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2.7. Bäcklund transformations and recursion operators 9
2.8. Zero curvature representations 9
3. Infinitely many commuting nonlocal symmetries for modified Mart́ınez

Alonso–Shabat Equation [I] 10
3.1. The recursion operator 10
3.2. Nonlocal symmetries 10
4. On the four 3-dimensional Lax integrable equations [II],[III], [V] 11
4.1. Symmetries and Lie algebra structure of 4E equations 12
4.2. Lax pairs and di↵erential coverings 14
4.3. Nonlocal symmetries, Lie algebra structure, recursion operators 16
5. 4e Symmetry reductions and its integrability properties 18
5.1. The complete list of 2-dimensional reductions [V] 18
5.2. Integrability properties of some reductions [IV] 21
6. Integrable Weingarten surfaces 24
6.1. Weingarten surfaces 26
6.2. Constant astigmatism equation [VII] 26
6.3. The classification [VI] 27
References 28
Publications concerning the thesis 31





3

1. Preface

Di↵erent approaches to integrability of partial di↵erential equations (pdes) are
based on their diverse but related properties such as existence of infinite hierar-
chies of (local or nonlocal) symmetries and/or conservation laws, zero-curvature
representations, Lax integrability, recursion operators etc.

This thesis consists of papers

[I] Baran, H. Infinitely many commuting nonlocal symmetries for modified Mar-
tinez Alonso–Shabat equation. Communications in Nonlinear Science and
Numerical Simulation 96 (2021), 105692.

[II] Baran, H., Krasil’shchik, I.S., Morozov, O.I., and Vojčák, P. Nonlocal Sym-
metries of Integrable Linearly Degenerate Equations: A Comparative Study.
Theoretical and Mathematical Physics 196 (2) (2018), 1089–1110.

[III] Baran, H., Krasil’shchik, I.S., Morozov, O.I., and Vojčák, P. Coverings over
Lax integrable equations and their nonlocal symmetries. Theoretical and
Mathematical Physics 188 (3) (2016), 1273–1295.

[IV] Baran, H., Krasil’shchik, I.S., Morozov, O.I., and Vojčák, P. Integrability
properties of some equations obtained by symmetry reductions. Journal of
Nonlinear Mathematical Physics 22 (2) (2015), 210–232.

[V] Baran, H., Krasil’shchik, I.S., Morozov, O.I., and Vojčák, P. Symmetry re-
ductions and exact solutions of Lax integrable 3-dimensional systems. Jour-
nal of Nonlinear Mathematical Physics 21 (4) (2014), 643–671.

[VI] Baran, H. and Marvan, M. Classification of integrable Weingarten surfaces
possessing an sl(2)-valued zero curvature representation. Nonlinearity 23 (10)
(2010), 2577–2597.

[VII] Baran, H. and Marvan, M. On integrability of Weingarten surfaces: A for-
gotten class. Journal of Physics A: Mathematical and Theoretical 42 (40)
(2009), 404007.

All of them study integrability properties of some or several nonlinear pde.
Section 2 is a brief review of basic definitions from geometry of pde s and fixes

some notation.
Section 3 reviews the results of the paper [I] on the 4-dimensional modified

Mart́ınez Alonso–Shabat equation

uyuxz + ↵uxuty � (uz + ↵ut)uxy = 0

and presents its recursion operator and an infinite commuting hierarchy of nonlocal
symmetries. Discovering explicit form of the infinite-dimensional nonlocal symmetry
algebras for multidimensional integrable pdes, rather than just finding shadows of
nonlocal symmetries, appears to be quite di�cult and hence was only done for a
very small number of examples, especially in the case of four or more independent
variables. On the other hand, the situation seems to be di↵erent in 3D, where
infinite-dimensional noncommutative algebras of nonlocal symmetries for a number
of dispersionless integrable systems were found by direct computations, as we can
see in [II, III].

In Section 4, we focus on the papers [II, III] where we considered the four 3-
dimensional Lax-integrable equations: The universal hierarchy equation

uyy = utuxy � uyutx,
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the rdDym equation
uty = uxuxy � uyuxx,

the modified Veronese web equation

uty = utuxy � uyutx

and the 3D Pavlov equation

uyy = utx + uyuxx � uxuxy.

All of the above four equations (we denote them as 4e) can be obtained as reductions
of five-dimensional equation

uyz = uts + us uxz � uz uxs

studied in [3]. In the papers [II, III], for all the 4e equations, a Lie algebra of
local symmetries is described, two infinite-dimensional di↵erential coverings are
constructed, a complete description of nonlocal symmetry algebras associated to
these coverings is given and actions of recursion operators on shadows of nonlocal
symmetries are discussed.

In Section 5 we study 2-dimensional reductions of 4e equations following the
papers [IV, V]. The paper [V] presents a complete description of 2-dimensional
equations that arise as symmetry reductions of 4e equations. In the paper [IV], we
study the behavior of the integrability features of 4e equations under the reduction
procedure. We show that the zero-curvature representations are transformed to
nonlinear di↵erential coverings of the resulting 2-dimensional systems similar to
the one found for the Gibbons-Tsarev equation. Using these coverings we construct
infinite series of (nonlocal) conservation laws and prove their nontriviality. We also
show that the recursion operators are not preserved under reductions.

The Section 6 follows the papers [VI, VII], where we study classes of surfaces
immersed in the Euclidean space whose Gauss–Mainardi–Codazzi equations are
integrable in the sense of soliton theory. The paper [VII] reveals an integrable
class, consisting of surfaces with a constant di↵erence between the principal radii
of curvature, which we called surfaces of constant astigmatism and are described
by the integrable nonlinear pde

zyy + (1/z)xx + 2 = 0,

the constant astigmatism equation. In the paper [VI] we classify integrable Wein-
garten surfaces, where the criterion of integrability is that the associated Gauss
equation possesses an sl(2)-valued zero curvature representation with a nonremov-
able parameter. Under certain restrictions on the jet order, the answer is given by
a third order ordinary di↵erential equation to govern the functional dependence of
the principal curvatures. We give a general solution of the governing equation in
terms of elliptic integrals. We show that the instances when the elliptic integrals
degenerate to elementary functions were known to nineteenth century geometers.

Note that all the symbolic computations in papers constituting this thesis were
performed using the software Jets [4].

2. Prerequisites

We give here (in a simplified, local coordinate form) the basics of the geometrical
approach to di↵erential equations and di↵erential coverings following [2] and [22].
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2.1. Jets and equations. Consider Rn with coordinates x1, . . . , xn and Rm co-
ordinated by u1, . . . , um. The space of k-jets Jk(n,m), k = 0, 1, . . . ,1, carries the
coordinates x1, . . . , xn and uj

�, where j = 1, . . . ,m and � is a symmetrical multi-
index of length |�|  k, uj

? = uj . If uj = f(x1, . . . , xn) is a vector-function then
the collection

uj
� =

@|�|uj

@x�
, j = 1, . . . ,m, |�|  k,

is called its k-jet.
At a fixed point ✓ 2 Jk(n,m) tangent planes to the graphs of k-jets passing

through this point span the Cartan plane C✓ and the correspondence C : ✓ 7! C✓ is
called the Cartan distribution. For k = 1, a basis of C consists of the vector fields

Dxi =
@

@xi
+
X

j,�

uj
�i

@

@uj
�

, i = 1, . . . , n,

called the total derivatives. The total derivatives commute which amounts to the
formal integrability of the Cartan distribution on J1(n,m). We put

D� = Dxi1 � · · · �Dxik

for � = i1 . . . ik.
The di↵erential equation of order k is a submanifold in Jk(n,m) given by the

relations

(2.1) F 1(xi, uj
�) = · · · = F r(xi, uj

�) = 0;

for the sake of simplicity we speak of di↵erential equations even if we in fact deal
with systems of those.

The infinite prolongation E ⇢ J1(n,m) of (2.1) is given by

D�(F
j) = 0, j = 1, . . . , r, |�| � 0.

Everywhere below we deal with infinite prolongations only and identify them with
di↵erential equations under study.

The total derivatives, as well as all di↵erential operators expressed in terms of
total derivatives, are restrictable to the infinite prolongations defined above, and
we preserve the same notation for these restrictions. Total derivatives then span
the Cartan distribution on E . Maximal integral manifolds of this distribution are
solutions of E .

Given an E , we for a subsequent computations always choose internal coordinates
in it, which are local coordinates on the infinite prolongation E . The choice of
internal coordinates is not unique. To restrict an operator to E essentially amounts
to expressing this operator in terms of internal coordinates.

2.2. Linearization and adjoint. The linearization `E of E is defined as the re-
striction of the matrix operator

(2.2) `F =

✓X

�

@F↵

@u��
D�

◆↵=1,...,r

�=1,...,m

to E .
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Let� be a di↵erential operator in the matrix form� = (�↵�),�↵� =
P
�
�↵�� D�.

Its adjoint is the matrix operator

�⇤ =
�
�⇤↵�� , �⇤↵� =

X

�

(�1)|�|D� ��↵�� .

In particular, the adjoint to `F is given by

`⇤F =

 
X

�

(�1)|�|D� � @F
↵

@u��

!T

.

If E is the equation defined by F , we use the notation

`E = `F |E , `⇤E = `⇤F |E .

2.3. Symmetries. Consider an equation E ⇢ J1(n,m). We shall assume below
that the natural projection E ! J0(n,m) = Rn ⇥ Rm is a surjective map onto
its target. This means that the di↵erential consequences of (2.1) do not contain
0-order functions.. Consequently, the algebra C1(J0(n,m)) is embedded into the
algebra C1(E ).

A vector field X : C1(E ) ! C1(E ) is called vertical if X|C1(J0(n,m)) = 0, i.e.,

X does not contain components of the form @/@xi. A vertical field X is a (higher, or
generalized) symmetry of E if it preserves the Cartan distribution, i.e., [X,C ] ⇢ C .
Symmetries of E form a Lie algebra denoted by sym(E ).

A vector field is a symmetry if and only if it has the evolutionary form

(2.3) E' =
X

�

D�('
j)

@

@uj
�

,

where summation is taken over the internal coordinates on E and ' = ('1, . . . ,'m)
is a vector-function on E called the generating section (or characteristic) of the
symmetry that satisfies the equation

`E (') = 0.

Generating sections are (vector) functions that form a Lie algebra with respect to
the Jacobi bracket

{', }j =
X

�

✓
D�('

l)
@ j

@ul
�

�D�( 
l)
@'j

@ul
�

◆
,

which can be defined in the coordinate-free fashion as

{', } = E'( )�E (').

A solution u of the equation (2.1) is said to be invariant with respect to a
symmetry ' 2 symE if it enjoys the equation

(2.4) '
⇣
x, . . . ,

@|�|u

@x�
, . . .

⌘
= 0.

The reduction of E with respect to ' is equation (2.1) rewritten in terms of first
integrals of the equation (2.4).
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2.4. Cosymmetries and conservation laws. A cosymmetry of the equation E
is a solution of the equation

`⇤E ( ) = 0.

The space of cosymmetries is denoted by cosymE .
A horizontal (n� 1)-form on E

! = !1 dx
2^ dx3^· · ·^ dxn+!2 dx

1^ dx3^· · ·^ dxn+· · ·+!n dx
1^ dx2^· · ·^ dxn�1

defines a conservation law of E if
nX

i=1

(�1)i+1Di(!i) = 0,

i. e. when is closed with respect to the horizontal de Rham di↵erential

dh =
nX

i=1

dxi ^Dxi .

A conservation law is trivial if it is dh-exact, i.e. ! = dh⇢ for some horizontal
(n�2)-form ⇢. We are interested in nontrivial conservation laws. Two conservation
laws are equivalent if their di↵erence is a trivial one.

Let ! be a conservation law and let us extend the form ! on E to !̃ on J1(n,m)
in an arbitrary way. Then

(2.5)
nX

i=1

(�1)iDxi(!̃i) = �(F )

for some di↵erential operator �. Function  ! = �⇤(1)|E is called the generating
function of the conservation law !. Generating function  ! of a given conservation
law ! is a cosymmetry of E .

To compute conservation laws, their generating sections are used: Integrating by
parts eq. (2.5) order of � can be reduced to zero which gives a relation

(2.6)
nX

i=1

(�1)iDxi(!i) =  1F 1 + · · ·+  rF r,

where  = ( 1, . . . , r) is a vector function. Thus, to find conservation laws cor-
responding to a cosymmetry  the eq. (2.6) must be solved w.r.t. the unknown
functions ai. All the solutions, if any, di↵er by a trivial conservation law.

2.5. Di↵erential coverings. Consider the space Ẽ = Rs ⇥ E , s  1, and the
natural projection ⌧ : Ẽ ! E . We say that ⌧ is an s-dimensional (di↵erential)
covering over E if Ẽ is endowed with vector fields D̃x1 , . . . , D̃xn such that

[D̃xi , D̃xj ] = 0, ⌧⇤(D̃xi) = Dxi , i, j = 1, . . . , n.

Let {w↵} be coordinates in Rs (they are called nonlocal variables). Then the cov-
ering structure is given by

D̃xi = Dxi +Xi

such that
Dxi(Xj)�Dxj (Xi) + [Xi, Xj ] = 0,

where

Xi =
X

↵

X↵
i

@

@w↵
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are ⌧ -vertical vector fields.
There exists a distinguished class of coverings that are associated with two-

component conservation laws of E . Fix two integers i and j, 1  i < j  n, and
consider a di↵erential form

! = Xi dx
1^ · · ·^dxi�1^dxi+1^ · · ·^ dxn+Xj dx

1^ · · ·^dxj�1^dxj+1^ · · ·^ dxn,

such that
Dxi(Xi) = (�1)i+j�1Dxj (Xj).

Consider the Euclidean space V with the coordinates w�, where � is symmetric
multi-index whose entries are any integers 1, . . . , n except for i and j. Thus, dimV =
1 if n = 2 and dimV = 1 otherwise. Then the system of vector fields

D̃xk = Dxk +
X

�

w�k
@

@w�
, k 6= i, j,

D̃xi = Dxi +
X

�

D̃�(Xj)
@

@w�
,

D̃xj = Dxj + (�1)i+j�1
X

�

D̃�(Xi)
@

@w�

defines a covering structure on Ẽ! = V ⇥ E . The coverings of this type are called
Abelian.

2.6. Nonlocal symmetries. Denote by C the distribution on Ẽ spanned by the
fields D̃x1 , . . . , D̃xn and letX be a field vertical with respect to the composition Ẽ !
E ! Rn. Such a field is called a nonlocal symmetry if it preserves C̃ . These symme-
tries form a Lie algebra denoted by sym⌧ (E ). The restriction X|C1(E ) : C

1(E ) !
C1(Ẽ ) is called a nonlocal ⌧ -shadow. A nonlocal symmetry is said to be invisible
if its shadow vanishes.

In local coordinates, any X 2 sym⌧ (E ) is of the form

X = Ẽ' +
X

↵

 ↵
@

@w↵
,

where ' = ('1, . . . ,'m),  ↵ are functions on Ẽ satisfying the equations

˜̀
E (') = 0,

D̃xi( ↵) =
X

j,�

@X↵
i

@uj
�

D̃�('
j) +

X

�

@X↵
i

@w�
 � ,

where Ẽ' ans ˜̀
E are obtained from the expressions (2.3) and (2.2), respectfully,

by changing Dxi to D̃xi . Nonlocal shadows are the operators Ẽ' while invisible
symmetries are obtained from general ones by setting ' = 0.

In particular, for coverings of the form Ẽ!, where ! is a 2-component conservation
law, the symmetries acquire the form

X = Ẽ' +
X

�

D�( )
@

@w�
,

where ' and  satisfy

˜̀
E (') = 0,
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D̃xi( ) =
X

�,k

@Xj

@uk
�

D̃�('
k) +

X

�

@Xj

@w�
D̃�( ),

D̃xj ( ) = (�1)i+j�1

0

@
X

�,k

@Xi

@uk
�

D̃�('
k) +

X

�

@Xi

@w�
D̃�( )

1

A .

2.7. Bäcklund transformations and recursion operators. Let E1, E2 be equa-
tions. A Bäcklund transformation between E1 and E2 is the diagram

Ẽ
⌧1

��

⌧2

��

E1 E2,

where ⌧1, ⌧2 are coverings. When E1 = E2, it is called a Bäcklund auto-transfor-
mation. If ⌧1 is finite-dimensional and � ⇢ E1 is a graph of solution then, gener-
ically, ⌧2

�
⌧�1
1 (�)

�
is a finite-dimensional manifold endowed with an integrable n-

dimensional distribution whose integral manifolds are solutions of E2.
Consider now an equation E given by (2.1) and the system

F (xi, uj
�) = 0, `F (q) = 0,

where F = (F 1, . . . , F r). This system is called the tangent equation to E and de-
noted by T E , while the projection t : T E ! E is called the tangent covering.
Sections of this covering that preserve the Cartan distribution are identified with
generating sections of symmetries.

Let R be a Bäcklund transformation between T E1 and T E2. Then it follows
from the above said that it accomplishes a correspondence between symmetries of
the two equations. If E1 = E2 then such a correspondence is called a recursion
operator, [30].

2.8. Zero curvature representations. Given a system E of pdes in independent
variables x, y and a Lie algebra g, a g-valued zero curvature representation for E is
a form ↵ = Adx+B dy with A,B 2 g such that

DyA�DxB + [A,B] = 0

as a consequence of the system E .
Zero curvature representations have many applications in the field of integrability

theory of pdes: there is a connection with inverse scattering method (Zakharov–
Shabat formulation), Bäcklund transformations, nonlocal symmetries, pseudosym-
metries (factorizations of PDE), recursion operators and hierarchies.

Zero curvature representations come in huge families (gauge equivalence classes):
Let

P
i Ai dxi be a g-valued zero curvature representation, G the Lie group corre-

sponding to the Lie algebra g. The left action

S(Ai) = DiSS
�1 + SAiS

�1

by a G-valued function S is called the gauge transformation.
Two zero curvature representation are called gauge equivalent if one can be ob-

tained from the other by gauge transformation. A zero curvature representation is
called trivial if it is gauge equivalent to zero.
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We say that a pde is Lax-integrable if it admits a Lax pair with a non-removable
parameter.

3. Infinitely many commuting nonlocal symmetries for modified

Mart́ınez Alonso–Shabat Equation [I]

In the paper [I], we study the 4-dimensional modified Mart́ınez Alonso–Shabat
equation

(3.1) uyuxz + ↵uxuty � (uz + ↵ut)uxy = 0

involving a nonzero real parameter ↵, found in [34], and present its recursion opera-
tor and an infinite commuting hierarchy of full-fledged nonlocal symmetries (rather
than mere shadows). To date such hierarchies were found only for very few in-
tegrable systems in more than three independent variables. Equation (3.1) is an
integrable pde as it has a known Lax pair involving the spectral parameter � 6= ↵
[24, 42, 43]

(3.2) ry =
�

↵

uy

ux
rx, rz =

�

↵

uz + ↵ut

ux
rx � �rt.

3.1. The recursion operator. Starting with (3.2) and using the deformation
procedure described in [44] we readily find that (3.1) admits, in addition to (3.2),
a Lax pair

qy =
�uyqx + (↵� �)quxy

↵ux
,

qz =
� ((↵ut + uz)qx � ↵uxqt � quxz) + ↵quxz

↵ux
.

(3.3)

In particular, for any given � equations (3.3) define a covering, which we denote by
Q�, over (3.1). Unlike r, if q satisfies (3.3) then it is a nonlocal symmetry shadow
for (3.1) in the covering Q�. Using the techniques from [42, 44] we obtain

Proposition 3.1. Equation (3.1) admits a recursion operator R defined by the
relations

 y =
uy'x � uxy'+ ↵uxy 

↵ux
,

 z =
(↵ut + uz)'x � ↵ux't � uxz'+ ↵uxz 

↵ux
,

(3.4)

meaning that for any nonlocal symmetry shadow ' for (3.1) R produces another

nonlocal symmetry shadow R(')
def
=  for (3.1).

3.2. Nonlocal symmetries. While, as we have seen in the preceding section, q is
a nonlocal symmetry shadow in the covering Q�, this shadow cannot be lifted to a
full-fledged nonlocal symmetry in the covering under study.

To circumvent this di�culty, consider a formal expansion q =
P1

i=0 qi�
i. Substi-

tuting this expansion into (3.3) shows that q0 = Fux, where F (x, t) is an arbitrary
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function, while the remaining qi are defined by the equations

(q1)y =
↵uxyq1 + (uxxuy � uxyux)F + uxuyFx

↵ux
,

(q1)z =
↵uxzq1 + (↵(utux)x + uxxuz � uxzux)F + (↵ut + uz)uxFx � ↵u2

xFt

↵ux
,

(qi)y =
↵uxyqi � uxy(qi�1) + uy(qi�1)x

↵ux
,

(qi)z =
↵uxzqi � uxz(qi�1)� ↵ux(qi�1)t + ↵ut(qi�1)x + uz(qi�1)x

↵ux
,

i = 2, 3, . . . , that define an infinite-dimensional covering, which we denote by Q1,
over (3.1).

Theorem 3.1. Infinite prolongations of the vector fields

(3.5) Qi = qi
@

@u
+

1X

j=1

Bj
i

@

@qj
, i = 1, 2, . . . ,

form an infinite hierarchy of commuting nonlocal symmetries for (3.1) in the cov-
ering Q1.

Here

(3.6) Bj
i =

�
[ux, qi+j�1]x � ↵ [ux, qi+j ]x

�
F � (↵ qi+j � qi+j�1)ux Fx

↵ux

+

�
qi+j�s(i,j)�1

�
x
qs(i,j)+1

ux
+

s(i,j)X

k=1

↵ [qi+j�k, qk]x � [qi+j�k�1, qk]x
↵ux

,

where s(i, j) = min (i� 1, j � 1) and [A,B]x = AxB �ABx.

Finding explicit form of the symmetries Lie algebra generators and providing rig-
orous proofs of commutation relations for infinite-dimensional algebras of nonlocal
symmetries for multidimensional integrable pdes, rather than merely finding shad-
ows of nonlocal symmetries, appears to be quite rare, especially in the case of four
(or more) independent variables. The situation seems to be quite di↵erent in 3D,
where infinite-dimensional noncommutative algebras of nonlocal symmetries for a
number of dispersionless integrable systems were found by direct computations, see
e.g. [II], [III] or [17, 21].

4. On the four 3-dimensional Lax integrable equations [II],[III], [V]

In the series of papers [II],[III], [V] we consider the four 3-dimensional Lax-
integrable equations

- the universal hierarchy equation [29]

(4.1) uyy = uzuxy � uyuxz,

- the 3D rdDym equation [7, 35, 37]

(4.2) uty = uxuxy � uyuxx,

- the Veronese web equation [1, 10, 14, 49]

(4.3) uty = utuxy � uyutx,
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- the Pavlov equation [11, 36]

(4.4) uyy = utx + uyuxx � uxuxy.

All the four above listed equations (denote them as 4e) may be obtained as the
symmetry reductions of the following Lax-integrable 4-dimensional systems

(4.5) uyz = utx + ux uxy � uy uxx,

(4.6) uty = uz uxy � uy uxz

introduced in [15] and [29], respectively, while the latter two, in turn, are the re-
ductions of

(4.7) uyz = uts + us uxz � uz uxs

with five independent variables t, x, y, z, s, studied in [3], which is a particular
case of Manakov–Santini equation [27, 28] and is related to the five-dimensional
equation considered in [29]. Some of 4e equations arise also in [15] as integrable
reductions of multi-dimensional dispersionless PDEs.

Reductions of (4.7) to (4.5) and (4.6) and consequently to 4e are described in
[3] and visualized in Figure 1. Integrability properties of the equation (4.7) were

(4.1) univ. hierarchy
uyy=uzuxy�uyuxz

(4.6) 4D rdDym
uty=uzuxy�uyuxz

z=x

((

t=y
66

z=t // (4.3) Veronese
uty=utuxy�uyutx

(4.7) 5D
uyz=uts+us uxz�uz uxs

s=x,y!z,z!y

((

s=y

66

(4.2) 3D rdDym
uty=uxuxy�uyuxx

(4.5) 4D Pavlov
uyz=utx+uyuxx�uxuxy

z=y
((

ut=0,z!�t
66

(4.4) 3D Pavlov
uyy=utx+uyuxx�uxuxy

Figure 1. 4e reduction diagram

studied in [3]: We found the Lie algebra of symmetries, conservation laws, di↵eren-
tial coverings with non-removable parameter (Lax-integrability) and the recursion
operator together with its action on symmetries for (4.7).

The notation used within the papers [II],[III], [V] here and there slightly di↵ers,
so we fix here and bellow the notation to the form used in the last paper [II].

4.1. Symmetries and Lie algebra structure of 4E equations. In [V] we found
symmetries and corresponding Lia algebra structure for the 4e equations (4.1)–
(4.4).



13

4.1.1. The universal hierarchy equation (4.1). The space of local symmetries is
spanned by the functions

✓0(X) = Xux �X 0u, ✓1(X) = X,

'0(T ) = Tut + T 0yuy, '1(T ) = Tuy, � = yuy + u,

where X is a function of x and T is a function of t and here and everywhere bellow
we using the notation [R, R̄] = RR̄0 � R̄R0 for functions R and R̄, while ‘prime’
denotes the corresponding derivative. The commutators of local symmetries are
presented in Table 1.

� ✓0(X̄) ✓1(X̄) '0(T̄ ) '1(T̄ )

� 0 0 �✓1(X̄) 0 '1(T̄ )

✓0(X) . . . ✓0([X̄,X]) ✓1([X̄,X]) 0 0

✓1(X) . . . . . . 0 0 0

'0(T ) . . . . . . . . . '0([T̄ , T ]) '1([T̄ , T ])

'1(T ) . . . . . . . . . . . . 0

Table 1: The UHE: commutators of local symmetries.

4.1.2. rdDym equation (4.2). The space of local symmetries is spanned by the func-
tions

 0 = �xux + 2u, �0(Y ) = Y uy,

✓0(T ) = Tut + T 0(xux � u) +
1

2
T 00x2,

✓�1(T ) = Tux + T 0x, ✓�2(T ) = T,

where T = T (t), Y = Y (y) are arbitrary functions of their arguments and ‘prime’
denotes the corresponding derivative. Commutators of symmetries are presented in
Table 2.

 0 �0(Ȳ ) ✓0(T̄ ) ✓�1(T̄ ) ✓�2(T̄ )

 0 0 0 0 ✓�1(T̄ ) 2✓�2(T̄ )

�0(Y ) . . . �0([Y, Ȳ ]) 0 0 0

✓0(T ) . . . . . . ✓0([T, T̄ ]) ✓�1([T̄ , T ]) ✓�2([T̄ , T ])

✓�1(T ) . . . . . . . . . ✓�2([T̄ , T ]) 0

✓�2(T ) . . . . . . . . . . . . 0

Table 2: The rdDym equation: commutators of local symmetries.

4.1.3. Veronese web equation (4.3). The modified Veronese web equation (mVWE)
was studied in [1] and is related to the Veronese web equation, [10, 49], by the
Bäcklund transformation (4.9).

The space of local symmetries is generated by the functions

'(T ) = Tut, �(Y ) = Y uy, ✓0(X) = Xux �X 0u, ✓1(X) = X,

where X = X(x), Y = Y (y), and T = T (t) are arbitrary functions of their argu-
ments. The commutators of the symmetries are presented in Table 3.
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'(T̄ ) ✓0(X̄) ✓1(X̄) �(Ȳ )

'(T ) '([T̄ , T ]) 0 0 0

✓0(X) . . . ✓0([X̄,X]) ✓1([X̄,X]) 0

✓1(X) . . . . . . 0 0

�(Y ) . . . . . . . . . �([Ȳ , Y ])

Table 3: The mVwe: commutators of local symmetries.

4.1.4. The Pavlov equation (4.4). The space of local symmetries is spanned by the
functions

'1 = 2x� yux, '2 = 3u� 2xux � yuy,

✓0(T ) = Tut + T 0(xux + yuy � u) +
1

2
T 00(y2ux � 2xy)� 1

6
T 000y3,

✓1(T ) = Tuy + T 0(yux � x)� 1

2
T 00y2, ✓2(T ) = Tux � T 0y, ✓3(T ) = T,

where T is a function of t and ‘prime’ denotes the t-derivatives. Commutators of
these symmetries are presented in Table 4.

'1 '2 ✓0(T̄ ) ✓1(T̄ ) ✓2(T̄ ) ✓3(T̄ )

'1 0 '1 0 �2✓2(T̄ ) 2✓3(T̄ ) 0

'2 . . . 0 0 �✓1(T̄ ) �2✓2(T̄ ) �3✓3(T̄ )

✓0(T ) . . . . . . ✓0([T̄ , T ]) ✓1([T̄ , T ]) ✓2([T̄ , T ]) ✓3([T̄ , T ])

✓1(T ) . . . . . . . . . ✓2([T̄ , T ]) ✓3([T̄ , T ]) 0

✓2(T ) . . . . . . . . . . . . 0 0

✓3(T ) . . . . . . . . . . . . . . . 0

Table 4: The Pavlov equation: commutators of local symmetries.

4.2. Lax pairs and di↵erential coverings. The results presented in this section
were obtained in the paper [III] for the rdDym equation and in [II] for the remaining
equations.

For each equation, we construct two infinite hierarchies of two-component nonlo-
cal conservation laws (corresponding to non-negative and non-positive powers of the
spectral parameter). To these hierarchies there correspond two infinite-dimensional
coverings ⌧+, ⌧�(in the sense of [22]) which we call positive and negative.

4.2.1. The universal hierarchy equation (4.1). The UHE admits the Lax represen-
tation

qt = ��2(�ut � uy)qx, qy = ��1uyqx.

Expansion in powers of � leads to the system

qi,t = utqi+1,x � uyqi+2,x, qi,y = uyqi+1,x.

The corresponding positive covering is of the form

q1,y =
ut

uy
, q1,x =

1

uy
;
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qi,y =
ut

uy
qi�1,y � qi�1,t, qi,x =

qi�1,y

uy
,

i > 1, with the additional variables q(j)i that satisfy the relations

q(0)i = qi, q(j+1)
i = q(j)i,t .

The equations defining the negative covering are

r1,y = uxuy, r1,t = uxut � uy;
ri,y = uyri�1,x, ri,t = utri�1,x � ri�1,y,

i > 1, with r(j)i defined by relations r(j+1)
i = r(j)i,x .

4.2.2. rdDym equation (4.2). The system

(4.8) wt = (ux � �)wx wy = ��1uywx,

is a Lax pair for (4.2). Setting w =
P+1

i=�1 �iwi and inserting this expansion
into (4.8), we obtain

wi,t = uxwi,x � wi�1,x, wi,y = uywi+1,x.

The corresponding positive covering is defined by the system

q1,t =
ux

uy
, q1,x =

1

uy
,

qi,t =
ux

uy
qi�1,y � qi�1,x, qi,x =

qi�1,y

uy
,

where i � 2, with the additional nonlocal variables q(j)i defined by relations

q(0)i = qi, q(j+1)
i =

⇣
q(j)i

⌘

y
.

The negative covering is defined by the system

r1,x = u2
x � ut, r1,y = uxuy,

ri,x = uxri�1,x � ri�1,t, ri,y = uyri�1,x

enriched by additional nonlocal variables r(j)i defined by relations

r(0)i = ri, r(j+1)
i =

⇣
r(j)i

⌘

t
.

4.2.3. Veronese web equation (4.3). The mVwe admits the Lax pair

(4.9) qt = (�+ 1)�1utqx, qy = ��1uyqx.

Expanding in powers of �, one obtains

qi�1,t + qi,t = utqi,x, qi�1,y = uyqi,x.

Then the positive covering acquires the form

q1,t =
ut

uy
, q1,x =

1

uy
,

qi,x =
qi�1,y

uy
, qi,t =

ut

uy
qi�1,y � qi�1,t,

i > 1, the additional variables being q(j)i defined by relations

q(0)i = qi, q(j+1)
i = q(j)i,y .
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The defining equations for the negative covering are

r1,t = ut(ux � 1), r1,y = uxuy,

ri,t = utri�1,x � ri�1,t, ri,y = uyri�1,x,

i > 1. The auxiliary variables are r(j)i , defined by relations

r(0)i = ri, r(j+1)
i = r(j)i,y .

4.2.4. Pavlov’s equation (4.4). The Lax pair for the 3D Pavlov equation is

qt = (�2 � �ux � uy)qx, qy = (�� ux)qx.

Expanding q in integer powers of �, we arrive to the covering

qi,t = qi�2,x � uxqi�1,x � uyqi,x, qi,y = qi�1,x � uxqi,x,

for all i 2 Z.
The positive covering corresponding to this system is

q0,t + uyq0,x = 0, q0,y + uxq0,x = 0;

q1,t + uyq1,x = �uxq0,x, q1,y + uxq1,x = q0,x,

qi,t + uyqi,x = qi�2,x � uxqi�1,x, qi,y + uxqi,x = qi�1,x,

where i � 2, to which nonlocal variables q(j)i defined by relations

q(0)i = qi, q(j+1)
i = q(j)i,x

are added. This covering is not Abelian.
The negative covering is given by

r1,y = ut + uxuy, r1,x = uy + u2
x;

ri,y = ri�1,t + uyri�1,x, ri,x = ri�1,y + uxri�1,x,

i � 2, with additional nonlocal variables r(j)i defined by relations

r(0)i = ri, r(j+1)
i = r(j)i,t .

4.3. Nonlocal symmetries, Lie algebra structure, recursion operators. For
each 4e equation, we obtained a full description of nonlocal symmetry algebras
associated to above coverings. For all the coverings, the obtained Lie algebras of
symmetries manifest similar (but not the same) structures. We also discuss actions
of recursion operators on shadows of nonlocal symmetries. Let us briefly present
the results on the rdDym equation obtained in [III]. The remaining equations are
studied in [II] in a similar fashion.

All the local symmetries of the rdDym equation can be lifted both to the posi-
tive ⌧+ and the negative ⌧� covering and we denote the lifts by the corresponding
capital letters:  0 for the lift of  0, ⇥i(T ) for ✓i(T ), etc.

Three families of nonlocal symmetries are admitted in ⌧+. The first one consists
of invisible symmetries

�k
inv(Y ) = (0, . . . , 0| {z }

k times

,'1
inv, . . . ,'

i
inv, . . . )

where '1
inv = Y (y), and another two are generated by the lifts  �1 and  �2 of the

nonlocal shadows

 �1 = q1uy + x,  �2 = (2q2 � q1q
(1)
1 )uy
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using the relations

 �k = [ �k+1, �1], k � 3 and ⌥�k(Y ) = [ �k�1,�
1
inv(Y )].

Theorem 4.1. There exist a basis in sym⌧+(E ) consisting of the elements

{wi,vj(T ),vk(Y )}, i  0, j = 0,�1,�2, k 2 Z
such that they commute as it is indicated in Table 5.

wj vj(T̄ ) vj(Ȳ )

wi (j � i)wi+j
jvi+j(T̄ ), �2  i+ j  0,
0, otherwise

jvi+j(Ȳ )

vi(T ) . . .
vi+j([T, T̄ ]), �2  i+ j  0,
0, otherwise

0

vi(Y ) . . . . . . vi+j([Y, Ȳ ])

Table 5: The rdDym equation: commutators in sym⌧+(E ).

In a similar way, local symmetries are lifted to ⌧� and three families of nonlocal
symmetries arise in this covering. They are  k, k � 1, ⇥i(T ), i � �2, �l

inv.
The Lie algebra structure is then described by

Theorem 4.2. There exist a basis in sym⌧�(E ) consisting of the elements

{wi,vj(T ),v(Y )}, i � 0, j 2 Z,
that satisfy the commutator relations presented in Table 6.

wj vj(T̄ ) v(Ȳ )

wi (j � i)wi+j jvi+j(T̄ ) 0

vi(T ) . . . vi+j([T, T̄ ]) 0

v(Y ) . . . . . . v([Y, Ȳ ])

Table 6: The rdDym equation: commutators in sym⌧�(E ).

Note that the components of the invisible symmetries are constructed using the
operator

Y = q1
@

@y
+

1X

i=1

(i+ 1)qi+1
@

@qi
.

Similar operators will arise in the study of other equations.
The equation under study admits a recursion operator R+ defined by the system

(4.10)
Dt(�̂) = u�1

y

�
uy Dx(�)� ux Dy(�) + (uxuxy � uyuxx)�̂

�
,

Dx(�̂) = u�1
y

�
uxy �̂�Dy(�)

�
,

see [33]. This means that �̂ is a nonlocal shadow whenever � is. Another recursion
operator R� is defined, in a fashion similar to R+, by the system

(4.11)
Dx(�) = Dt(�̂)� ux Dx(�̂) + uxx �̂,

Dy(�) = �uy Dx(�̂) + uxy �̂.
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The operators R+ and R� are mutually inverse.
The actions of R+ and R� on sym(E ) may be prolonged to the shadows of

nonlocal symmetries from sym(Ẽ +) and sym(Ẽ �) if we replace the derivatives Dt,
Dx and Dy in (4.10) and (4.11) by the total terivatives D̂t, D̂x and D̂y in the
Whitney product of the coverings ⌧+ and ⌧� in the sense of [22]. The resulting
operators will be still denoted by R+ and R�.

Note that the operators act nontrivially on ‘vacuum’: R+(0) = ✓�2(T ), R�(0) =
�0(Y ), which immediately follows from Equations (4.10) and (4.11); thus it is rea-
sonable to consider the actions of these operators modulo ✓�2(T ) for R+ and �0(Y )
for R�. Taking into account this remark, we have the following

Proposition 4.1. Modulo the images of the trivial symmetry, the action of recur-
sion operators is of the form

R+(✓i(T )) =

⇢
↵+
i ✓i�1(T ), i > �2,

0, i = �2,
R�(✓i(T )) = ↵�

i ✓i+1(T ), i � �2,

R+(�i(Y )) = �+
i �i+1(Y ), i  0, R�(�i(Y )) =

⇢
��
i �i+1(Y ), i < 0,

0, i = 0,

R+( i) = �+i  i�1, R�( i) = ��i  i+1, i 2 Z,
where ↵±

i , �
±
i , and �±i are nonzero constants.

Note that the recursion operators R+ and R� ‘glue together’ the shadows  m of
nonlocal symmetries in coverings Ẽ + and Ẽ � and ‘tunnel’ from the series of ✓k(T )
to that of �j(Y ), see Figure 2.

. . .
R�
//
 +
�1R+

oo

R�
//
 ±
0R+

oo

R�
//
 �
1R+

oo

R�
//
. . .

R+

oo

. . .
R�
//
�+�1R+

oo

R�
//
�±0R+

oo

R�
//
0±

R+

oo

R�
//
✓±�2R+

oo

R�
//
✓±�1R+

oo

R�
//
✓±0R+

oo

R�
//
✓�1R+

oo

R�
//
. . .

R+

oo

Figure 2. The rdDym equation: action of recursion operators
(4.10) and (4.11). Straight arrows denote actions up to scalar multipli-

ers and modulo the image of the trivial shadow. We write ✓i instead of ✓i(T ),

�k instead of �k(Y ), etc. Notation (·)+ means that a shadow lives in ⌧+, (·)�

is for those who live in ⌧�; shadows marked by (·)± live in both coverings.

5. 4e Symmetry reductions and its integrability properties

In the papers [IV, V], we study symmetry reductions of above mentioned 4e

equations (4.1)–(4.4) and integrability properties of a ‘nontrivial’ subset of those
reductions.

5.1. The complete list of 2-dimensional reductions [V]. The paper [V] com-
pletely answered a natural question: What 2-dimensional equations are the reduc-
tions of 3-dimensional equations 4e? The result comprises 32 equations of which

- sixteen can be solved explicitly,
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- one reduces to the Riccati equation,
- five can be linearized by the Legendre transformation,
- while the remaining ten are ‘nontrivial’.

The latter are presented in Table 7 (in the third column, we exemplify the
simplest relations).

Reduction of Eq. Relations with the initial eq.

2� = ��xz � �x�z, (4.1) u =
�(x, z)

y
,

�⇠⇠ = (⇠ + �⇠)�⌘⌘ � �⌘�⇠⌘ � 2, (4.4)
u = �(⇠, ⌘) + t2⇠ � 2t⌘,

⇠ = y, ⌘ = x+ ty,

�⇠⇠ = �x�⇠ � ��x⇠, (4.1) u = �(x, ⇠)e�z, ⇠ = ye�z,

(1 + ⇠�z)�⇠⇠ � ⇠�⇠�⇠z + �⇠�z = 0, (4.1) u = �(z, ⇠)e�x, ⇠ = ye�x,

�⌘�⇠⌘ � �⇠�⌘⌘ = e⌘�⇠⇠, (4.1)
u = �(⇠, ⌘)e�x,

⇠ = ye�z, ⌘ = x� z,

(⇠ + �⇠)�⇠y � �y(�⇠⇠ + 2) = 0, (4.2) u = �(⇠, y)e2t, ⇠ = xet,

�⇠t = 4��⇠ � ⇠�2
⇠ + 2⇠��⇠⇠, (4.2) u = �(⇠, t)x2, ⇠ = xe�y,

�⌘⌘ + (⇠ + �⌘)�⇠⌘ = �⌘(2 + �⇠⇠), (4.2)
u = �(⇠, ⌘)e2t,

⇠ = xe�t, ⌘ = y � t,

(4⇠2 � 3�)�⇠⇠ � �⇠t � 6⇠�⇠ + �2
⇠ + 6� = 0, (4.4) u = �(⇠, y)y3, ⇠ =

x
y2

,

�⇠⇠ = (⇠ � �⌘)�⇠⌘ + (2⌘ + �⇠)�⌘⌘ � �⌘ = 0, (4.4)
u = �(⇠, ⌘)e�3t,

⇠ = ye�t, ⌘ = xe2t

Table 7: 4e’s ‘nontrivial’ reductions

The first two of these equations can be transformed to the Liouville equation
[8] and the Gibbons-Tsarev equation [19], respectively. The other eight, studied in
[IV], we will discuss later in Section 5,

A brief exposition of the results on all the reductions of 4e equations (4.1)–(4.4)
obtained in [V] is given in Table 8.
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Eqn dim(symE ) Reductions Comments

(4.1) 1 + 12·x + 12·z X�xz � X0�z = 0 Solves explicitly

2� = ��xz � �x�z Transforms

to the Liouville eq.

�⇠⇠ = X0�⇠ � X�x⇠ Solves explicitly

�⇠⇠ = �x�⇠ � ��x⇠

(1 + Z�z)�⇠⇠ = Z�⇠�⇠z + Z0�2
⇠ Solves explicitly

(1 + ⇠�z)�⇠⇠ � ⇠�⇠�⇠z + �⇠�z = 0

�⇠⇠ = �⇠�⌘⌘ � �⌘�⇠⌘ Linearizes by the

Legendre transform.

�⌘�⇠⌘ � �⇠�⌘⌘ = e⌘�⇠⇠ See E1 (5.1).

(4.2) 1 + 11·y + 13·t �yt = T�y Solves explicitly

�yt = 2��y Reduces

to the Riccati eq.

(↵⇠ + �⇠)�⇠y � �y(�⇠⇠ + 2↵) = 0 Solves explicitly

for ↵ = 0

T�xx = T 0 Solves explicitly⇣
T 0
T ⇠ + T̄

⌘
�⇠⇠ + �⇠t = 0 Solves explicitly

�⇠t = 4��⇠ � ⇠�2
⇠ + 2⇠��⇠⇠

�⌘⌘ + (↵⇠ + �⌘)�⇠⌘ = �⌘(2↵+ �⇠⇠) Linearizes by the

Legendre transform.

for ↵ = 0.

See E2 (5.2).

(4.3) 12·x + 11·y + 11·t �yt = 0 Solves explicitly

X̄�xt � X̄0�t = 0 Solves explicitly

X̄�xy � X̄0�y = 0 Solves explicitly

�⇠⇠ = X̄�x⇠ � X̄0�⇠ Solves explicitly

(1 + �⇠)�y⇠ = �y�⇠⇠ Solves explicitly

(1 + �⇠)�t⇠ = �t�⇠⇠ Solves explicitly

�⌘�⇠⇠ + (�⌘ � �⇠ � 1)�⇠⌘ � �⇠�⌘⌘ = 0 Linearizes by the

Legendre transform.

(4.4) 2 + 14·t �yy = (T 0 � T 2)y + T T̄ � T̄ 0 Solves explicitly

�yy =
2�y�T 0

y+T + T 00 + T̄2

(y+T )3
Solves explicitly

⇣⇣
T 0
T + 2↵T

⌘
⇠ + T̄ 2 + ¯̄T

⌘
�⇠⇠ Solves explicitly

��⇠t � ↵T�⇠ + T̄ 0 + 2↵T T̄ = 0

(4⇠2 � 3�)�⇠⇠ � �⇠t � 6⇠�⇠ + �2
⇠ + 6� = 0

�⇠⇠ = (�⇠ � �⌘)�⇠⌘ + (2�⌘ + �⇠)�⌘⌘ � ��⌘ Linearizes by the

Legendre transform.

for � = 0.

See E3 (5.3).

�⇠⇠ = (↵⇠ + �⇠)�⌘⌘ � �⌘�⇠⌘ � 2↵ Reduces to the

Gibbons-Tsarev eq.

for ↵ 6= 0.

Linearizes by the

Legendre transform.

for ↵ = 0.

The notation 1k·⌧ means the infinite-dimensional component corresponding to k arbitrary functions.

Table 8: Summary of 4e reductions
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5.2. Integrability properties of some reductions [IV]. The paper [IV] con-
siders the above 8 ‘interesting’ reductions (listed in the bottom part of Table 7).
They can be divided in two groups by their symmetry properties: five equations
admit infinite-dimensional Lie algebras of contact symmetries (with functional pa-
rameters) and three others possess finite-dimensional symmetry algebras. These
are

- reduction E1 of the universal hierarchy equation (4.1)

(5.1) uyuxy � uxuyy = eyuxx,

- reduction E2 of the 3D rdDym equation (4.2)

(5.2) uyy = (ux + x)uxy � uy(uxx + 2),

- reduction E3 of the Pavlov equation (4.4)

(5.3) uxx = (x� uy)uxy + (2y + ux)uyy � uy.

We denote the variables in the reduced equations by u, x, y instead of �, ⇠, ⌘ used in
source equations listed in Table 8 above. All the reductions of the modified Veronese
web equation (4.3) were either exactly solvable or linearizable. The above equations
are pairwise inequivalent.

We deal with these three equations and study how the integrability properties
of the initial 3D systems behave under reduction. More precisely, we construct the
reductions of the zero-curvature representations for equations (5.1)–(5.3) and show
that they result in di↵erential coverings of the form

(5.4) wx =
a2w2 + a1w + a0
w2 + c1w + c0

, wy =
b2w2 + b1w + b0
w2 + c1w + c0

,

where ai, bi, ci are functions in x, y, u, ux, and uy. For every nonlinear covering we
construct an infinite series of conservation laws and prove nontriviality of those.

We also study the behavior of the recursion operators for symmetries of three-
dimensional systems and show that these operators do not survive under reduction.
Local symmetries and cosymmetries of the reduction equations are described and
the corresponding conservation laws are presented.

Using Lax representations of the 3D equations 4e, whose reductions are the
equations at hand, we construct here nonlinear coverings of (5.1)–(5.3).

5.2.1. Reductions of the Lax pairs, symmetries, cosymmetries.

Equation E1: is obtained as the reduction of the universal hierarchy equation (4.1)
with respect to the symmetry

(5.5) ' = uz + ux + yuy + u.

Equivalently, this reduction may be written in the form

(5.6) uyy = uyuxx � (ux + u)uxy + uxuy

and Equation (5.1) transforms to (5.6) by the change of variables x 7! y, y 7! x,
u 7! �eyu. In the further study of E1 we will use the form (5.6) rather than (5.1).

Equation (4.1) admits the Lax representation

(5.7)
wz = (wuz � uy)w�2wx,

wy = uyw�1wx.
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The symmetry ' can be extended to a symmetry � = (',�) of (5.7), where

� = wz + wx + ywy + w

and the corresponding reduction leads to the covering

(5.8)

wx = � w3

w2 � (ux + u)w � uy
,

wy = � uyw2

w2 � (ux + u)w � uy

of Equation (5.6).
The space sym(E1) spans the symmetries

'�1 = uy, '0 = yuy + u, '0
0 = ux, '1 = e�x.

The space cosym(E1) is 6-dimensional and is spanned by cosymmetries

 �3 = e4x(3u2
x + 8u2 + 10uux + 2uy),  �2 = e3x(3u+ 2ux),  �1 = e2x,

 3 =
1

u2
y

,  4 =
2ux � yuy + 2u

u3
y

,

 5 =
�4uxyuy + 6uux + 3u2

x � 4yuuy + 3u2 + 2uy + y2u2
y

u4
y

.

Equation E2: is obtained as the reduction of the 3D rdDym equation (4.2) with
respect to the symmetry

(5.9) ' = ut � xux � uy + 2u.

The Lax representation of (4.2) is

(5.10)
wt = (ux + w)wx,

wy = �uyw�1wx.

The symmetry ' extends to the one of (5.10): � = (',�), where

� = wt � xwx � wy + u.

Reduction of the covering (5.10) with respect to � leads to the covering

(5.11)
wx = � w2

w2 + (ux � x)w + uy
,

wy =
uyw

w2 + (ux � x)w + uy
.

over equation (5.2).
The space sym(E2) is generated by the symmetries

'�2 = 1, '�1 = ux + x, '0 = u� 1

2
xux, '0

0 = uy.

The space cosym(E2) is 4-dimensional and is generated by the cosymmetries

 �3 =
e�2y(ux + x)

u3
y

,  2 = 1,

 �2 =
e�y

u2
y

,  3 = ux + 2x.
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Equation E3: is the reduction of the Pavlov equation (4.4) with respect to the
symmetry

(5.12) ' = ut � 2xux � yuy + 3u.

The Pavlov equation (4.4) possesses the Lax pair

(5.13)
wt = (w2 � wux � uy)wx,

wy = (w � ux)wx.

The symmetry ' lifts to the symmetry � = (',�) of (5.13), where

� = wt � 2xwx � ywy + w.

Reduction of the covering (5.13) with respect to this symmetry results in the non-
linear covering

(5.14)
wx = � w(w � uy)

w2 � (uy + x)w + xuy � ux � 2y
,

wy = � w

w2 � (uy + x)w + xuy � ux � 2y

of Equation (5.3).
The space sym(E3) spans the symmetries

'0 = �1

3
xux � 2

3
yuy + u, '�1 = ux � xuy + y � 1

2
x2,

'�2 = uy + 2x, '�3 = 1.

The space cosym(E3) is 6-dimensional and spans the elements

 7 =
54

5
xuxuy +

164

5
xuyy +

256

5
x2y + 2xu+

4

5
uuy +

12

5
u2
yux + 4yux +

36

5
u2
yy

+
82

5
x2ux +

512

15
x3uy +

32

5
xu3

y +
96

5
x2u2

y +
32

5
y2 +

512

15
x4 +

3

5
u2
x + u4

y,

 6 =
49

4
xy + 4xux +

3

2
uyux +

9

2
uyy +

49

4
x2uy +

21

4
xu2

y +
343

24
x3 +

1

4
u+ u3

y,

 5 = 4xuy + 6x2 + 2y +
2

3
ux + u2

y,

 4 =
5

2
x+ uy,  3 = 1,  �1 =

1

(�xuy + ux + 2y)2
.

5.2.2. Conservation laws. We listed local conservation laws of E1–E3 that corre-
sponds to the cosymmetries described above in [IV, Sect. 6]. The dimension of the
space of conservation laws for E1, E2 and E3 is 6, 4 and 6, respectively.

5.2.3. Hierarchies of nonlocal conservation laws. Using above nonlinear coverings
are in [IV, Sect. 3] constructed infinite hierarchies of nontrivial nonlocal conserva-
tion laws for E1–E3.

There is [IV, Sect. 3.1] a general construction of a hierarchy of nonlocal conser-
vation laws over an equation E in two independent variables x and y and unknown
function u, equipped by a di↵erential covering

wx = X(x, y, [u], w), wy = Y (x, y, [u], w)

over E , where [u] denotes u itself and a collection of its derivatives up to some finite
order. The initial step of the construction is the so-called Pavlov reversing [38].



24

Restricting the general covering to the Abelian case and assuming (5.4) we derived
general recurrent formulae for the coe�cients of the sought-for hierarchy.

Consequently, we apply this general construction on E1–E3. Moreover, we proved
that the obtained conservation laws are nontrivial [IV, Proposition 3.1].

5.2.4. On reductions of the recursion operators. In [IV, Sect. 3] we proved that
symmetry reductions of equations (4.1), (4.2), and (4.4) are incompatible with
their recursion operators and thus the latter are not inherited by equations (5.1),
(5.2), and (5.3), respectively.

Consider recursion operators for symmetries R1, R2, R3 of equations E1, E1, E3,
i. e. (4.1), (4.2), and (4.4) found in [32, 33], see [IV, Sect. 4.2] for explicit formulae.

Proposition 5.1. Recursion operators R1, R2, R3 are not invariant with respect
to the natural lifts of the symmetries (5.5), (5.9), and (5.12), respectively.

5.2.5. Discussion on inequivalence. In [IV, Section 5] we obtained the

Proposition 5.2. Equations (5.1), (5.2), and (5.3) are pairwise inequivalent with
respect to an arbitrary contact transformation.

The proof is nothing but the comparison of Lie algebra structures of the spaces
sym(Ei) and dimensions of the Lie algebras cosym(Ei).

Moreover, the equations under consideration are not equivalent to the Gibbons-
Tsarev equation.

6. Integrable Weingarten surfaces

The classical geometry of immersed surfaces in the Euclidean space is well known
to be closely connected with the modern theory of integrable systems [41]. The
Gauss–Weingarten equations of a moving frame  always take the form

(6.1)  x = A ,  y = B .

whereA,B are appropriate matrix-valued functions. Integrability conditions of (6.1)
are called the Gauss–Mainardi–Codazzi equations and take the form of a zero cur-
vature representation

(6.2) Ay �Bx + [A,B] = 0.

The zero curvature representation (6.2) is the key ingredient in the soliton the-
ory [13], where matrices A,B are additionally assumed to depend on what is called
the spectral parameter. The essential requirement is that the spectral parameter
cannot be removed by means of the gauge transformations. Consequently, if the
matrices A,B can be modified so that they depend on a nonremovable parameter
and still satisfy (6.2), then the corresponding Gauss–Mainardi–Codazzi equations
are considered to be integrable in the sense of soliton theory, and their solutions
are known as integrable or soliton surfaces [46].

Soliton-theoretic integrability can occur only when surfaces are subject to a
constraint (such as being pseudospherical etc.). Here we employ a method due
to Marvan [31]: we attempt to extend the given non-parametric zero curvature
representation to a power series in terms of the spectral parameter.

To be ‘geometric’, the determining constraint on integrable surfaces must be
invariant with respect to the changes of coordinates. The general non-di↵erential
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invariant constraint is a functional relation f(p, q) = 0 between the principal curva-
tures p, q. Such a functional relation is characteristic of Weingarten surfaces. Well
known to be integrable is the class of linear Weingarten surfaces [9, 41], character-
ized by a linear relation

(6.3) ak + bh+ c = 0, a, b, c = const

between the Gauss curvature k = pq and the mean curvature h = 1
2 (p+ q). Other

integrable classes of Weingarten surfaces sporadically occur in the literature.
So far, nothing contradicted the conjecture of Finkel [16, Conjecture 3.4] and

Wu [48] that the only functional relation f(p, q) = 0 to determine an integrable
class of Weingarten surfaces is the linear formula (6.3). Nevertheless, the main
result of the paper [VII] asserts that the simple relation ⇢� � = const between the
principal radii of curvature, resp.

(6.4)
1

p
� 1

q
= const

between the main curvatures p = 1/⇢, q = 1/�, determines an integrable class of
Weingarten surfaces. The associated nonlinear partial di↵erential equation (6.11)
has a zero curvature representation (6.12) (missed in [48]) with a nonremovable
parameter, a third-order symmetry (6.14) (missed in [16]), and a recursion operator.

Paradoxically enough, surfaces satisfying relation (6.4) were not completely un-
known to nineteenth century geometers. Ribaucour [40] established their most sig-
nificant property, namely, that the corresponding focal surfaces (evolutes) are pseu-
dospherical (i.e., have a constant Gaussian curvature k < 0). Consequently, surfaces
satisfying equation (6.4) are involutes of pseudospherical surfaces. Moreover, the
classical Bianchi transformation [6] is nothing but the induced correspondence be-
tween the two focal pseudospherical surfaces. Thus, our integrability result is not
an entirely unexpected one.

The first examples of surfaces satisfying relation (6.4) also date to the nineteenth
century. Lipschitz [26] derived a four-parametric family in terms of elliptic integrals.
A particular subcase, the rotation surface of von Lilienthal [25], is the involute of
the pseudosphere.

Ribaucour’s theorems are covered in Darboux [9] and early twentieth-century
monographs, such as [5, 12, 18, 47]. Later they became obsolete and forgotten as
the induced Bianchi relation between pseudospherical surfaces became superseded
by the classical Bäcklund transformation (the history is nicely reviewed by Prus
and Sym in [39, Sect. 4]).

The left-hand side of Equation (6.4) is equal to the di↵erence of the principal radii
of curvature at a point. This geometric quantity has a definite physical meaning,
being associated with the interval of Sturm [45], also known as the astigmatic
interval or the amplitude of astigmatism or simply the astigmatism [20]. A mirror
or a refracting surface satisfying relation (6.4) will feature a constant astigmatism
in the normal directions.

In the sequel, surfaces satisfying condition (6.4) will be called surfaces of constant
astigmatism. Accordingly, the equation (6.11) to determine the surfaces of constant
astigmatism will be called the constant astigmatism equation.
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6.1. Weingarten surfaces. We shall consider surfaces parametrized by curvature
lines. As is well known, the fundamental forms can be written as

I = u2 dx2 + v2 dy2, II = u2p dx2 + v2q dy2,

where p, q are the principal curvatures. Coordinates x, y are unique up to arbitrary
changes x = X(x), y = Y (y). Let  = (e1, e2,n) denote the orthonormal frame,
given by e1 = rx/u, e2 = ry/v, n = e1 ⇥ e2. The Gauss–Weingarten equations

(6.5)  x =

0

@
0 �uy

v up
uy

v 0 0
�up 0 0

1

A ,  y =

0

@
0 vx

u 0
� vx

u 0 vq
0 �vq 0

1

A ,

or, more explicitly,

rxx =
ux

u
rx � uuy

v2
ry + u2pn, nx = �prx,

rxy =
uy

u
rx +

vx
v
ry,

ryy = �vvx
u2

rx +
vy
v
ry + v2qn, ny = �qry

are easily established. The Gauss equation is

(6.6) uuyy + vvxx � v

u
uxvx � u

v
uyvy + u2v2pq = 0,

while the Mainardi–Codazzi equations are

(6.7) (p� q)uy + upy = 0, (q � p)vx + vqx = 0

and together they constitute the integrability conditions of the Gauss–Weingarten
equations (6.5).

Let us impose a constraint f(p, q) = 0 determining the class of Weingarten
surfaces. If nontrivial, it can be resolved with respect to one of the curvatures, say

(6.8) q = F (p),

which we assume henceforth. Then the Gauss equation (6.6) becomes

(6.9) pyy = E3E00pxx + 2
E0

E
p2y + E2(EE00)0p2x + EE0p2 � E2p,

where E = E(p) is an arbitrary nonconstant function, E0 = dE/dp and the
Gauss–Mainardi–Codazzi system of Weingarten surfaces reduces to the single equa-
tion (6.9).

The classification problem to be answered is: ‘For which choices of the function
E(p) is the equation (6.9) integrable?’

6.2. Constant astigmatism equation [VII]. In the paper [VII], we found, be-
sides the well-known linear Weingarten surfaces (6.3), another integrable class, con-
sisting of surfaces with a constant di↵erence between the principal radii of curvature
(6.4), which we call surfaces of constant astigmatism. They emerge as a solution

(6.10) E =
p

e1+c/p
, c = const,

of the ordinary di↵erential equation

E00

E
�
✓
E0

E

◆2

+
2

p

E0

E
� 1

p2
= 0.
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Using the solution (6.10) and assuming that the constant astigmatism condition
(6.4) holds, the Gauss equation (6.9) simplifies to the constant astigmatism equation

(6.11) zyy +

✓
1

z

◆

xx

+ 2 = 0.

The equation (6.11) has �-dependent zero curvature representation

A =

✓
1
2

p
�2 + �zy (�+ 1)z��

�z�+1 � 1
2

p
�2 + �zy

◆
,

B =

✓
1
2

p
�2 + � zx

z2

p
�2 + �z���1

p
�2 + �z� � 1

2

p
�2 + � zx

z2

◆
;

(6.12)

it has obvious translational symmetries @x, @y, the scaling symmetry 2z@z � x@x +
y@y, the discrete symmetry

(6.13) x ! y, y ! x, z ! 1

z
.

and a recursion operator.
Computation reveals two third-order symmetries of equation (6.11), missed in [16].

One of them has the generator

(6.14)
z3

K3
(zxxx � zzxxy)�

3

K5
z3(zx � zzy)(zxx � zzxy)

2

� 2

K5
z5(9zx � zzy)zxx +

1

2K5
z2(9z2x + 4zzxzy � z2z2y)(zx � zzy)zxx

� 2

K5
z3zx(zx � zzy)(4zx � zzy)zxy +

4

K5
z6zxzxy

+
3

K5
z4(5zx � zzy)z

2
x � 3

K5
z(zx � zzy)z

4
x,

where

K =
q

(zx � zzy)2 + 4z3.

The other is obtained by conjugation with the discrete symmetry (6.13).

6.3. The classification [VI]. In the paper [VI] we completed the classification
of integrable classes in the simplest possible case. The integrability criterion we
adopt is the existence of an sl(2)-valued zero curvature representation depending
on a nonremovable parameter. We apply method of formal spectral parameter,
introduced in [31].

In [VI], we use the principal radii of curvature ⇢,� instead of the principal cur-
vatures p = 1/⇢, q = 1/� used in [VII], since the radii transform in a very simple
way under the o↵setting symmetry of the integrability problem.

Employing the Maple package Jets [4], we completed the computer-aided coho-
mological classification outlined in [VII].

Proposition 6.1. The third-order ordinary di↵erential equation

(6.15) ⇢000 =
3

2⇢0
⇢002 � ⇢0 � 1

⇢� �
⇢00 + 2

(⇢0 � 1)⇢0(⇢0 + 1)

(⇢� �)2
.
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determines a unique maximal class of Gauss–Mainardi–Codazzi equations of Wein-
garten surfaces whose initial sl(2,C)-valued zero curvature representation

(6.16) A0 =

 
iuy

2v � u
2⇢

u
2⇢ � iuy

2v

!
, B0 =

✓
� ivx

2u � iv
2�

� iv
2�

ivx
2u

◆

admits a second order formal spectral parameter under the condition that the normal
form of the zero curvature representation can depend on derivatives of u, v,�, ⇢ of
no higher than the first order.

The above proposition provides a complete classification of integrable Weingarten
surfaces under the following assumptions: the one-parameter zero curvature repre-
sentation takes values in the Lie algebra sl(2), includes the initial zero curvature
representation (6.16) as a special case for some value of the parameter, depends
analytically on the parameter, and its normal form involves derivatives of order no
higher than one.

Proposition 6.2. The nonremovable spectral parameter exists for all dependences
⇢(�) allowed by the governing equation (6.15).

The governing equation (6.15) is explored in [VI, Sect. 4]. We identify two ba-
sic symmetries, scaling and translation (o↵setting), and solve equation (6.15) in
terms of elliptic integrals. The generic class of integrable Weingarten surfaces we
obtained depends on one essential parameter (apart from the scaling and o↵setting
parameters).

In [VI, Sect. 5] we establish the integrable Gauss equation [VI, (39)] in the generic
case as well as in a number of special cases when the elliptic integrals degenerate to
elementary functions. All of these special cases could be located in the nineteenth
century literature.
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[45] Sturm, C. Mémoire sur la théorie de la vision. C.R. Acad. Sci. Paris 20
(1845), 554–560, 761–767, 1238–1257.

https://arxiv.org/abs/1202.2308
https://arxiv.org/abs/0910.2400
https://arxiv.org/abs/1710.05907


31

[46] Sym, A. Soliton surfaces and their applications (soliton geometry from spec-
tral problems). In: Geometric Aspects of the Einstein Equations and Inte-
grable Systems. Ed. by R. Martini. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1985, 154–231.

[47] Weatherburn, C.E. Di↵erential Geometry of Three Dimensions. Cambridge
University Press, Cambridge, 1927.

[48] Wu, H. Weingarten surfaces and nonlinear partial di↵erential equations.
Ann. Global Anal. Geom. 11 (1993), 49–64.

[49] Zakharevich, I. Nonlinear wave equation, nonlinear Riemann problem, and
the twistor transform of Veronese webs (2000). arXiv: math-ph/0006001.

Publications concerning the thesis

[I] Baran, H. Infinitely many commuting nonlocal symmetries for modified Mar-
tinez Alonso–Shabat equation. Communications in Nonlinear Science and
Numerical Simulation 96 (2021), 105692.

[II] Baran, H., Krasil’shchik, I.S., Morozov, O.I., and Vojčák, P. Nonlocal Sym-
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a b s t r a c t 
We study the modified Martínez Alonso–Shabat equation 

u y u xz + αu x u ty − (u z + αu t ) u xy = 0 
and present its recursion operator and an infinite commuting hierarchy of full-fledged non- 
local symmetries. To date such hierarchies were found only for very few integrable systems 
in more than three independent variables. 

© 2021 Elsevier B.V. All rights reserved. 

1. Introduction 
Integrable systems are well known to play an important role in modern mathematical physics, see e.g. [1–4] . An impor- 

tant feature of integrable partial differential systems is that any such system belongs to an infinite hierarchy of pairwise 
compatible systems that can be seen as symmetries of each other, cf. for example [1,3,5–7] . Such an infinite hierarchy of 
symmetries is an important sign of integrability. On the other hand, a useful structure attached to a given integrable system, 
as such a hierarchy provides, to an extent, the structure behind infinite families of explicit exact solutions like multisolitons, 
cf. e.g. the discussion in Fokas [1] , Olver [2] ; see also [2,3,6–9] for applications of symmetries in general. 

For integrable partial differential systems in more than two independent variables the symmetries in question, as well 
as the conservation laws, are typically nonlocal, see e.g. [1,3–5,10,11] , which makes the task of finding their commutation 
relations quite difficult, cf. e.g. [3,11] . There is a technique [12,13] allowing one to find an infinite hierarchy of nonlocal 
symmetries and establish its commutativity. This technique uses a Lax pair of the system under study for a fairly broad class 
of integrable multidimensional systems with isospectral Lax pairs involving an essential parameter. Given the importance 
of such hierarchies, as discussed above, it is natural to check whether indeed more examples of hierarchies of commuting 
nonlocal symmetries can be found using this technique. In the present paper we show that this can be done for the modified 
Martínez Alonso–Shabat equation in four independent variables (4D) and present an infinite commutative hierarchy of full- 
fledged nonlocal symmetries for this equation as well as a recursion operator. 

Nonlocal symmetries may be used in the same way as local ones. For example, one can construct explicit solutions 
invariant w.r.t. nonlocal symmetries. Infinite-dimensional coverings of the presented type in many cases are infinite hydro- 
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dynamical chains (cf. [14] ) or systems very similar to the latter. The constructed nonlocal symmetries of the base equation 
are local for these chains and thus existence of commutative hierarchies proves S-integrability of the covering system (see 
[15] ). 
2. Modified Martínez Alonso–Shabat equation 

Consider the modified Martínez Alonso–Shabat equation [13] 
u y u xz + αu x u ty − (u z + αu t ) u xy = 0 (1) 

involving a nonzero real parameter α. 
Eq. (1) is an integrable 4D PDE as it has [13] a Lax pair involving the spectral parameter λ ̸ = α

r y = λ
α

u y 
u x r x , r z = λ

α
u z + αu t 

u x r x − λr t , (2) 
cf. e.g. [3–5] and references therein for integrable 4D systems in general. 

Identifying z and t in (1) yields [13] a 3D integrable reduction of the latter, 
u y u tx − (α + 1) u t u xy + αu x u ty = 0 . (3) 

In turn, (3) is, up to a possible relabeling of independent variables and multiplication by an overall constant, nothing but 
the Veronese web equation, also known as the ABC equation, 

Au x u ty + Bu y u tx + Cu t u xy = 0 , A + B + C = 0 , (4) 
which describes three-dimensional Veronese webs and is a subject of intense research, see e.g. [16,17] and references therein. 
Thus, (1) can be seen as a 4D generalization of (3) and hence of (4) . 

To simplify further computations, in what follows we shall work with Eq. (1) in the form 
u ty = αu t u xy + u z u xy − u y u xz 

αu x (5) 
resolved with respect to u ty . 
3. The recursion operator 

Starting with (2) and using the deformation procedure described in Sergyeyev [18] (cf. also [5] ) we readily find that 
(5) admits, in addition to (2) , a Lax pair 

q y = λu y q x + ( α − λ) qu xy 
αu x , 

q z = λ( ( αu t + u z ) q x − αu x q t − qu xz ) + αqu xz 
αu x . (6) 

In particular, for any given λ Eq. (6) define a covering, which we denote by Q λ, over (5) ; see e.g. [3] for general back- 
ground on coverings. 

Unlike r, if q satisfies (6) then it is a nonlocal symmetry shadow for (5) in the covering Q λ, i.e., roughly speaking, ϕ = q 
satisfies the linearized version of (5) , 

u t u xy D x ( ϕ ) − u x u xy D t ( ϕ ) + u 2 x D ty ( ϕ ) − u t u x D xy ( ϕ ) 
u 2 x + u z u xy D x ( ϕ ) − u y u xz D x ( ϕ ) + u x u xz D y ( ϕ ) − u x u xy D z ( ϕ ) 

αu 2 x 
+ u x u y D xz ( ϕ ) − u x u z D xy ( ϕ ) 

αu 2 x = 0 (7) 
modulo (5) and (6) and differential consequences thereof. 

Here D x , D y etc. denote total derivatives in the appropriate covering over (5) , e.g. Q λ for q, cf. e.g. [3] for relevant 
definitions. 

Following [5,18] , upon formally replacing λq by ϕ and q by ψ in (6) , we readily arrive at the following 
Proposition 1. Eq. (5) admits a recursion operator R defined by the relations 

ψ y = u y ϕ x − u xy ϕ + αu xy ψ 
αu x , 

ψ z = ( αu t + u z ) ϕ x − αu x ϕ t − u xz ϕ + αu xz ψ 
αu x , (8) 

meaning that for any nonlocal symmetry shadow R (ϕ) def = for (5) . 
2 
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In other words, the above R defines a Bäcklund auto-transformation for the linearized version (7) of (5) , see e.g. [3,5,19–

21] and references therein for details on this approach to recursion operators. 
While using R one readily can construct infinite hierarchies of nonlocal symmetry shadows for (5) , this leaves one with 

the problem of finding a (minimal) covering in which all these shadows could be lifted to full-fledged nonlocal symmetries 
of (5) , since only for those one can rigorously establish their commutation relations. 

In what follows we shall take a slightly different route, using (6) rather than R , to produce an infinite hierarchy of 
full-fledged nonlocal symmetries for (5) and establish their commutativity. 
4. Nonlocal symmetries 

While, as we have seen in the preceding section, q is a nonlocal symmetry shadow in the covering Q λ, this shadow 
cannot be lifted to a full-fledged nonlocal symmetry in the covering under study. 

To circumvent this difficulty, consider a formal expansion q = ∑ ∞ 
i =0 q i λi . Substituting this expansion into (6) shows that 

q 0 = F u x , where F (x, t) is an arbitrary function, while the remaining q i are defined by the equations 
( q 1 ) y = αu xy q 1 + (u xx u y − u xy u x )F + u x u y F x 

αu x , 
( q 1 ) z = αu xz q 1 + ( α( u t u x ) x + u xx u z − u xz u x ) F + ( αu t + u z ) u x F x − αu 2 x F t 

αu x , 
( q i ) y = αu xy q i − u xy ( q i −1 ) + u y ( q i −1 ) x 

αu x , 
( q i ) z = αu xz q i − u xz ( q i −1 ) − αu x ( q i −1 ) t + αu t ( q i −1 ) x + u z ( q i −1 ) x 

αu x , 
i = 2 , 3 , . . . , that define an infinite-dimensional covering, which we denote by Q ∞ , over (5) . 
Theorem 1. Infinite prolongations of the vector fields 

Q i = q i ∂ ∂u + ∞ ∑ 
j=1 B j 

i ∂ 
∂q j , i = 1 , 2 , . . . , (9) 

form an infinite hierarchy of commuting nonlocal symmetries for (5) in the covering Q ∞ . 
Here 

B j 
i = ([u x , q i + j−1 ]x − α

[
u x , q i + j ]x )F − (

α q i + j − q i + j−1 )u x F x 
α u x + (q i + j −s ( i, j ) −1 )x q s ( i, j ) +1 

u x 
+ s ( i, j ) ∑ 

k =1 
α
[
q i + j−k , q k ]x − [

q i + j−k −1 , q k ]x 
αu x , (10) 

where s (i, j) = min ( i − 1 , j − 1 ) and [ A, B ] x = A x B − AB x . 
Before proceeding to the proof of the theorem note that by the very construction we have q i +1 = R (q i ) , so the commu- 

tativity of infinite prolongations of Q i suggests that the above recursion operator R could be hereditary (cf. e.g. [2,3] and 
references therein on the hereditary property in general), at least when restricted to the span of shadows q i , i = 1 , 2 , . . . , 
which could provide some additional insight into how the hereditary property works in the multidimensions. 
Proof. First of all, it is immediate that q i is a nonlocal symmetry shadow for (5) for each i = 1 , 2 , . . . since so is q . 

Inspired by Sergyeyev [12] , Morozov and Sergyeyev [13] , we were able to find the lifts of q i , i = 1 , 2 , . . . , to the covering 
Q ∞ . These lifts are nonlocal symmetries Q i for (5) given by (9) . 

Now, commutativity of the infinite prolongations of Q i is easily seen (cf. [12,13] ) to be tantamount to that of the flows 
∂ u/∂ τi = q i , ∂ q i /∂ τ j = B j 

i , i, j = 1 , 2 , . . . (11) 
i.e., to the requirement that the relations 

∂ 2 u/∂ τi ∂ τ j = ∂ 2 u/∂ τ j ∂ τi , ∂ 2 q k /∂ τi ∂ τ j = ∂ 2 q k /∂ τ j ∂ τi , i, j, k = 1 , 2 , . . . , (12) 
hold by virtue of (5) and (11) and their differential consequences, which in turn is readily verified by straightforward but 
tedious computation. !

Finding explicit form of the generators and providing rigorous proofs of commutation relations for infinite-dimensional 
algebras of nonlocal symmetries for multidimensional integrable PDEs, rather than merely finding shadows of nonlocal sym- 
metries, appears to be quite rare, especially in the case of four (or more) independent variables. In particular, there are only 
a few earlier examples known to the present author where this was achieved in 4D, namely, the commutative hierarchies 
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of nonlocal symmetries for the self-dual Yang–Mills equations [22] and for the Martínez Alonso–Shabat equation [13] . Inter- 
estingly, the situation appears to be quite different in 3D, where infinite-dimensional noncommutative algebras of nonlocal 
symmetries for a number of dispersionless integrable systems were found by direct computations, see e.g. [10,11,17,23] . 
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