The general form of the Gauss equation, along with the last term T = 1/(o — p) = —1/§,
follows from proposition 1. To find R’, §', we compute

R" (p—o)p”’—2p"  2cE*+E%+/1+2c8 +5*

MRy = — = +—_F —°F _ ,

CR == G- E 14206748

(n§) = §" (p—a)"+20% 2 CEZ +E% — /1 +2cE2 + 4
T8y (p-o)' & 1+2cE2+84

from (9) under constraint (8). These equations need to be integrated once, which is easy; the
integration constants have been chosen to match equations (8) and (9). Finally, from (9) one
easily computes the coefficients u, v as u = /R'p%/p', v = /~S'c%/a’. O

Apart from the generic class we also obtained a number of special solutions, listed in
table 1 (omitting the tubular surfaces). Rows 5b and 6b differ only by translation (offsetting)
and can be identified one with another.

The first column contains a determining relation (up to a scaling), while the second
harbours the corresponding integrable equation in the compact form (7). Table 2 gives the
principal radii of curvature p, o, metric coefficients u, v and the variable z (see table 1) in
terms of a suitably chosen parametrizing variable w.

Neither of the special cases is new to differential geometry. Row 1 reflects that, in
terms of the curvature line coordinates, minimal surfaces correspond to solutions of the
Liouville equation [5, section 351]. Similarly, row 2a reproduces the relation between
surfaces of negative constant Gaussian curvature and solutions of the elliptic sinh—Gordon
equation. Row 2b does the same for the hyperbolic sine—-Gordon equation and surfaces
of positive constant Gaussian curvature (or constant mean curvature, by the theorem of
Bonnet on parallel surfaces). Nowadays, surfaces of constant mean or Gaussian curvature
are undoubtedly the best understood classes of surfaces integrable in the sense of soliton
theory (see, e.g., [6,7, 14,22, 30, 32] and references therein).
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Table 1. Special integrable cases and the associated integrable Gauss equations.

Relation Integrable equation
1 pto=0 Zex tZyy +ef =0
2a po=1 Zex +2Zyy —sinhz =0
2b po=-1 Zxx — Zyy +8inz =0

3a p-—o=sinh(p+0) (tanhz — 2)xx + (cothz — 2)yy +csch2z =0
3b p—o=sin(p+a) (tanz — g)xx +(COtz +2)yy +csc22 =0

4 p—o=1 Zex + (1/D)yy +2=0

S5a p—o =tanhp %(sinhz — Z)xx + (coth %Z)yy + coth %z =0
5b p—oc=tanp $(sinz — 2)x + (00t $2),y +cot 22 =0
6a p—o=cothp ;lf(sinhz + Z)xx — (tanh %Z)yy + tanh %z =0
6b p—o=—cotp 1(sinz+2)yx + (tan 12)yy +tan Lz =0

Table 2. Special integrable cases. The radii of curvature p, o, the metric coefficients », v and the
unknown z of the integrable Gauss equation in terms of a variable w.

o u v z
1 —w Jw/2 Jw/2 —Inw
2a ! d ! 2 arctanh
- - - w
lil Jw? -1 Vwi -1
w
2 w - 2arctanw
w Vuw?+1 w?+1
3 w + sinh w w — sinh w w + sinh w w — sinh w 1
a —w
2 2 2Veoshw —1 2 /coshw +1 2
w+ sin w w — sinw w +sinw w—sinw 1
3b —w
2 2 2T =cosw 24/1+cosw 2
4w w—1 = (1 — e 2w
ew
52 w w — tanh w o sinhw — wcoshw 2w
sul})hw
5b w w —tanw sinw — wcosw 2w
sin
6a w w — cothw coshw — wsinhw 2w
col%hw
6b w w+cotw cos w + w sin w 2w
cos w

It may come as a surprise that the other cases are classical as well. Introduced
by Weingarten [39, section 4] (‘eine neue Flachenklasse’), surfaces satisfying the relation
p —a = sin(p + o) (row 4b) are covered in Darboux [13, sections 745, 746,
766, 769, 770] (‘une classe nouvelle de surfaces découverte par M Weingarten’) and
Bianchi [4, section 135], [5, section 245]. Darboux [13, section 746] gave a general
solution of an equation equivalent to our (tanz — z)yy + (cotz + z)yy + csc2z = 0. He
also provided a remarkable geometric construction in {13, section 770}, further developed
by Bianchi [5, section 245]. In a nutshell, the middle evolutes are translation surfaces
generated by curves of opposite constant nonzero torsion; conversely the Weingarten
surfaces are orthogonal to the osculation planes of the generating curves. Bianchi’s
research extends to the complementary relation p — ¢ = sinh(p + ¢) (row 3a) as
well [5, section 246]. The remaining rows (from 4 to 6b) correspond to involutes of
surfaces of constant Gaussian curvature studied by Beltrami [3, chapter 9, section 20].
Row 4 (surfaces of constant astigmatism) has been addressed in part I, we
have nothing to add except the Beltrami’s work as the earliest reference we
know of.
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Table 3. Special integrable cases as limits of I (§, ¢).

Relation Limit

1 k=0 I, 00)
22 k2=£2+4 liMy—oo I (m, 2m2)/m
B kP=g2—4 limy—oo I (mE, —2m?)/m
3a k= arcsinh§ limy—o Ly (m&, 1/2m%)/m
3b & =arcsing limp—o 1+ (m§, —1/2m?)/m
4 =1 limm=co I+ (m§, ~m?/2)/m
5a k=—E+2arctanhE I (&, 1), |E] <1
5b k= —£+2arctan§ I_G¢.1)
6a «=—&+2arccotheé  I.(€ -1), [§] > 1
6b «=—&—2arccott I_(£, 1)

k=-e? k=—e"1 k=-1 k=-1

J

Figure 1. Curvature diagrams ¥ = Ip(§, k) (the left-hand legend) and « = Zo(§,%), [§] < 1
(the right-hand legend), where k = p + 0, £ = p — 0. More can be obtained by rescaling
and translating along the dashed line p = o, the axis x. Here Zpo(§, —1) = —£ + 2actan§
(row 5b), Za(&,0) = arcsin& (row 3b), Za(§, 1) = &; Ip(§, —1) = —& +2arctanh £ (row 5a),
Zp (£, 0) = arcsinh& (row 3a), Ip(§, 1) = §. Graphs of ¥ = Za (£, k) end on the solid lines
&l =1.

Table 3 demonstrates how the cases expressible in terms of elementary functions arise
as limits of the generic integral (34) for ¢ approaching 1 or 400 along a suitable curve
in the (¢, m) space. The tubular surfaces 0 = const, which are omitted, correspond to
k = I.(€,1) = & + const.

6. Curvature diagrams

To exemplify the wealth of classes of integrable surfaces, we plot the representative solutions
of the governing equation (10) in figures 1 and 2. We call them curvature diagrams, even
though the radii of curvature p, o, rather than the curvatures 1/p, 1/0, are plotted, contrary
to the customary practice [24, chapter 5]. The benefit is that diagrams can be not only scaled
arbitrarily, but also freely translated along the dashed line p = ¢; the translation corresponds
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Figure 2. Curvature diagrams (a) « = kZ E/k, k), |E] > 1/}k]; (b) k = Zc4 (£, k) (the top left-
hand legend) and ¥k = —Z¢_(§, k) (the bottom right-hand legend), where k = p+0,§ =p — 0.
More can be obtained by rescaling and translating along the dashed line p = o, the axis «.

In (@), the line £ = 1 corresponds to tubular surfaces, ¥ = 0 to surfaces of negative constant
curvature (row 2b), and £ = —1 to the constant astigmatism surfaces (row 4). In (b), Z¢c+(£,0) =
—E&+2arctan & (tow 5b) Zc_ (£, 1) = &£ —2arctan((€ — 1)/ (£ +1)) (row 5a after reparametrization).

to offsetting. For clarity, we adjusted the offsetting so that the diagrams are symmetric about
the origin, i.e. p(0) = —p(—0).

The diagrams contain plots of functions Za (£, k), Zg(§, k), Zc+ (&, k) and kI E/k, k).
All special cases are explicitly included as limits, except the surfaces of constant positive
curvature (row 2a). These could be obtained as the limit of kZg(£/k, k) as k approaches zero.

The plots have been calculated using the Legendre normal form [16,33] of the elliptic
integrals (35) and (37), which could be of independent interest. As well known, the Legendre
normal form depends on the configuration of roots of the quartic polynomial IT = s*+2¢s?+1.

(A)If ¢ < —1, then IT = (s — y,)(s? — y_) has four real roots ,/yz and —,/¥x given by
formula (36). By using the substitution s = +/kr, where k = y_, we easily obtain the Legendre
normal form

K2 +1 § 1+kr?
LI:I: (EJE,———-'- ) =f , ! dr, 0<k<]l.
N3 2k o V(1 =)l —k%r?)

On the right-hand side, we can remove the + sign from the numerator by allowing k& to range
between —1 and 1. For —1 < & < 1, —1 < & < 1, we have a unified representative given by
k = Tx(&, k), where

§ 1— kr? 1
I, k) = , dr = —-E(&; k
aeb= [ S = R

in terms of the Legendre elliptic integrals E, F.
For real £ such that || > 1, the function Zo(&, k) is complex valued. Yet we obtain a
real function for 1/]k| < & by choosing the lower limit of the integral tobe 1/k, —1 < k < 1.

k-1
r F(§: k)
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Thus,
§ 1 — kr? 1 1
dr =1, ,k -7 _,k ] T’
NG k)=l/1/k Jaomaem P A(lkl )
' - 1
_IA(_Sa k)’ g < —'lk—l.

(B) Similarly, when ¢ > 1, then ¥+ < 0, the roots ,/yx, —./¥x of I1 are purely imaginary, and
Ly (&«/E, kz—“) xR k<
Ve %) " Jaera e
The two representatives can be unified into « = Zg (£, k), where
1 —kr?

k—1
ki

§
Ip(§, k) =/ dr = }}:E(Si; k) + F(&i; k)
0 i

for—1 <k < 1.

(C) When —1 < ¢ < 1 (four distinct complex roots), we substituted

1+ «/Er
§ = —,
1 — kr
to obtain two more representatives k = Z¢, and k¥ = I_, where

T = Jex(§,k) — Jce (0, k), § 20,
=5 | Tee (-6, 0, £ <0,

/1428248 2 E—1 i er _(E—1 i
fes®. 0 =" +(k+1)iE(s+17/€’k)+TF( —’k)‘
_(1:|:1)k—3:|:1_{k—1,

0<k<l,

b 2 —21

k2 —6k+1
(k+1)2

7. Normal congruences and their focal surfaces

The fact that the governing equation (10) has the offsetting symmetry (21) is not a pure
coincidence. Being invertible, the offsetting transformation » — r+7'n preserves integrability
in every reasonable sense of the word. Surfaces related by the offsetting transformation are
said to be parallel and either all are integrable or none is. However, parallel surfaces can
be alternatively described as normal surfaces to the same line congruence. Consequently,
integrability is a property of this congruence and, therefore, must have an expression in terms
of congruence invariants.

Normal congruences of Weingarten surfaces, also known as W-congruences, are rather
special with regard to properties of their focal surfaces. It is therefore natural to look for
characterization of the former in terms of the latter. Naturally, we expect the focal surfaces of
integrable W-congruences to be integrable as well.

Recall that a generic surface has two focal surfaces (often considered as two sheets of a
single surface),

[¢)]

r =r+on, r® =r+pn.
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each of which is formed by the evolutes of one family of the curvature lines. Focal surfaces can
degenerate into a line or even a point. In the case of a Weingarten surface r with fundamental
forms (1), one of the focal surfaces degeneratesinto aline if oy, = o'wy = 0or px = p'w; = 0;
both degenerate into a point if the surface is a sphere (already excluded from consideration);
otherwise they are regular surfaces. Therefore, we assume p’c’ # 0 in what follows.

To compute the respective first and second fundamental forms I’ and I®, i = 1,2,
we proceed as follows. In view of the Gauss-Mainardi-Codazzi equations (4) and (5), the
Gauss—Weingarten (3) equations can be written as

Uy op'utw, u? 1
Tax = —Txt ———5Ty +—n, Ny = ——7Tx,
u " plo—op? P
op'wy oo’ W,

Ty = r Ty, (40)

T plo—p) " o(p—0)’

po'viwy Lo v? 1

Ty = ——————=Ty + =7, + —n, ny = ——7y,

P T eo—pu2t v’ o 4 o’

One easily finds
-0
) = PO, +o'wm, rP =o'wyn, ="
v

2 2 g — p 2 Tx

P = p'w,n, r? = ——Ty+ pwyn, n? = e
Using equations (40) and (1), we get
2,2 2.2
—o)u — o)V
0= %dﬂ + do?, I? =dp® + b-—o)v 2) dy?, (41)
p o

where dp = p' dw = p'(w; dx + wy dy), do = o’ dw = o’ (w, dx + wy dy).
With u, v determined from proposition 1, we can write

IO = (O (o) dx)? + do?, 1@ = (f@(p)dy)* + dp’.

Hence, all focal surfaces v corresponding to a given dependence p(o) are isometric.
Moreover, the first fundamental forms (41) are typical of surfaces of revolution. These are
among the classical results by Weingarten [39].
Omitting details, we further compute the second fundamental forms
2 2 2 2
o — O% o'u dx? — o'v dy?), @ = _P%= p'u dx? — o' dy? (42)
v p? ol u p? o?

and note that they are conformally related, which is another way to express Ribaucour’s classical
result[35] that asymptotic coordinates on 71 and r® correspond. The Gaussian curvatures are

g0 _ detim® o’ @ _ detI® o’

= deti®d (p — o)’ T deti® T T (p—0o)2p
Consequently, the focal surfaces have one and the same sign of the Gaussian curvature,
which we denote as &. We have ¢ = —1 (both focal surfaces are hyperbolic) if and only
ifdp/do = p’fo’ > 0 (if p increases as o increases), and +1 if dp/do < 0. The relation

1

(o —o)*

away of umbilic points is known as the Halphen theorem (see [4, section 129]).
As we have already explained, to every particular relation p(c) of curvatures there

corresponds an isometry class of focal surfaces, which contains a unique rotational
representative (which is the way the classes have been characterized in the classical literature).

(43)

KODEg® = (44)
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However, we believe that a description in terms of metric invariants is more appropriate. It is
convenient to choose
1

VeK®'
where e K% = |K®| is the absolute value of the Gaussian curvature of the ith focal surface.
Further, let @ be defined by
)/(1) — (p—0)(p"c' —o"p’) —2p"0'(p' — 0')
2(—¢p'a’)3? ’ (45)
@ _ (o — 0')([)”0" —o"p) + 2p’0’(p' —a’)
Yo = 2 (—8p’0")3/2
One can directly check that |y ®| equals the norm of the gradient of « ¥ with respect to I¢),
@)

@ =

y®) = |grad® @] = /10 (gradVx®, grad®x®),

Hence, y ¥ is ametric invariant of the respective focal surface. Itis sometimes more convenient
to use invariants

G = [(p —0)(p"0" —0"p") —2p'0"(p' — o)l

16 (p'0’)3 46)
G? — [(o —a)(p"0’ —a"p) +2p'0"(p' — o)
16 (p'a")3 '
satisfying
y @2 = _46GD —16GOKD? = 1O (grad D KD, grad® K ®).

Clearly, both ) and G® are functions of w. Consequently, G’ can be considered as
a function of @ unless x is a constant. Our nearest aim is to establish the dependence
between k@ and G in terms of the dependence between p and o.

Proposition 5. Let the principal radii of curvature p, o of an integrable surface satisfy the
P D _ : 8
generic relation (34). Then the metric invariants G® and k' satisfy the relations

{ .
) [ 2 O 2 m
60 = (14 V14 /2™, ic12 @
( 8\/|c:|:1|m)( |c:|:1|x(’)) ’ @7

2
cha® — (1
cF1

is constant (hence, so is the product yVy?).

Table 5 lists the product GV G® and the algebraic relations between G and k©) in the
special cases.

Furthermore,

Proof. For the sake of simplicity, we start assuming a fixed scaling, i.e. we depart from
formula (38). We routinely compute

1+ w?+ V14 2cw?+w*)? (14 w? — V1 +2cw? + wH)?

KD = . K@ —
2(c F DHw? 2(c F Dw?*
Consequently, £ = sgn(c F 1), and
o _ 1Ew® —V1+2cw? +uwt o 12w+ V1+2cw?+w?
K = K =

NATEST ’ V2)eF 1|
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Table 4. Special integrable cases. Metric invariants of focal surfaces in terms of w.

e £ @ G G?
1 1 2w} 2wl -1 -1
1 1
2a 1 = - 1' lw?—1] = —w?
1 5 1 5
2b -1 -5 +1 we+1 -3 w
w w
1 h 1 —cosh
3a 1 —l+4coshw 1+coshw _reoshw _—csw
1—coshw 1+coshw
1 1—
3b -1 l—cosw 1+cosw _teosw _—csw
1—cosw 1+cosw
4 -1 1 1 0
1
S5a —1 tanh®w 1 ———— 0
sinh” w cosh” w
1
56 1 tan’w 1 ——— 0
sin® w cos? w
1
6a —1 coth®w 1 ——— 0
sinh® w cosh® w
1
6b 1 cot’w 1 - 0
sin® w cos? w
Furthermore,
G0 A Fw?+V14+2cw? + wH)? e (A Fw? — V1+2cw? +w)?
- 2(c F Dw? ’ - 2(c F Dw? '

Under the scaling by factor of m, the metric invariants K’ and ) become K /m? and m«®,
respectively, while G remains invariant. Formulae (47) are then easily checked. Moreover,
all three metric invariants are invariant under offsetting (21).

Formulae for G® and x in the special cases are given in table 4 along with the sign &
of the Gaussian curvatures. O

Summarizing, focal surfaces of integrable Weingarten surfaces belong to the isometry
classes specified in proposition 5.

A natural question is whether is the condition GPG® = const, or equivalently,
y®y@ = const, not only necessary, but also sufficient for condition (10) to hold.

Proposition 6. Under the condition yV + y® # 0, a surface satisfies the governing
equation (10) if and only if the product

® 2)
yDy® = & | grad®ic® [ | grad®ic@ | 48)
is constant.
Proof. Assuming the p(c) dependence, y + y@ simplifies to (o — o)p”//|p’|? and the
product in question to

(1))/(2) _ (0" — 1)2 _ (p— U)ZPHZ
sp’ 48p’3 *

4

Factorizing the o -derivative of this expression as
:I:(P - 0)2 m_ _E_puz + p' = lpu . z(pl = Dp'(p" +1) ”
2¢p" 20’ p—o (o —0)?
and comparing to the governing equation (10) proves the proposition. ]




Integrable Weingarten surfaces 2595

Table 5. Special integrable cases. Relations between metric invariants of focal surfaces.

e GUG® GOy G® (1)
1 1 -1 -1 -1
2a 1 1 —14«® —1+4®@
b -1 1 ~1+x® —1+4«®
3 1 1 -2 1- 2
a - ) )
2 2
3b -1 1 —1+m —1+m
4 -1 0 0 0
1 2
5a -1 0 m_ 0
. ( . J“Km)
1 2
5b 1 0 - M 4+ 0
( g J_xw)
1 2
6a —1 0 m - 0
° ( g «/Kw)
1 2
& 1 0 —(ve® 4 )
( V0]

It follows from the proof that condition (48) also holds when p” = 0, i.e. if there is a linear
relation between the radii of curvature. As of now, there seems to be no indication towards
integrability of the latter class (except when p &= o = const, which satisfies (10) as well).

8. Conclusions and future work

In this work we singled out a class of Weingarten surfaces on the basis of its solitonic
integrability. Although special cases were not unknown to nineteenth-century geometers,
the overall result appears to be new. We also characterized integrability in terms of metric
invariants of the focal surfaces.

For time reasons, many questions had to be left for further research. We do not know the
Bicklund transformation, recursion operator, bi-Hamiltonian structure and other attributes of
integrability. We did not provide any solutions to the Gauss equation (39). We do not know
what is the true geometric meaning of the spectral parameter. Even the task of computing
third-order symmetries of the Gauss equation proved to be very complex.

We have seen in part I that integrability of surfaces of constant astigmatism is attributable
to the fact that their focal surfaces are pseudospherical. In the general case, the existence
of an integrability-preserving relation to previously known integrable surfaces is an open
problem.

Our nearest goals include exploring the induced Bianchi type transformation between
surfaces satisfying relation (47) as well as investigating the extended symmetries of the class
in the sense of Ciedlinski [11, 12].
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Abstract
Rediscovered by a systematic search, a forgotten class of integrable surfaces
is shown to disprove the Finkel-Wu conjecture. The associated integrable
nonlinear partial differential equation

2y +(1/2)xx+2=0
possesses a zero curvature representation, a third-order symmetry and a
nonlocal transformation to the sine-Gordon equation ¢¢, = sin¢. We leave
open the problem of finding a Bicklund autotransformation and a recursion
operator that would produce a local hierarchy.
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1. Introduction

With this paper, we launch a project to classify integrable classes of surfaces. These are
classes of surfaces whose Gauss—Mainardi-Codazzi equations are integrable in the sense of
soliton theory. Our long-term goals include obtaining lists of integrable classes as complete as
computing resources permit, clarifying their mutual relations and identifying known subcases.
Our immediate goal is to demonstrate that the task is feasible and worth doing.

The classical geometry of immersed surfaces in the Euclidean space is well known to be
closely connected with the modern theory of integrable systems [35]. The Gauss-Weingarten
equations of a moving frame W always take the form

W, = AV, v, = BY, 1)

where A, B are appropriate matrix functions. Integrability conditions of (1) are called the
Gauss—Mainardi—Codazzi equations and take the form of a zero-curvature representation

Ay — B, +[A,B]=0. )

1751-8113/09/404007+16$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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Equation (2) is invariant under a huge group of gauge transformations

A =551 +5A57, B'=8,5"'+SBS™, (3)
induced by linear transformations W' = SW of the frame. Here S is an invertible functional
matrix, which can be restricted to take values in the Lie group G associated with the Lie
algebra g matrices A, B belong to—typically so(3).

The zero-curvature representation (2) is the key ingredient in the soliton theory [15], where
matrices A, B are additionally assumed to depend on what is called the spectral parameter.
The essential requirement for solitonic integrability is that the spectral parameter cannot be
removed by means of the gauge transformation (3). Consequently, if the matrices A, B can
be modified so that they depend on a nonremovable parameter and still satisfy (2), then the
corresponding Gauss—Mainardi—Codazzi equations are considered to be integrable in the sense
of soliton theory, and their solutions are known as integrable or soliton surfaces [40].

Solitonic integrability can appear only when surfaces are subject to a constraint (such
as being pseudospherical, etc). For numerous classical and recent examples, see, e.g.,
[4, 35, 38] (or [16] in the projective setting). Workable tools to classify such constraints include
all the general integrability criteria [31], which are, however, not immediately applicable to
non-evolutionary systems [30]. Other methods take advantage of the already known non-
parametric zero-curvature representation (2), e.g., the method of extended symmetries by
Ciesliniski et al [10-12].

In this paper we employ a recent method due to one of us [29]. Its essence can
be summarized as follows: we attempt to extend the given non-parametric zero-curvature
representation (a seed) to a power series in terms of the spectral parameter. In the work [29],
the relevant computable cohomological obstructions are identified. Two obstacles make this
procedure not entirely algorithmic: the parameter-dependent zero-curvature representation
could exist in an extension of the Lie algebra g and its jet order (the order of derivatives) could
exceed that of the seed. If no obstructions are found, various ways exist to incorporate the true
nonremovable parameter.

2. Weingarten surfaces

To be of genuine interest in geometry, the determining constraint on integrable surfaces must be
invariant with respect to coordinate changes. The general non-differential invariant constraint
is a functional relation f(p, ¢) = 0 between the principal curvatures p, g. Such a functional
relation is a characteristic of Weingarten surfaces, which have been a topic of continuous
interest, especially in global differential geometry {20, 26, 38, 41] and computer graphics [8].
Well known to be integrable is the class of linear Weingarten surfaces {13, 35], characterized
by a linear relation

ak+bh+c=0, a,b,c = const 4)

between the Gauss curvature X = pg and the mean curvature 4 = %( p+q) (not to be confused
with a linear relation between the principal curvatures [23, 26]). Other integrable classes of
Weingarten surfaces that sporadically occur in the literature all have a differential defining
relation (e.g., the Hazzidakis equation of the Bonnet surfaces [4, 5, 7]; a harmonicity condition
of Schief’s [37] generalized linear Weingarten surfaces) or the class is not determined by the
functional relation f(p, g) = 0 alone (e.g., [9]).

So far, nothing contradicts the conjecture of Finkel [17, conjecture 3.4] and Wu [43]
that the only functional relation f(p, ¢) = 0 to determine an integrable class of Weingarten
surfaces is the linear relation (4). Supporting arguments include Wu’s [43] proof of non-
existence of an so(3)-valued zero-curvature representation depending only on x-derivatives.

2
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Finkel’s [17] argument roots in an unsuccessful search for higher order symmetries and
a (disputable, see [30, section 2]) conjecture that integrability implies the existence of a
local higher order symmetry (actually the infinite hierarchy can be nonlocal, see also [31,
section 1.4.4.2]).

Nevertheless, the main result of the present paper asserts that the simple relation

1
— = const 5)
q

| =

between the main curvatures p, g determines an integrable class of Weingarten surfaces.
The associated nonlinear partial differential equation (21) has a parameter-dependent zero-
curvature representation (22) (outside the class considered in [43]), a third-order symmetry
(24) (missed in [17]), and a recursion operator (25).

Paradoxically enough, surfaces satisfying relation (5) were not unknown to 19th century
geometers. In view of their knowledge, our integrability result is not an entirely unexpected
one. In fact, Ribaucour [34] established that the corresponding focal surfaces (evolutes) have
a constant Gaussian curvature k < 0 (are pseudospherical). Conversely, surfaces satisfying
equation (5) are involutes of pseudospherical surfaces. Moreover, the classical Bianchi
transformation [2] is nothing but the induced correspondence between the two focal
pseudospherical surfaces. Ribaucour’s theorems are covered in Darboux [13] and early
20th-century monographs, such as [3, 14, 18, 42]. Later they became obsolete and forgotten
as the induced Bianchi relation between pseudo-spherical surfaces became superseded by the
classical Bicklund transformation (the history is nicely reviewed by Prus and Sym in [32,
section 4]).

The first examples of surfaces satisfying relation (5) also date to the 19th century. Lipschitz
[25] derived a four-parametric family in terms of elliptic integrals. A particular subcase, the
rotation surface of von Lilienthal [24], is the involute surface of the pseudosphere.

The left-hand side of equation (5) is equal to the difference of the principal radii of
curvature at a point. This geometric quantity has a definite physical meaning, being associated
with the interval of Sturm [39], also known as the astigmatic interval or the amplitude of
astigmatism or simply the astigmatism [19]. A mirror or a refracting surface satisfying
relation (5) will feature a constant amplitude of astigmatism in the normal directions. In the
following, surfaces satisfying condition (5) will be called surfaces of constant astigmatism.
Accordingly, equation (21) to determine the surfaces of constant astigmatism will be called
the constant astigmatism equation.

3. Preliminaries

We shall consider surfaces r(x, y) parametrized by curvature lines. As is well known, the
fundamental forms can be written as

I=u?dx? +v?dy?,
IT = u?pdx? + v¥q dy?,

where p, q are the principal curvatures. Coordinates x, y are unique up to arbitrary changes
x=Xx),y=Y(®).
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Let ¥ = (ey, e, n) denote the orthonormal frame, given by e; = ry/u,e; =r,/v,n =
e; X €;. The Gauss—Weingarten equations

o - %y up 0 Ll 0
v u
v, = Hl 0 0 v, ‘I-‘y = _U_X 0 vg v (6)
v u
—up 0 0 0 -—uvg 0
are easily established. Their integrability conditions are the Gauss equation
Hllyy + VUyy — EuxvJr — %uyvy + u2v2pq =0 )

and the Mainardi-Codazzi equations

(p — q)uy +up, =0, (g — pvx +vg; =0. ®
Consequently, the two s0(3) matrices occurring in formulae (6) constitute a nonparametric
zero-curvature representation of the Gauss—Mainardi—-Codazzi system (7) and (8). Because
of the isomorphism s0(3,C) = sl(2, C), the same zero-curvature representation can be
alternatively written in terms of 2 x 2 matrices

iu_y lup —i—vl —liqv
_| 2v 2 _ 2u 2
Ao = 1 iy |’ Bo = 1. vy |- ©)
Cup 2 _ x
27 T 29V

Let us impose a constraint f(p, g) = 0. If nontrivial, it can be resolved with respect to
one of the curvatures, say

g =F(p), 10
which we assume henceforth. Then the Gauss—-Mainardi—-Codazzi system reduces substantially
[8, 17, 43]. In particular, the Mainardi-Codazzi equations (8) have a general solution
Uuo E
ok v=—-wk, q =P—E,

where E = E(p) is an arbitrary nonconstant function, E’ = dE /dp, and uy, vp are functions of
x and y, respectively, removable by reparametrization x — [ ugdx, y — [ vody. Therefore,

U=

we can put ug = —vp = 1 without loss of generality, i.e.,
1 E
U=z v=E’, 9=pr- % (11)

The Gauss equation (7) then becomes
El
Py = EE"pyy + 2% p2+E*(EE"Ypl+EE'p* — E’p. (12)

Summarizing, the Gauss—Mainardi—-Codazzi system of Weingarten surfaces reduces to the
single equation (12). The classification problem considered in this paper is ‘for which choices
of the function E(p) is equation (12) integrable?’

By substituting (11) into (9), we easily obtain a nonparametric zero-curvature
representation of equation (12),

. ] . .
Ag= 1 i s By = i i , (13)
2P 1Py —(E'p—E) —=EE"p,
2E 2 E2. 2 2

which will be the starting point of the calculations to follow.

4
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4. Cohomological criteria

Readers not interested in details of the classification method can skip this section and continue
to investigation of surfaces of constant astigmatism in section 5.

We use the formal theory of partial differential equations, which treats coordinates,
unknown functions and their derivatives as independent quantities. Equations can be
conveniently represented as submanifolds in appropriate jet spaces [6]. All our considerations
being local, welet J*° = J(R?, R) denote the space of oo-jets of smooth functions R — R.
The base R? being equipped with coordinates x, y, the natural coordinates along fibres of
J* — R? correspond to p and its derivatives. These will be denoted p;, where I stands for a
symmetric multi-index in x, y (including the ‘empty’ multi-index @ such that py = p). The
usual total derivatives

0 9 0 0
D, =—+ E —_— D, =—+ E —
x 3% : Dxi ap: y 3y o Dyr 1

can be viewed as acting on smooth functions defined on J® (by definition, a smooth function
locally depends on a finite number of coordinates).

In J%°, we consider a submanifold G determined by equation (12) and all its differential
consequences obtained by taking successive total derivatives of both sides of (12). On G, all
derivatives of the form p 7yy become expressible in terms of the others. Therefore, derivatives
pr with y occurring no more than twice in / serve as natural coordinates along the fibres of
G — R2. Being tangent to (12), the total derivatives admit a restriction to G. We retain the
same notation D,, D, for the restricted total derivatives.

The essence of the adopted point of view can be summarized as follows: a function fon
J* satisfies f|g = O if and only if f is zero as a consequence of equation (12). From now on
we assume that all objects (like the matrices A, B) are defined on G. When writing

(DyA—DyB+[A,B])|g=0 (14)

we mean that the zero-curvature condition (2) holds as a consequence of equation (12).

In what follows, characteristic elements [27, 28, 36] play a crucial role. These are non-
Abelian analogues of characteristics of conservation laws [6]. For instance, the characteristic
element of the initial zero-curvature representation (13) is the s[(2, C)-matrix

il
S 0
0 il
2 E?
This immediately follows from the fact that
Dy Ao — Dy By + [Ag, Bo] = GyF,

where
3 E , 2 2 2 2
F=p,—EE"p,, — 2E,-py — E*(EE"Yp? — p’EE' - pE?,
so that the Gauss equation (12) can be written as F = 0.
Let A = A(AL),B = B()\) be the parametric zero-curvature representation sought,
C = C(A) the corresponding characteristic element. Besides (14), they will also satisfy
the formula [27]

N aF
Y (=D, (BFC)
7 1 g

=0, (15)
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with I running over all symmetric multi-indices, including the empty one. Here D, =
D,—[A,"], ﬁy = D, —[B, -], the other vglue§ being obtained by composition, which can be
taken in any order since (14) implies that D,, D, commute.

Characteristic elements of gauge equivalent zero-curvature representations are conjugate
(similar). This allows us to transform characteristic elements into the normal form with respect
to conjugation, namely, the Jordan normal form. Since the matrix Cy above is diagonal, it
follows that for A sufficiently close to zero the characteristic element C(2) will be also
diagonalizable.

However, diagonal matrices have a nontrivial stabilizer S C ‘SL(2, C) with respect to
conjugation, which consists of diagonal matrices

s 0
0 1/s)°
Gauge transformations from the group S (henceforth S-transformations) preserve the

characteristic elements C(A). Their gauge action on a general s[(2)-valued zero-curvature
representation A, B is sufficiently simple:

S_x +an s2a12
air  an s
H

(a21 —d11> an 5x _

— —— —dan

s )
and similarly for B. Using S-transformations, one can achieve a unique normal form of matrices
A, B as follows: if aj; # 0, then by setting s = (an Ja12)/* we turn A into a symmetric
matrix, while in the remaining case a;» = 0 the zero-curvature representation degenerates to
a pair of conservation laws [28]. In other words, having a symmetric component is a normal
form of nondegenerate zero-curvature representations with respect to S-transformations.

Turning back to our original problem, we see that By is symmetric, and therefore the
nearby matrices B()\) can also be symmetrized by an S-transformation. A simple calculation
shows that, by assuming diagonality of C(A) and symmetricity of B(A), we make the system
(15) determined, hence solvable (actually, we fix the gauge).

Summarizing, the computation of the zero-curvature representation has been reduced to
the solution of the determined system (14) and (15) under a suitable choice of normal forms
for C and B. However, this nonlinear system is still quite difficult to solve even with the help
of computer algebra. To linearize the system, the work [29] considers Taylor expansions

AW =Y Ak, B =) BaY,  cly=)_cat, (16
k=0

k=0 k=0

with Ay, By, Co coming from the initial parameterless zero-curvature representation (9). The
condition of the zero curvature for A(1), B(A) implies an infinite sequence of conditions of
the zero curvature for block triangular matrices

Ap 0 - 0 Bpb 0 -+ 0
am | A Ao : pr_ | B B g

0 S o0

An -+ A1 A, By, --- Bi By
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Characteristic elements C'™ assume the same form. Zero curvature representations
AP, BI™ are to be considered under the gauge group consisting of block triangular matrices

gm_ |5 E
0
Sw - S E

with unit matrices E in the diagonal positions. By a cohomological argument presented in [29,
proposition 1], a nontrivial family A(A), B(A) with analytic dependence on A has expansions
(16) such that A; or B is not zero.

Let (14)] and (15)™! denote the system obtained by substituting A — A", B — Blml
into system (14) and (15), for arbitrary m > 0. Observe that systems (14)(™ and (15)" are
linear in their highest order unknowns A,,, B,,, C,, and can be solved sequentially. Then the
applicable cohomological criterion can be summarized as follows.

Proposition 1 [29, proposition 3. Let m > 0. If A; = B; = 0 for all solutions A™, B
of system (14)™), (15)), then there is no possibility to construct expansions (16) of order m,
and consequently, the seed zero curvature representation Ay, By cannot belong to a nontrivial
analytic family.

Finally, to be able to solve system (14)™) and (15)™!, we need to know the normal
forms of matrices A", BI™), However, the normal forms for B(L), C()) established above
immediately imply the same normal forms for C;, (diagonal) and By (symmetric).

5. Results

In this section, we present the results of computation of the cohomological obstructions in the
case of the nonparametric zero-curvature representation (13) of equation (12). As a sub-result
we obtain the first few coefficients A, B, of Taylor expansions (16).

As we have seen in the preceding section (proposition 1), the problem reduces to solving
the system (14)™! and (15)"! of linear differential equations in total derivatives, for increasing
values of m. This is only possible under a suitable restriction on the jet order of the unknowns
Ag, By, Cr, k > 0. To start with, we assume dependence on the first-order jets at most. Upon
expanding all total derivatives, equations (14)™! and (15)"! become a large overdetermined
system of linear partial differential equations. As such, the system is solvable by computing
the passive (or involutive) form under a suitable (elimination) ranking [33].

Starting with m = 1, we checked that nonzero matrices 4,, B; depending on second-
order derivatives exist for all possible determining relations (10). When incrementing m to
2, nontrivial conditions started to appear, but we also reached the boundaries of our available
computing resources. Consequently, our present classification results are still incomplete.
Nevertheless, we were able to obtain a passive system of differential equations in several
cases. Moreover, in two cases we were able to find A,, B, explicitly. One of them was the
linear Weingarten surfaces (4). Their integrability is a well-established fact [35], the associated
sine-Gordon equation ¢,, = sin ¢ being a textbook example of integrability. The other class
emerged as a solution

p

=— ¢ = const (18)
el+c/p

7
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of the ordinary differential equation

E' (E\* 2E 1

— =] +—-——=-==0
E E pE p?
Henceforth we concentrate on the solution (18). The coefficients u, v, g are easily found

from (11) to be
eltel/p p+c pc

u=— = 155
The last equality shows that the condition of constant astigmatism (5) holds with the constant
—1/c on the right-hand side. The Gauss equation (12) becomes
c? p+c , 2c—p) , cp
Pyy = mpxx + z'pry 2 e4(1+%)p2 Px 20+

2

In principle, the cohomological method we applied can only prove nonintegrability and
only indicate, but not prove, integrability. However, it was easy to guess an ansatz based on
the form of A; and B;. By solving (14) and (15) we obtained a A-dependent zero-curvature
representation

Acp—; +/A2 4+ e2(1+§)p—z ret%
A= 14 p
(A+1D)e _Mp_; - VA2+ke2(1+%)£;—
p p
c a9
Al 4 VTR e DR e
P p
B = [
VaZ¥ace % 2B ARt M
4 p
which reduces to the initial Ag, By given by (13) when A = —%. The dependence on p,
explains why this class of Weingarten surfaces is missing in Wu’s paper [43].
Upon substitution
x y 4c
- —, - —, - 20
e/ Y7 A P mz+injc|—4 0
the Gauss equation (12) simplifies to
1
Zyy + (—) +2=0, 2n
< XX
and the zero-curvature representation (19) to
1 1+2x
SV A+ — & O+ 1)z
A= o 1424z |’
+
W —SVW Ry - e
i Z
lmz_x+l+2)u_zl VAZ+A (22)
B_ 2 72 4 z N3
'VA.2+)\. _lmz_x_l+2lz_y
/3 2 z2 4 z

Let us remark that one can remove the x-derivatives from A and y-derivatives from B by the
gauge transformation (3), albeit at the cost of introducing an exponential dependence on the
spectral parameter. In (19) and (22), the corresponding gauge matrix is

e—*/p 0 M2 0
S= 0 ehe/p and §= ( 0 Z—A/Z) s
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respectively. For instance, the pair (22) becomes

1 1 '
5«/)@ +izy A+ Dz 2 VaZ+ z—; Va2 + izl
A/ = , B, =

1 1
e O R Vit -5 VA xi—;‘

Equation (21) has obvious translational symmetries d,, dy, the scaling symmetry
270, — x 8, + ydy, and a discrete symmetry
1

x =y, y— x, z— -, 23)
Z

Computation reveals also two third-order symmetries of equation (21). One of them has the
generator
3
z 3 2 :
F(Zxxx - zzxxy) - FZ3 (zx — Zzy)(zxx - szy)2 - FZS 9z, — ZZy)Zxx

1 2
+oxs? O 42ty — 2°2) (0 — 220200 = 1522 (2x — 212y)

4 3 3
X (425 — 22))2zy + 7(—sz6zxzxy + Fz“(Szx —zzy)72 — 53— 22y)25,
24)
where
K= \;/(Zx — 22,)? + 4728,

The other is obtained by conjugation with the discrete symmetry (23).
Moreover, A Sergyeyev (private communication) succeeded in finding arecursion operator
for equation (21) in the usual pseudo-differential form

~2yD;" +2, DD, +2zD;' D,. (25)

As far as we could see, the operator generates only nonlocal symmetries. We leave as an open
problem to find a recursion operator that would generate the third-order symmetry (24).

Let us conclude this section with some easy geometric observations. First of all, we can
put ¢ = 1 without loss of generality. This can always be achieved by rescaling the ambient
Euclidean metric and, if necessary, changing the orientation.

Now, the symmetries of the constant astigmatism equation (21) have the following
geometric interpretation. Translation symmetries are simply reparametrizations of the surface.
The scaling symmetry ¢,: x — e°x, y — ey, z — e 2z takes a given surface r(x, y) to the
parallel surface r(x, y)+& n(x, y). This is not surprising since parallel surfaces obviously have
equal astigmatism in the corresponding points. Finally, swapping the orientation is another
symmetry, which can be identified with a composition of the discrete symmetry (23) and the
rescaling ¢;. Hence, the discrete symmetry (23) corresponds to the change of the orientation
followed by taking the parallel surface at the unit distance.

6. Relation to pseudospherical surfaces

As already mentioned in section 1, 19th century geometers knew of a simple relation between
pseudospheric surfaces and surfaces of constant astigmatism, even though they did not find
the latter important enough to be named. In this section we reproduce some of their findings
and derive a nonlocal transformation between the constant astigmatism equation (21) and the
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famous sine-Gordon equation. Again, we put ¢ = 1 for simplicity, meaning that the associated
focal surfaces will be of Gaussian curvature —1.

The forthcoming calculations are conveniently performed in terms of the variable z given
by formula (20) or a new variable w related to z by

z=¢e™. (26)

Then we have

w 1 1
= — 1 IU’ = —, = —_—, = -, 27
u=(w-1)e v=g P=7 9= @n
and the discrete symmetry (23) becomes simply
X =Yy, y = X, w— —w. (28)

Given a surface £, recall that its evolutes (also known as focal surfaces) are the loci of the
principal centres of curvature of £. Obviously, a generic surface £ has two evolutes. They
interchange positions under the change of the orientation.

Proposition 2 (Ribaucour [34]). Evolutes of surfaces of constant astigmatism are
pseudospherical surfaces.

Proof. Let r(x, y) be a surface parametrized by curvature lines. We use the orthonormal
frame (e, e, n), where

e =T./u, e =ry,/v, n=e; Xep.
Then the two evolutes £’ and £” are given by
n n
r=r+—, r=r+—,
p q
respectively. An easy calculation using the Gauss—Weingarten formulae (6) shows that
r}:—f—;n, r;=—£§n+(l——)r},
p p
/" Ix n dy
r,=—-—=-n+ 1——)rx, = —=n,
x 72 ( y 72
the unit normals being
l'l/ — l‘_x n// — l'_
u’ v

Now assume r(x, ) to be a surface of constant astigmatism. By applying the substitutions
(27) we obtain the first fundamental form of the evolutes in terms of w:

I = (wy dx + wy dy)? +e 2 dy? = dw? +e 2 dy?,

I’ = e®™ dx? + (w, dx + wy dy)? = e** dx? + dw?.
These are the well-known pseudospherical metrics in terms of geodesic coordinates w, y and
w, x on the first and the second sheet, respectively. O

For further reference we also compute the second fundamental forms
w wy,
II' = —e”w, dx* + = dy?, II" = e™w, dx? — < dy%.
e¥ iy e¥

Proposition 2 provides as with a couple of transformations from the constant astigmatism
equation (21) to the sine-Gordon equation. To write them explicitly, we need to equip £’ and
L" with the asymptotic coordinates &, 7, i.e., the fundamental forms have to be

I = dg2 +2cos ¢’ d& dn + dn?, Il = 2sin ¢’ d¢ dn,
I’ = d&? +2cos ¢” d€ dn + dn?, II" = 2sin¢” d& dn.

10
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Here ¢’ and ¢ are the angles between the coordinate lines on £’ and £”, respectively. Using
the previous expression of fundamental forms I, II" and 1”, I1” in terms of the variable w, we
easily see that &, n can be obtained by the ‘reciprocal transformation’ [35]

dt = %\/’/ (wy + €20 w,)? + e dx + %\/ (€2 wy +wy)? +e 2w dy, 29)

dn = %V/ (wy —e2Pwy)? +e?vdx — %\/ (e 2wy, — wy)? +e 20 dy.

These formulae are valid on both sheets and reflect another property established by Ribaucour
[34], namely that the asymptotic lines on £’ and £" correspond.
Then the angle ¢’ associated with the first sheet satisfies

w2 — e — et w%

cos¢’ =

’
V(wy +e?wy)? + e [(w, —eMw,)? + e

30
2e%w, (30)

sing’ = —

Jwy +ew ) + e [(w, — e?w,)? + e
while the angle ¢” associated with the second sheet satisfies a similar set of equations related
by the substitution (28).

Proposition 3. Let z(x,y) be a solution of the constant astigmatism equation (21), let
w= % Inz. Determine function ¢’ by formula (30) and new coordinates &, n by the reciprocal
transformation (29). Then ¢'(&, 1) is a solution of the sine-Gordon equation ¢g, = sin ¢.

Another solution of the sine-Gordon equation can be obtained by combination with
the discrete symmetry (28). The other symmetries (translation and scaling) do not lead to
essentially new solutions.

Now, it is easy to check that the evolutes of surfaces of constant astigmatism are related
by the classical Bianchi transformation. Indeed, the corresponding points r’ and r” have a
constant distance equal to 1/p — 1/q. The corresponding normals n’ = r,/u andn” = ry /v
are orthogonal. Finally, being directed along the normal vector n, the line joining the points r’
and r” is tangent to both surfaces £’ and £”. These three properties characterize the classical
Bianchi transformation. The Bianchi transformation is, however, superseded by the classical
Biécklund transformation [1], where the condition on the angle between the normals is relaxed
from being right to being constant.

7. Surfaces of constant astigmatism as involutes

In principle, all surfaces of constant astigmatism can be obtained from solutions of the
sine-Gordon equation as involute surfaces, see, e.g., Darboux [13, section 802], Bianchi
[3, sections 130-150} or Weatherburn [3, chapter 8]. Geodesic nets on pseudospheric surfaces
fall into three classes: hyperbolic, parabolic and elliptic [3, section 102]. Of them only the
parabolic geodesic nets lead to surfaces of constant astigmatism [3, section 136].

Recall that the sine-Gordon ¢, = sin ¢ describes surfaces of the constant curvature —1
in the asymptotic coordinates &, . By definition,

I =dg? +2cos ¢ dE dn + dn?, I = 2sin ¢ dé dn,
which leads to the Gauss—Weingarten equations

cosor; —r, . coSPr,; — I
Fep = ———— ¢, Izy =singn, Ty = ————— ¢,
§§ sing b5 §n ¢ n sing ¢y 1)
__COsSPr — Iy _cospry —rg

n, = n, = N
¢ sing 7 sin¢
11
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Recall that coordinates X, ¥ on a pseudospheric surface are called parabolic geodesic if
the first fundamental form can be written as

[=dx?+e?Xdy>.

To find the transformation from asymptotic to parabolic geodesic coordinates, observe that
d£2 + 2 cos ¢ d& dn + dn? = dX? + e?X dY? is equivalent to the system

X;+e¥Y =1, X: X, +eXY, ¥, = cos o, x2+e¥y, =1.
This system can be rewritten as
X; = cosa, Y; = e ¥sina,
X (32)
X, =cosf, Y, =€ " sinp,
and
p=a-p (33)

In fact, (33) could also be ¢ = B — &, which can be reversed by changing the orientation of the
surface. The new unknowns o and B can be identified with the angles between the geodesics
and the two asymptotic coordinate lines.

The integrability conditions of system (32) are

P = —sina, o, = —sin f, (34)
or, in view of relation (33),
Be = —sin(¢ + p), By = —¢, —sinB. (35)

These are already compatible by virtue of the sine-Gordon equation. From equations (32) we
obtain

ry = —

sin 8 sina cos B cosa X
" e+ ——10y, y = " re + — I, je
sin¢g sin ¢ sin¢ sin ¢
With respect to a given geodesic net, the involute surface ¥ is composed of individual
involute curves to the geodesics, based on one and the same orthogonal line Y = const. Hence,

fF=r+(a— X)ry,
where a is an arbitrary constant. With the help of equations (31), the fundamental forms in

of the involute surface ¥ can be routinely computed in asymptotic coordinates. In particular,
the unit normal is i = ry and

I=(X*-X+1)( —cos2a)ds® + (2X — 1)(cos(a + B) — cos ) d& dn
+(X? = X + 3)(1 — cos28) dn?,
Il = (X — 1)(cos2a — 1) d&? + (cos(x + B) — cos ¢) d& dn
+(X — £)(cos28 — 1) dn?.
Hence, the principal radii of curvature are X, X — 1. The Gauss—Mainardi-Codazzi
equations of the involute surface hold as a consequence of the sine-Gordon equation, the two
equations (32) on X and the system (35) on B.
To obtain the corresponding solution of the constant astigmatism equation (21), we have

to reparametrize the involute surfaces by curvature lines. Let x, y denote the new coordinates.
We choose x = Y and define y by the compatible system of equations

y: =eX sina, y, = eX sin B. (36)
§ 7

12
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A routine calculation shows that e 2X®?) js a solution of the constant astigmatism
equation (21). Summarizing, we have the following proposition.

Proposition 4. Let ¢ (£, n) be a solution of the sine-Gordon equation ¢y, = sin¢. Let o, B
be solutions of the compatible equations

Py = —sina, ap = —sin f, ¢—p=9¢.
Determine functions X, x, y by equations

dX = cosa df +cos Bdn,
dx = e *(sino d€ + sin B dp),
dy = X (sin d£ +sin B dp).

Then the function e~ 2X*Y) is g solution of the constant astigmatism equation (21).

Example 1. Von Lilienthal’s surfaces (involutes of the pseudosphere). Published in 1887,
these surfaces seem to have fallen into oblivion. Recall that the pseudosphere is a surface
obtained by rotating the tractrix around its asymptote. The meridians are geodesics of the
parabolic type and therefore von Lilienthal’s surface is obtained by rotating the involute of the
tractrix (which itself is the involute of the catenary).

In geodesic coordinates X, ¥, the ‘upper half’ of the pseudosphere has a parametrization

e XcosY
r= e XsinY
arcoshe® — /1 —eg=2X

, X >0,

whose first fundamental form is dX? + e~2¥ d¥? (differs by the sign of X from the canonical
form used in the preceding section). Then

(X—a+DeXcosY
fF=r+(@—-X)ry = (X—a+1e ¥sinY

arcosheX — (X —a+1)V/1 —e2X

parametrizes a rotational surface, for every real constant a. The surface is regular for all a < 0.
Otherwise it has a cuspidal edge at X = a, which is a circle of radius € *. Another singularity
that occurs for every a > 1 is the intersection with the rotation axis at X = a — 1. Choosing
the orientation so that the normal vector is

R X >0,

—e XcosY
—e¥Xsin¥Y

V1—e2X

(i.e., n swaps orientation when crossing either of the singularities), then

X-a)2? _, X—a+1)? , . X—-a ., X—a+l
X1 dx +—CZX dar~, H=ezx_1dX t

=
It

i= dy2.

and the principal radii of curvature are X — ¢ and X — a + 1. The corresponding solution of
the constant astigmatism equation (21) is

1

T= e

Plane sections of von Lilienthal surfaces for various values of the parameter a can be seen
in figure 1. Besides the rotation axis, each picture shows the tractrix, which is the plane section
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a=-0.5 a=0 a=02 a=1—1In2

a=0."7 a=1 a=12

Figure 1. A gallery of von Lilienthal surfaces.

of the pseudosphere, and its involute curve, which is the plane section of the von Lilienthal
surface.

We finish this example with a short exploration of the behaviour at the limits of the
definition domain. For X = oo the surface closes up at a point on the rotation axis at the
height a — 1 + In2, where both principal radii of curvature are infinite (the zero height is that
of the cusp of the tractrix). For X — 0 the surface vertically approaches a horizontal circle of
diameter |1 — a|. Two surfaces £(X, ¥) and —#(X, Y) can be glued along this circle to form
a single surface of constant astigmatism 1. For @ = 1 both glued surfaces have a cusp here.

8. Conclusions and discussion

Among the still incomplete results of classification of integrable Weingarten surfaces, we have
identified a class originally introduced and investigated by 19th-century geometers. The class,
which we propose to call surfaces of constant astigmatism, is governed by the equation

1
Zyy (—) +2=0.
Z XX

For this equation we found an s{(2)-valued zero-curvature representation depending on a
parameter, a third-order symmetry and a nonlocal transformation to the sine-Gordon equation
¢g, = sing. We had to leave aside the problem of finding a Bécklund transformation as well
as a recursion operator producing a hierarchy of local symmetries.

It should be stressed that the classification problem of integrable surfaces is far from being
easy. An obvious reason lies in the abundance of integrability-preserving ways to derive one
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surface from another. Clearly, parallel surfaces, evolutes and involutes of integrable surfaces
are integrable. On the differential equation level, the corresponding notion is that of the
covering [22]. The integrable classes of surfaces must be either closed with respect to taking
derived surfaces or the derivation must map one integrable class into another.
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