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1. Introduction

A dynamical system describes a dependence of the position of a point in some space
on the time that is continuous or discrete. The founder of general theory of one and low–
dimensional discrete dynamical systems is Alexander Sharkovsky. In 1964 he specified
a new total ordering of natural numbers, known today as Sharkovsky’s ordering, which
describes the co–existence of periodic orbit for continuous interval maps. In the ’70s it
has turned out that this ordering gives direction from more complex to simpler behavior
of systems. One of the most significant traits of dynamical systems is just the existence
of chaotic behavior. In 1972 during the 139th meeting of the American Association for
the Advancement of Science, Lorenz described the Butterfly E↵ect in his talk entitled
“Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set O↵ a Tornado in

Texas?” The Butterfly E↵ect shows that very small change in initial conditions can create
a significant di↵erence in the results. It is also known as the sensitive dependence on initial
conditions [22]. For the first time the notion of chaos was introduced by Li and Yorke in
1975 [20]. They showed that not only the existence of periodic point of period 3 implies
the existence of periodic points of all periods (which is a special case of Sharkovsky’s
Theorem), but also in addition it implies the existence of uncountable set whose points
never map to any cycle. There was suggested a defining criterion on the existence of chaos
for maps on the interval. This notion can be extended to more general metric spaces
and now this kind of chaos is known as Li–Yorke chaos. Various alternative definitions
of chaos was introduced later. However, it should be noted that unique and universally
accepted definition of chaos does not exists currently and it will probably never exist.
A summary of chaos theory is given by Li and Ye in [21]. In recent years, the chaotic
behavior of dynamical systems is a common concern not only among various branches of
mathematics. The chaos is also intensively studied by various branches of science and
engineering.

Combining Li-Yorke version of chaos with the notion of sensitivity to initial conditions
leads to a definition of Li–Yorke sensitivity that is the main area of interest of this thesis.
The thesis is structured as follows. After defining some elementary notions and introducing
notations in the next section, we explain some kinds of chaos and provide relationship
among them. In the last two sections of the first part we recapitulate the main results
contained in the papers concerning the thesis. These three papers form the second part
of the thesis. We focus on minimal Li-Yorke sensitive systems. In particular, on relations
between Li–Yorke sensitivity and spatio-temporal chaos, and extensions and factors of
Li–Yorke sensitive systems.
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2. Basic notions

A topological dynamical system is a pair (X,T ), where X is a non-empty compact metric
space with metric ⇢ and T is a surjective, continuous map from X to itself. If the space
X contains only one point, then the unique map on X is the identity map and we say
that the dynamical system on X is trivial. For any nonnegative integer n, denote by Tn

the nth iterate of T . One of the main topics in dynamical system is the behavior of Tn

when n goes to infinity. For a point x 2 X, its trajectory under the map T is the sequence
(Tn(x))1n=0.

If Y is a non-empty closed invariant (i.e., T (Y ) ⇢ Y ) subset of X, we call (Y, T |Y ) a
subsystem of (X,T ) and we denote it briefly by (Y, T ). A system (X,T ) is minimal if it
contains no proper subsystem. Equivalently, (X,T ) is minimal if any point x 2 X has
a dense trajectory in X. A subset A ⇢ X is minimal if (A, T ) is a minimal subsystem
of (X,T ). By the Axiom of choice, any dynamical system contains some minimal set. A
point x 2 X is minimal if it belongs to a minimal set. A dynamical system (X,T ) is
called transitive if for every pair of non-empty open subsets U and V of X, there exists a
positive integer n such that U \ Tn(V ) 6= ;. A point with dense orbit is called transitive

point. It is well known that the set of all transitive points in a transitive system (X,T )
is a dense G� subset of X. Obviously, if X has no isolated point and has a transitive
point, then (X,T ) is transitive. A system (X,T ) is weakly mixing if the product system
(X ⇥X,T ⇥ T ) is transitive. In [13], it was proved that for weakly mixing system (X,T ),
the system (Xn, T ⇥ . . .⇥ T ) is transitive for every positive integer n.

A system (Y, S) is said to be a factor of (X,T ) if there is a continuous onto map
⇡ : X ! Y such that

S � ⇡(x) = ⇡ � T (x), for all x 2 X.

In this case (X,T ) is an extension of (Y, S) and ⇡ is a factor map.
Let X,Y be compact metric spaces. A continuous map F : X ⇥ Y ! X ⇥ Y is called

a skew-product map if it has the form F (x, y) = (T (x), G(x, y)). We say that the map
T : X ! X is the basis map of F and the maps Gx : Y ! Y , Gx(y) = G(x, y), are fiber

maps. It is obvious that the skew-product system (X ⇥ Y, F ) is an extension of (X,T ).

3. Chaos in discrete dynamical systems

There are many papers on chaotic behavior. The following list contains only some of
the most famous kinds of chaos and the relationships among them.

3.1. Sensitive dependence on initial conditions and equicontinuity. For contin-
uous dynamical systems the idea and the significance of sensitive dependence on initial
conditions has first been introduced in [22] and [24]. However, firstly the phrase “sensitive
dependence on initial conditions” was used in [23] and [15]. For topological dynamical
systems the notion of sensitivity in the below form was defined by Auslander and Yorke
in [5].
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We say that a dynamical system (X,T ) has sensitive dependence on initial conditions

(or more briefly, is sensitive) if there exists � > 0 such that any neighborhood of any point
x 2 X contains a point y 2 X such that ⇢(Tn(x), Tn(y)) > � for some n 2 N.

The opposite of sensitivity is equicontinuity. A dynamical system (X,T ) is called
equicontinuous if the sequence of maps {Tn : n � 0} is uniformly equicontinuous, i.e.,
for every " > 0 there exists a � > 0 such that ⇢(Tn(x), Tn(y)) < " for all n � 0 and all
x, y 2 X satisfying ⇢(x, y) < �. In [5] (respectively [2]) it is shown the following dichotomy
result for minimal (respectively transitive) systems. If (X,T ) is minimal, then (X,T ) is
either sensitive or equicontinuous; and if (X,T ) is transitive, then (X,T ) is either sensitive
or almost equicontinuous, i.e., there exists some point x 2 X such that for every " > 0
there is some � > 0 satisfying for any y 2 X, ⇢(x, y) < � implies ⇢(Tn(x), Tn(y)) < " for
all n 2 N.

It is known that transitive almost equicontinuous (thus also equicontinuous) systems
have very simple dynamical behaviors. In [14], it is shown that every such system is
uniformly rigid (i.e., there exists a subsequence of (Tn)1n=0 that converges uniformly to the
identity map) and consequently it has zero topological entropy, see below.

3.2. Li–Yorke chaos. The definition of Li–Yorke chaos is based on ideas in [20] where
pairs of points which are proximal (i.e., the trajectories of x and y are at some times
arbitrarily close), but not asymptotic are considered. Accordingly, a pair of points (x, y) 2
X ⇥X is called a Li–Yorke pair whenever

(1) lim inf
n!1

⇢(Tn(x), Tn(y)) = 0

and

(2) lim sup
n!1

⇢(Tn(x), Tn(y)) > 0.

In the case that a pair (x, y) 2 X2 besides the condition (1) satisfy also the following
condition

(3) lim sup
n!1

⇢(Tn(x), Tn(y)) > �,

the pair (x, y) is �-Li–Yorke pair. That is, (x, y) is proximal, but their orbits are frequently
(i.e., infinitely many times) at least � apart.

A dynamical system (X,T ) is Li–Yorke chaotic if there is an uncountable subset S ⇢ X

such that any two distinct points x, y 2 S form a Li–Yorke pair. Moreover, if there exists
a number � > 0 such that any two distinct points x, y 2 S form a �-Li–Yorke pair, we say
that the system (X,T ) is �-Li–Yorke chaotic. It is known a system, which is Li–Yorke
chaotic, but is not �-Li–Yorke chaotic for any � > 0 (see [4]). Note that in the case of
interval maps, it is not possible.
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3.3. Li–Yorke sensitivity. A concept of Li–Yorke sensitivity is a combination of sensi-
tivity and �-Li–Yorke chaos and it links these ideas together. It was introduced by Akin
and Kolyada in 2003 [3]. A dynamical system (X,T ) is Li–Yorke sensitive if there is a
number � > 0 such that any neighborhood of any x 2 X contains a point y 2 X such that
the pair (x, y) is �-Li–Yorke. In this case, the number � is called a constant of sensitivity.

3.4. Spatio-temporal chaos. A weaker notion than Li–Yorke sensitivity is spatio-tem-

poral chaos, which means that any neighborhood of any point x 2 X contains a point
y 2 X such that the pair (x, y) 2 X2 is Li–Yorke. The concept of spatio-temporal chaos
was introduced in [7].

In [3], it was proved that the nonminimal, transitive, almost equicontinuous system
such that every minimal point is periodic, is spatio-tempotally chaotic but is not Li–Yorke
sensitive.

3.5. Other forms of chaos. Other popular forms of chaos are Devaney chaos and positive
entropy.

Devaney’s definition of chaos emphasized the significance of sensitive dependence on
initial condition (see [11]). A dynamical system (X,T ) is said to be chaotic in the sense of

Devaney, if it is transitive, sensitive and the set of periodic points is dense in X. In [6], it
is proved that the sensitive dependence is implied by transitivity and density of periodic
points.

A quantitative measure of chaos of a dynamical system (X,T ) is given by the topological

entropy h(T ). It is a nonnegative extended real number that can be defined in various
ways in [1, 9, 12]. Equivalence between the above definitions was proved by Bowen in [10].
A dynamical system (X,T ) is called topologically chaotic if its topological entropy h(T ) is
positive.

3.6. Relationships. In [19], it was proved that weakly mixing implies Li–Yorke chaos.
Akin and Kolyada [3] shown that any nontrivial weakly mixing system is Li–Yorke sensitive
and in [M1], there is a minimal Li–Yorke sensitive system which is not weakly mixing.
By using an ergodic method, Blanchard et al. proved that positive topological entropy
implies Li–Yorke chaos in [7]. On the other hand there are Li–Yorke chaotic systems with
zero topological entropy (see e.g. [26]). In [18], it is shown that any Devaney’s chaotic
system is Li-Yorke chaotic. More recently in [16], it was shown that Li–Yorke sensitivity
does not imply Li–Yorke chaos. It is still an open question whether every minimal (or
transitive) Li–Yorke sensitive system is Li–Yorke chaotic. So, the interrelations among
above mentioned notions are summarized in the following diagram. In this scheme the
arrows mean implications. In the case that a relationship is not shown in the diagram, then
either it is a corollary that follows by the transitivity of implications or the implication
does not hold.
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Sensitivity

Li–Yorke sensitivity Weak mixing

TransitivitySpatio-temporal chaos Li–Yorke chaos

Devaney’s chaos

Topologically chaos

see [3]

6
see [M1]

Def. or see [13]

Def.

see [18]

see [19]

see [7] 6 see [26]

Def.

Def. Def.6
see [16]

4. Minimal Li–Yorke sensitive systems without weakly mixing factor

For minimal system, in [3] it was introduced five conjectures. Here are three of them.

(C1) In a minimal system, spatio-temporal chaos is equivalent to Li–Yorke sensitivity.
(C2) Every minimal Li–Yorke sensitive system has a nontrivial, weakly mixing factor.
(C3) If ⇡ : (X,T ) ! (Y, S) is a factor map between minimal systems with (Y, S)

Li–Yorke sensitive, then (X,T ) is Li–Yorke sensitive.

Exactly by the definitions it follows a Li–Yorke sensitive system is spatio-temporally
chaotic. In [17] was shown that every minimal spatio-temporally chaotic system (X,T ) is
thickly sensitive, i.e., there exists " > 0 such that for any non-empty open set U ⇢ X , a
set NT (U, ") = {n 2 N : diam(Tn(U)) > "} contains arbitrarily long intervals of positive
integers. Consequently, such systems are sensitive. Indeed, a system (X,T ) is sensitive if
and only if there is an " > 0 with the property that for every open non-empty subset U

of X, the set NT (U, ") is non-empty.
The following theorem disproves conjecture (C1). We denote by Q a Cantor ternary set

and by S the unit circle.

Theorem 1. ([M1]) There is a parametric family F1 of skew-product homeomorphisms

F : Q⇥ S ! Q⇥ S such that for any F 2 F1, (Q⇥ S, F ) is

(i) minimal system,

(ii) spatio-temporally chaotic,

(iii) not Li–Yorke sensitive.

Moreover, (Q⇥ S, F ) possesses no nontrivial weakly mixing factor for any F 2 F1.

Let ⇡ : (X,T ) ! (Y, S) be a factor map. It is known (e.g. [28]) that if a trajectory of
x 2 X is dense in X then a trajectory of ⇡(x) is dense in Y . In particular, a factor of a
transitive system is transitive and a factor of a minimal system is minimal. Obviously, an
extension of a transitive or minimal system may not be transitive or minimal.
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Every dynamical system (X,T ) possesses a maximal equicontinuous factor (Y, S), i.e.,
an equicontinuous factor (Y, S) with a corresponding factor map ⇡ : X ! Y such that
for any equicontinuous (Z, R) and factor map � : (X,T ) ! (Z, R) there is a factor  :
(Y, S) ! (Z, R) such that � =  � ⇡. The maximal equicontinuous factor is unique up to
conjugacy.

A weakly mixing system has no non-trivial equicontinuous factor (see e.g. [27]). In
[4] is shown that a minimal system (X,T ) is weakly mixing if and only if (X,T ) has no
non-trivial equicontinuous factor. Another situation is in the case of Li–Yorke sensitive
systems. In [3] it was proved that the product of Li–Yorke sensitive system with any
dynamical system (and thus also with an equicontinuous system) is Li–Yorke sensitive.
Consequently, a Li-Yorke sensitive system can have an equicontinuous factor.

The following theorem disproves conjecture (C2). Moreover, the system in theorem 2
is Li–Yorke sensitive, but not weakly mixing.

Theorem 2. ([M1]) There is a parametric family F2 of skew-product homeomorphisms

F : Q⇥ S ! Q⇥ S such that for any F 2 F2, (Q⇥ S, F ) is

(i) minimal Li–Yorke sensitive system,

(ii) without weakly mixing factor.

Glasner and Weiss in [14] proved that any transitive uniformly rigid system has an
extension with no isolated points that is transitive, uniformly rigid and is not sensitive.
There exist uniformly rigid systems which are sensitive, e.g. every minimal uniformly
rigid weakly mixing system. Hence any system of this type has an almost equicontinuous
transitive extension. In the case a feebly open factor map ⇡ : (X,T ) ! (Y, S), i.e., ⇡(U)
has non-empty interior for any non-empty open set U in X, Akin and Kolyada in [3]
proved that an extension of sensitive system is sensitive.

Auslander in [4] showed that any factor map between minimal systems is always feebly
open. A system (X,T ) is said to be an almost one-to-one extension of (Y, S) if the
corresponding factor map ⇡ is almost one-to-one, i.e., the set of the points x 2 X such
that ⇡�1 (⇡(x)) = {x} is dense in X. The following theorem disproves conjecture (C3).

Theorem 3. ([M2]) There is a minimal system which is not Li–Yorke sensitive, but has

Li–Yorke sensitive factor. In fact, any system (Q⇥ S, F ), with F 2 F2, where F2 is as in

Theorem 2, has almost one-to-one minimal extension (X,T ) with T being a homeomor-

phism but not Li–Yorke sensitive.

In the case when (X,T ) is an extension of (Y, S), it is known [8] that a Li–Yorke pair
in (Y, S) need not be a projection of a Li–Yorke pair in (X,T ). But this in not the case
of Theorem 3. In [M2] we showed the following assertion.

Proposition 4. ([M2]) Let (X,T ) be an almost one-to-one extension of a Li–Yorke sensi-

tive minimal system (Y, S) with a factor map ⇡. Then there is an � > 0 such that, for any



7

y 2 Y , there is a u 2 ⇡�1(y) such that any neighborhood U of u contains a v satisfying

(1) and (3) from the definition of �-Li–Yorke pair (on page 3) such that (y,⇡(v)) is a

Li–Yorke pair, too.

5. Minimal extension of weakly mixing systems

Besides hypotheses already mentioned above, Akin and Kolyada in [3] introduced other
conjecture.

(C4) Every minimal system with a weakly mixing factor is Li-Yorke sensitive.

Furstenberg in [13] proved that for a minimal distal system (X,T ) and a minimal weakly
mixing system (Y, S), the product system (X ⇥ Y, T ⇥ S) is minimal. As was mentioned
above, this system (X ⇥ Y, T ⇥ S) has to be also Li–Yorke sensitive.

In [M3] it is given a partial solution of this problem. Later Shao and Ye in [25] proved
that the conjecture (C4) is true. The following theorem shows that in certain cases, a skew-
product map on product of minimal weakly mixing system and finite space is Li–Yorke
sensitive.

Theorem 5. ([M3]) Let (X,T ) be a minimal weakly mixing system. Let A be a finite

space with discrete topology, Y = X ⇥ A with the maximum metric, and (Y, S) a skew-

product extension of (X,T ) such that S(t, a) = (T (t), Gt(a)), where every fibre map Gt is

a bijection of A. Then (Y, S) is Li–Yorke sensitive with a constant of sensitivity " for any

0 < " < diam(X).

Moreover, the system from the previous theorem is also Li-Yorke chaotic.

Theorem 6. ([M3]) Let (X,T ) be a minimal weakly mixing system and A be a nonempty

finite space with discrete topology. Let S be a skew-product map of X ⇥A. Then, for any

0 < " < diam(X), S is Li–Yorke chaotic with corresponding constant " .

Let A be a collections of generalized odometers on Cantor-type set (i.e., nowhere dense
non-empty compact set without isolated points) Y . The elements of A are synchronous if
there is an increasing sequence m1, m2, . . . of natural numbers such that for any odometer
(Y, ⌧) 2 A related to a sequence p1, p2, . . . of prime numbers and for any j 2 N there is
lj 2 N with mj = p1 · p2 · . . . · plj .

Here are generalizations of Theorem 5 for certain types of skew-product maps of X⇥Y ,
where a set Y is infinite compact.

Theorem 7. ([M3]) Let (X,T ) be a minimal weakly mixing system, Y a Cantor-type set,

A be a collection of synchronous odometers on Y and S : X ⇥Y ! X ⇥Y a skew-product

map, S(x, y) = (T (x), Rx(y)) such that, for every x 2 X, Rx is an odometer in the class

A, or the identity. Then (X ⇥ Y ) is Li–Yorke sensitive.

A continuum X (i.e., non-empty connected compact metric space) is unicoherent if for
any two continua A, B with A [B = X, the set A \B is connected.
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Theorem 8. ([M3]) Let (X,T ) be a minimal, weakly mixing, not connected, and such

that every subcontinuum of X is unicoherent. Let n > 0 be an integer and let (Y, S) be

an extension of (X,T ) such that the set {y 2 Y : ⇡(y) = x} contains n points for every

x 2 X. Then (X ⇥ Y ) is Li–Yorke sensitive.
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[M1] M. Čiklová. Li–Yorke sensitive minimal maps, Nonlinearity 19 (2006), 517–529.
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Abstract
Let Q be the Cantor middle third set and S the circle, and let τ : Q → Q

be an adding machine (i.e. odometer). Let X = Q × S be equipped with (a
metric equivalent to) the Euclidean metric. We show that there are continuous
triangular maps Fi : X → X, Fi : (x, y) #→ (τ (x), gi(x, y)), i = 1, 2, with
the following properties.
(i) Both (X, F1) and (X, F2) are minimal systems, without weak mixing

factors (i.e. neither of them is semiconjugate to a weak mixing system).
(ii) (X, F1) is spatio-temporally chaotic but not Li–Yorke sensitive.

(iii) (X, F2) is Li–Yorke sensitive.
This disproves conjectures of Akin and Kolyada (2003 Nonlinearity 16
1421–33.)

Mathematics Subject Classification: 37B05, 37D45, 54H20, 37E30

1. Introduction

In [2] Akin and Kolyada considered, for a surjective continuous map T : X → X of a compact
metric space (X, ρ), the notions of chaos which are related to proximality. In particular, they
introduced and studied the concept of Li–Yorke sensitivity, in brief LYS. A map T is LYS if
there is an ε > 0 with the property that any neighbourhood of any x ∈ X contains a point y

proximal to x (i.e. the trajectories of x and y are at some times arbitrarily close), such that the
trajectories of x and y are frequently (i.e. infinitely many times) at least ε apart. Thus,

lim inf
n→∞

ρ(T n(x), T n(y)) = 0, and lim sup
n→∞

ρ(T n(x), T n(y)) > ε, (1.1)

where T n denotes the nth iterate of T , for n = 0, 1, 2, . . .. This notion is stronger than
sensitivity, since any minimal system which is distal but not equicontinuous is sensitive but not
LYS. Akin and Kolyada proved, among others, that the weak mixing systems are LYS. Recall

0951-7715/06/020517+13$30.00 © 2006 IOP Publishing Ltd and London Mathematical Society Printed in the UK 517
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that T is sensitive if, for some ε > 0, the set of pairs x, y whose trajectories are frequently at
least ε apart is dense in X × X.

Since only the construction in [2] uses weak mixing to obtain LYS, there is a natural
question posed by Akin and Kolyada whether every LYS minimal system has a nontrivial weak
mixing factor. In this paper we use a new method of constructing LYS maps, as skew-product
(or, triangular) maps T : (x, y) #→ (f (x), gx(y)) without nontrivial weak mixing factors. This
shows that the answer to the above question is negative. Our proof is based on ideas from [3]
(cf also [5]). We construct a parametric family of skew-product minimal maps on the product
X = Q × S of the Cantor set Q and the circle S and then properly choose the parameters.

A weaker notion than LYS is that of spatio-temporal chaos, or STC, which means that
any neighbourhood of any point x ∈ X contains a point y proximal to x but not asymptotic
to x, i.e. (1.1) is satisfied with ε = 0. STC was introduced in [4]. However, all known STC
systems which are not LYS are nonminimal. Therefore, in [2] there is a question whether, for
minimal systems, LYS is equivalent to STC. We show that again the answer is negative, even
for the class of maps without nontrivial weak mixing factors. Our construction uses the same
parametric family of skew-product maps as before but with different choice of parameters.

For convenience we recall here some notions used throughout the paper. Points x, y in
X are asymptotic if, for any ε > 0, their trajectories are at a distance less than ε, except for
a finite number of times. A point x ∈ X is distal if the only point in X asymptotic to x is x

itself. A system (X, T ) is distal if any point of X is distal; it is proximal if any two points of
X are proximal. A set A ⊂X is minimal if it is closed, nonempty, invariant (i.e. T (A) = A)
such that no proper subset of A has the same properties. A system (X, T ) is minimal if X is a
minimal set or, equivalently, if every point x ∈ X has a dense orbit {T n(x)}∞n=0.

A system (X, T ) is topologically transitive if for every pair of open, nonempty subsets
U, V ⊂X there is a positive integer, n, such that U ∩ T −n ̸= ∅. A system (X, T ) is weakly
mixing when the product system (X × X, T × T ) is transitive. Finally, a system (Y, S) is a
factor of (X, T ) if there is a surjective continuous map g : X → Y such that

T ◦ g(x) = g ◦ S(x), for all x ∈ X. (1.2)

In this case we also say that (X, T ) is semiconjugate to (Y, S) via homomorphism g.
Our main results, theorems 5.1 and 5.2 given below, can be summarized as follows.

Theorem 1.1. Neither of the following conjectures stated in [2] is true:

(i) In a minimal system, STC implies LYS.
(ii) If a minimal system is LYS then it has a nontrivial weak mixing factor.

The paper is organized as follows. In the next section we describe a construction of a
minimal homeomorphism on the product of the odometer (Q, τ ) with the circle S. This map
is of triangular type and depends on a sequence {ϕj

k }∞k=1 of continuous homeomorphisms of S.
The maps ϕ

j
k are just the maps gx(·) in F : (x, ·) #→ (f (x), gx(·)). In section 3 we design the

system such that the maps ϕ
j
k , with odd k, are rotations of S. It follows that the set of x ∈ Q for

which gx(·) is rotation is dense in Q. This causes a rigidity of the system and consequently the
system has no nontrivial weak mixing factor (cf lemma 3.1). The family of homeomorphisms
ϕ

j
k with even k are ‘free’ parameters; in section 4 we prove some general properties of these

systems. Finally, in section 5 we specify the parameters so that the resulting system is STC
but not LYS (cf theorem 5.1) and we show that for another specification of the free parameters
the system is LYS; see lemma 5.3 and theorem 5.2.

Further terminology and notation, if not standard, is explained below in the proper places.
For basic facts concerning systems considered in this paper, the reader is referred to standard
books such as [1] or to papers dealing with the subject such as [2–5].
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2. A class of minimal skew-product maps

Let (X, ρX) and (Y, ρY ) be compact metric spaces and let ρ denote the max-metric on the
product X × Y . Let T (X, Y ) denote the class of skew-product (or triangular) maps of X × Y .
Thus, F ∈ T (X, Y ) if F : X × Y → X × Y is continuous such that F(x, y) = (f (x), gx(y)).
The map f is called the base for F and gx is a map from Yx = {x} × Y to Y so we consider
gx as a map from Y to Y . The set Yx is the layer or fibre of X × Y over x; similarly a layer Mx

of arbitrary M ⊂X × Y is defined.
In this paper we consider the class T (Q, S), where Q is the Cantor set in [0, 1] and S is

the circle with radius R > 0 (i.e. the set |z| = R in the complex plane). For any family

% = {ϕj
k ; 0 ! j ! 2nk − 2}∞k=1 (2.1)

of homeomorphisms of S where {nk}∞k=1 is an increasing sequence of positive integers, we
define a special map F% ∈ T (Q, S). In the next sections we show that a specification of
the sequence % will provide counterexamples to some conjectures in [2]. Our construction
is inspired by [5] where a special class of triangular maps of [0, 1] × [0, 1] monotone on the
fibres was used to prove some conjectures on minimal sets. However, in this class of triangular
maps any minimal set M has empty interior in [0, 1] × [0, 1] and hence most of the fibres
of such M are singletons. Consequently, no such system M can be spatio-temporally chaotic
since the odometer is distal. Therefore this family is modified so that the maps are defined on
the product [0, 1] × S. Since we are interested in minimal systems, we consider the subspace
X = Q × S (since Q is a minimal set), but all maps considered below on Q × S can be
continuously extended onto [0, 1] × S. We also modify the coding system in order to simplify
the calculation. A similar approach was used in [3].

To define F% we recall that any point α of the Cantor set Q ⊂ [0, 1] can be uniquely
represented as

α =
∞∑

i=1

2αi

3i
, where αi ∈ {0, 1}, (2.2)

so the set Q is homeomorphic to the set {0, 1}N of sequences of two symbols equipped with
a metric ρQ(α, β) = max{1/i, αi ̸= βi}, for any distinct α = {αi} and β = {βi}. Let
f : [0, 1] → [0, 1] be a continuous map defined by

f (0) = 2/3, f (1) = 0, (2.3)

f (1 − 2/3k) = 1/3k−1, f (1 − 1/3k) = 2/3k+1 for k ! 1 (2.4)

and by linearity at intermediate points. The graph of the map f is as follows (figure 1).
The Adding Machine (or odometer) τ : Q → Q is defined as follows (cf, e.g., [5]): for

every α ∈ {0, 1}N , τ (α) = α + 10 000 . . . where the addition is modulo 2 from left to right.
Obviously, τ is continuous on Q and it is well known that (Q, τ ) is a minimal system. It is
easily seen that f |Q(α) = τ (α) for any α ∈ {0, 1}N , where the map f is defined by (2.3)
and (2.4).

Any α ∈ Q, α = {αi}∞i=1, can be written as

α = α1α2α3, . . . , αj is the block of nj digits of α. (2.5)

For any finite or infinite sequence x = x1x2 . . . xk . . . in {0, 1} with only finitely many nonzero
digits let e(x) = x1 + 2x2 + 22x3 + · · · + 2k−1xk + · · · ∈ N be the evaluation of x. Conversely,
for any integer n denote by n the infinite sequence x in {0, 1} such that e(x) = n. Now we let

F%(α, y) = (τ (α), y) if α = 1∞. (2.6)
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0 11/3 2/3 7/9 8/9

Figure 1. The graph of the map f .

Figure 2. Application of ϕ.

Otherwise, let αk be the first block in (2.5) containing at least one zero digit. Then

F%(α, y) = (τ (α), ϕ
e(αk)
k (y)). (2.7)

For example, if we put nk = k for every k ∈ N, figure 2 shows which of the maps, ϕ
j
k , are

used as fibre maps in respective portions Jα1α2...αn
= [α1α2 . . . αn0∞, α1α2 . . . αn1∞] of the

Cantor set.
Note that respective portions, Jα1α2...αn

and Jβ1β2...βn
, have the same length 1/3n, for all

n ∈ N. So |J0| = |J1| = 1/3, |J00| = |J01| = |J10| = |J11| = 1/9, and so on. For typographic
reasons, in the figure the lengths of the portions are distorted.

Finally, let ρ be a metric on Q× S given by ρ((α, u), (β, v)) = max{ρQ(α, β), ρS(u, v)}
where ρS(u, v) is the Euclidean length of the arc between the points u and v; if possible we
always take the shorter arc. It is obvious (cf also [3]) that any F% is continuous if

lim
k→∞

max
j

∥ϕj
k − Id∥ = 0, (2.8)

where ∥ · ∥ is the uniform norm.
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Now we can prove some general formulae for iterates of F%. Let 0 ∈ Q be the sequence
of zeros and let y0 ∈ S. Then yn is (uniquely) defined by

(n, yn) = (τ n(0), yn) = Fn
%(0, y0). (2.9)

In the following we make use of some combinatorial results. To simplify the calculation we
assume throughout that, in (2.1),

ϕ0
k = Id, k ∈ N, (2.10)

and

ϕ2nk −2
k ◦ ϕ2nk −3

k ◦ · · · ◦ ϕ1
k ◦ ϕ0

k = Id, k ∈ N. (2.11)

Then we have the following lemma.

Lemma 2.1. Assume (2.10) and (2.11). For s, k ∈ N, k > 0, denote mk := 2n1+n2+···+nk and
let 1 ! s < 2nk+1 . Then

ymk
= y0 (2.12)

and

ys·mk
= ϕs−1

k+1 ◦ ϕs−2
k+1 ◦ · · · ◦ ϕ1

k+1 ◦ ϕ0
k+1(y0). (2.13)

Proof. By (2.7),

y2n1 = ϕ0
2 ◦ ϕ2n1 −2

1 ◦ ϕ2n1 −3
1 ◦ · · · ◦ ϕ1

1 ◦ ϕ0
1(y0),

hence, by (2.10) and (2.11), y2n1 = y0. Now assume by induction that

y2n1+n2+···+nk = y0.

We show that

ymk+1 = y2n1+n2+···+nk+nk+1 = y0.

Denote by βk the composition of mk maps, ϕt
i , such that βk(y0) = ymj

. Since the block βk

begins with the map, ϕ0
nk+1

, which is by (2.10) the identity map, formally we have βk = ϕ0
nk+1

◦β ′
k ,

where β ′
k is a composition of mk − 1 maps in {ϕt

i }, but, for any y ∈ S, βk(y) = β ′
k(y) = y.

Consequently,

ymk+1 = ϕ0
nk+2

◦ ϕ2nk+1 −2
nk+1

◦ β ′
k ◦ ϕ2nk+1 −3

nk+1
◦ β ′

k ◦ · · · ◦ β ′
k ◦ ϕ1

nk+1
◦ β ′

k ◦ ϕ0
nk+1

◦ β ′
k(y0). (2.14)

Since β ′
k is the identity, (2.14) reduces to

y2n1+···+nk+1 = ϕ0
nk+2

◦ ϕ2nk+1 −2
nk+1

◦ ϕ2nk+1 −3
nk+1

◦ · · · ◦ ϕ1
nk+1

◦ ϕ0
nk+1

(y0), (2.15)

which by (2.10) and (2.11) amounts to (2.12).
Proof of the second formula is similar. By (2.10)–(2.12), we have

ys·mk
= ϕs−1

k+1 ◦ β ′
k ◦ ϕs−2

k+1 ◦ β ′
k ◦ · · · ◦ β ′

k ◦ ϕ1
k+1 ◦ β ′

k ◦ ϕ0
k+1 ◦ β ′

k(y0),

and via β ′
k = Id we obtain (2.13). "
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3. A subclass of minimal skew-product maps without weak mixing factors

Now we specify the homeomorphisms, ϕ
j
k , for odd k to obtain minimal systems without

nontrivial weak mixing factors for an arbitrary choice of the remaining homeomorphisms ϕ
j
k

(with even k) satisfying (2.8). First of all, to simplify the computation we assume throughout
the paper that the circle S has perimeter 3. So, let

R = 3
2π

, n2k−1 = 3k, θk = 4π

2n2k−1 − 2
, and rk = 6

2n2k−1 − 2
, for k # 1.

(3.1)

For 0 < j ! 2n2k−1 − 2, let ϕ
j
2k−1 be the rotation of S with angle θk , in the positive direction if

0 < j ! 2n2k−1−1 − 1 and in the opposite direction otherwise. Clearly, these mappings ϕ
j
2k−1

satisfy (2.10) and (2.11). In particular,

ϕ
j
2k−1 = (ϕl

2k−1)
−1, if 0 < j ! 2n2k−1−1 − 1 < l < 2n2k−1 − 1, (3.2)

and

ρS(u, ϕ
j
2k−1(u)) = rk, if u ∈ S, k # 1, 0 < j < 2n2k−1 − 1. (3.3)

Let α2k−1 = a1a2 . . . a2k−1 be the first block containing at least one zero digit. It is easy
to see that rotation in the positive direction is used if a2k−1 = 0; see figure 2.

Lemma 3.1. Assume (2.8), (2.10), (2.11) and (3.1)–(3.3). Then F% is a minimal
homeomorphism of Q × S, for any choice of homeomorphisms ϕ

j
2k , k ∈ N, 0 < j < 2n2k − 1.

Proof. Keeping notation from lemma 2.1, by (2.12),

lim
k→∞

τmk (0) = 0, and ymk
= y0, (3.4)

whence any point (0, y0) ∈ S is recurrent. Fix a k0 ∈ N and let s0 ∈ N be any integer such
that p := s0rk0 < 1. Then, by definition of ϕ

j
2k−1, for any k # k0 there is an sk such that

0 ! sk < 2n2k−1 − 1 and skrk = p. (3.5)

By (2.13), (3.3) and (3.5),

lim
k→∞

τ skmk (0) = 0 and yskmk
= (ϕ1

2k0−1)
sk0 (y0). (3.6)

Since the set {(ϕ1
2k0−1)

sk0 (y0); 0 < sk0 < 2n2k0−1}∞k0=1 is dense in S, by (3.6) we get

S0 ⊂ωF%
(0, y0), for any y0 ∈ S.

To complete the argument note that ωF%
(0, y0) is compact and invariant, F

j
%(S0) = Sj and the

set {Sj }∞j=1 is dense in Q × S. "

Lemma 3.2. Assume (2.8), (2.10), (2.11) and (3.1)–(3.3). Then, for any choice of
homeomorphisms {ϕj

2k}, k ∈ N, 0 < j < 2n2k − 1, (Q × S, F%) has no nontrivial weak
mixing factor.

Proof. Let (X, ρX) be a compact metric space and let G : X → X be a surjective, continuous
map. Let ν : Q × S → X be (a continuous) action map, so that ν ◦ F% = G ◦ ν. Let P0, P1

be the periodic portions of Q of period 2. Thus,

τ (P0) = P1, τ (P1) = P0, P0 ∩ P1 = ∅, and P0 ∪ P1 = Q. (3.7)
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Put A0 = ν(P0 × Q), A1 = ν(P1 × Q). Then

G(A0) = G(ν(P0 × S)) = ν(F%(P0 × S)) = ν(P1 × S) = A1 (3.8)

and similarly G(A1) = A0. If A0 and A1 are disjoint then they are closed, by the continuity
of ν, and open since X = A0 ∪ A1, and consequently G is not weak mixing.

So assume z ∈ A0 ∩ A1. Then there are points u ∈ P0 × S, v ∈ P1 × S so that
ν(u) = ν(v) = z. Let U be the orbit of u with respect to the second iterate F 2

% of F%. Then
ν(U) = Z, and since U ⊂P0 × S is dense in P0 × S, Z is dense in A0. Similarly, ν(V ) = Z

and Z is dense in A1. It follows that A0 = A1.
Now let P be a τ -periodic portion of Q of period m = 2k . Hence, P × S is invariant with

respect to F̃ := Fm
% . Split P into two periodic portions P̃0 and P̃1 of period 2k+1 and denote

Ãi = ν(P̃i × S), i = 0, 1. Similarly as in the first case, we get Ã0 = Ã1. Consequently, since
any point α ∈ Q is the intersection of a nested family of periodic portions of Q, ν(Sα) = X.
Thus,

if (X, G) is weak mixing then ν(Sα) = X, for any α ∈ Q. (3.9)

We finish the proof by showing that from (3.9) it follows that X is a singleton. Assume
first that, for some α ∈ Q, ν|Sα

is a bijection. Then ν|Sβ
is a bijection for any β in the backward

orbit of α.
Indeed, let τ n(β) = α, for some n > 0, and let, for some u0 ̸= v0 in Sβ , ν(u0) = ν(v0).

Let {ui}∞i=0 and {vi}∞i=0 be the F%-trajectories of u0 and v0, respectively. Then

ν(un) = ν(F n
%(u0)) = Gn(ν(u0)) = Gn(ν(v0)) = ν(F n

%(v0)) = ν(vn),

which is impossible since ν|Sα) is bijective, un ̸= vn since F% is bijective, and un, vn ∈ Sα .
So, if γ ∈ Q is the τ -pre-image of α then

G = (ν|Sα
) ◦ F% ◦ (ν|Sγ

)−1

is bijective. Since any continuous bijection between compact metric spaces is a
homeomorphism, X is (homeomorphic to the) circle S and G is a homeomorphism and,
as a factor of minimal map, it is also minimal. It is well known [6] that any minimal
homeomorphism of the circle is conjugate to an irrational rotation, which is obviously not
weak mixing. This is a contradiction and hence (3.9) implies that

ν|Sα
is bijective for no α ∈ Q. (3.10)

Next we show that

ν(0, a) = ν(0, b) implies ν(0, a +h) = ν(0, b+h), for any a, b ∈ S, h ∈ R, (3.11)

where the points a + h, b + h are obtained from a, b by rotation of S at angle 2
3πh. Let a0, b0

be distinct points in S. Denote α0 = (0, a0) and β0 = (0, b0) and assume that ν(α0) = ν(β0).
For n ∈ N, define an and bn as the second coordinates of Fn(α0) and Fn(β0), respectively.
Fix an h ∈ R; without loss of generality we may assume that h ∈ (0, 3) since the circle S has
perimeter 3. By (2.13), (3.2) and (3.3), there is a sequence {sk}∞k=1 in N such that

lim
k→∞

apk
= a0 + h, lim

k→∞
bpk

= b0 + h, where pk = skm2k. (3.12)

Since limk→∞ τpk (0) = 0,

lim
k→∞

αpk
= (0, a0 + h) =: α, lim

k→∞
βpk

= (0, b0 + h) =: β, (3.13)

and hence, by the continuity of ν,

ρX(ν(α), ν(β)) = lim
k→∞

ρX(ν(αpk
), ν(βpk

)) = 0

whence ν(α) = ν(β). This proves (3.11).



524 M Čiklová

Now we show that

if J ⊂S0 is an interval then ν|J is not one-to-one. (3.14)

To do this suppose that J0 = [α, β], with α ̸= β, is a (minimal) interval of S0 such that
ν(α) = ν(β) and ν|[α,β) is one-to-one mapping. Denote h = β − α. There is a k ∈ N such
that

k−1⋃

i=0

Ji = S0, where Ji = [α + ih, β + ih]. (3.15)

Thus, by (3.9) and (3.11), ν(J0) = X and X is (a homeomorphic copy of) the circle S. Let
K0 = F−1

% (J0) ⊂ S1 where 1 denotes the sequence of ones. Then K0 = [α−1, β−1] is an
interval since F% is a homeomorphism and ν|[α−1,β−1) is one-to-one since G ◦ ν = ν ◦ F%.
Consequently, ν|K0 is a homeomorphism. Denote X0 = ν(K0). Then X0 is a compact
interval on the circle X and G(X0) = ν ◦ F%(K0) = X. By the minimality of G, X0 = X.
Since

G(z) = ν ◦ F% ◦ ν̃(z), for any z ∈ X, (3.16)

where ν̃ is the inverse of ν|[α−1,β−1). Then G as a composition of homeomorphisms itself is a
homeomorphism of the circle X which is not possible (see above). We have proved that (3.10)
implies (3.14).

To finish the proof we show that (3.11) and (3.16) imply that X is a singleton. By (3.16),
there are pairs of distinct points Ak, Bk ∈ S0, k ∈ N, such that

lim
k→∞

Ak = lim
k→∞

Bk and ν(Ak) = ν(Bk). (3.17)

Let Ck be the shorter of the arcs on S0 connecting the points Ak , Bk . We may assume that
Ck ⊃ Ck+1, for any k. By (3.17),

⋂∞
k=1 Ck = {c} is a singleton. Since ν(Ck) = X, by (3.11)

and (3.9), we obtain

X =
∞⋂

k=1

ν(Ck) = ν

( ∞⋂

k=1

Ck

)

= ν(c),

hence X is a singleton. "

4. A subclass of minimal skew-product STC maps

In the previous section we specified homeomorphisms {ϕj
2k−1} so that the system has no weak

mixing factors, for any choice of the homeomorphisms {ϕj
2k}, k ∈ N, 0 < j < 2n2k −1. In this

section we let the homeomorphisms {ϕj
2k−1} depend on sequences {tk} and {n2k} of positive

integers, called ‘parameters’. For any proper choice of parameters the resulting system is
STC, but different choices provide different examples disproving the conjectures stated in the
introduction.

Let {tk}∞k=1 be a decreasing sequence of positive numbers tending to 1; we will specify it
later. Let a = a0 ∈ S be given and let a1 and a2 be points in S obtained from a0 by rotating S

in the positive direction at angle θ1 = 2π/3 or 2θ1 = 4π/3, respectively. Let Si be the arc
with the endpoints ai and ai+1, 0 ! i ! 2. By (3.1), since the length of any Si is 1, we may
represent S0 as the unit interval [0, 1] and similarly Si = [i, i + 1], where i is taken to be
mod 3. Thus,

S0 ∪ S1 ∪ S2 = S, diam(Si) = 1, (4.1)
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and any two distinct Si , Sj have exactly one point in common. Without loss of generality we
may consider any ϕ

j
2k on Si as a map from I = [0, 1] → I . For k # 1 and y ∈ I , let

ϕ
j
2k(y) = ytk , if 1 ! j < 2n2k−1, (4.2)

ϕ
j
2k(y) = y1/tk , if 2n2k−1 ! j < 2n2k − 1. (4.3)

Since, by (2.10), ϕ0
2k = Id , then the maps ϕ

j
2k satisfy (2.11). For j ̸= 0 every ϕ

j
2k has exactly

two fixed points, one repulsive and one attractive. For simplicity, denote by ϕ2k the map from
(4.2) and by ϕ−

2k = (ϕ2k)
−1 the map from (4.3). Similarly, by (3.2), let ϕ2k−1 = ϕ1

2k−1 and
ϕ−

2k−1 = (ϕ2k−1)
−1.

Let x = x1x2 . . . ∈ Q where any xi is the block of ni digits, and z0 ∈ S. For any n # 0,
define zn by Fn

%(x, z0) = (τ n(x), zn).

Lemma 4.1. Assume (2.10), (2.11), (3.1)–(3.3), (4.2) and (4.3). Let x ∈ Q and z0 ∈ S. Then,
for any q # 1,

τmq−e(x1x2...xq )(x) = 0n1+n2+···+nq τ (xq+1xq+2 . . .).

Proof. It is obvious and we omit it. "
Lemma 4.2. Assume (2.10),(2.11), (3.1)–(3.3), (4.2) and (4.3). Let x ∈ Q and z0 ∈ S. Then,
for any q # 1,

F
mq

% (0n1+···+nq xq+1xq+2 . . . , z0) = (0n1+···+nq τ (xq+1xq+2 . . .), ϕ
e(xq+1)
q+1 (z0)).

Proof. It follows easily by (2.7). "
Lemma 4.3. Assume (2.10), (2.11), (3.1)–(3.3), (4.2) and (4.3). Let x ∈ Q and z0 ∈ S. Then,
for any q # 1,

zmq−e(x1x2...xq ) = ϕ
e(xq+1)
q+1 ◦

(
ϕ−

q

)cq ◦
(
ϕ−

q−1

)cq−1

◦ · · · ◦
(
ϕ−

1

)c1 (z0), (4.4)

where

ci = 2ni−1 − 1 − |e(xi) − 2ni−1|
and

zmq
= (ϕ1)

c1 ◦ (ϕ2)
c2 ◦ · · · ◦

(
ϕq−1

)cq−1 ◦
(
ϕq

)cq (zmq−e(x1x2...xq )). (4.5)

Proof. It follows by (3.2), (4.2), (4.3) and lemmas 4.1 and 4.2. "
Lemma 4.4. Let F be a finite family of homeomorphisms of a compact metric space (X, ρX).
Then for any ε > 0 there is a δ > 0 such that ∥ψ−1 ◦ h ◦ ψ − Id∥ < ε, for any ψ ∈ F and
any map h on X with ∥h − Id∥ < δ.

Proof. Given an ε > 0, for any sufficiently small δ > 0, any ψ ∈ F and any x ∈ X,
|h(ψ(x)) − ψ(x)| < δ implies |ψ−1 ◦ h ◦ ψ(x) − x| < ε, by the continuity of ψ−1. "
Lemma 4.5. Assume (2.8), (2.10), (2.11), (3.1)–(3.3), (4.2) and (4.3). Let n2, n4, . . . , n2(k−1)

be a sequence of positive numbers. Then, for any k # 1, there is a Tk > 1, depending only on
t1, t2, . . . , tk−1, . . . , with the following property: if

1 < tk+1 < tk < Tk, for any k # 1, (4.6)

then, for any x ∈ Q and u, v ∈ Sx ,

lim
k→∞

ρ(F
m2k−1
% (x, u), F

m2k−1
% (x, v)) = ρ((x, u), (x, v)). (4.7)
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Proof. Denote u = u0 and v = v0. Then, by lemma 4.4,

um2k−1 = ψ−1 ◦ ϕ
e(xk+1)
2k ◦ ψ(u0), (4.8)

where ψ = (ϕ−
2k−1)

c2k−1 ◦ (ϕ−
2k−2)

c2k−2 ◦ · · · ◦ (ϕ−
1 )c1 , or ψ = (ϕ1)

c1 ◦ (ϕ2)
c2 ◦ · · · (ϕ2k−2)

c2k−2 ◦
(ϕ2k−1)

c2k−1 are in the family, /2k−1, of all possible compositions of the maps, ϕj , ϕ−
j , of rank

< 2k that may occur in (4.4) or (4.5). Put ε = 1/k and apply lemma 4.4 to /2k−1 to obtain a
δk > 0. Obviously, by (4.2) and (4.3), there is a Tk depending only on /2k−1, such that

1 < tk < Tk implies ∥ϕj
k+1 − Id∥ < δk, 0 ! j < 2n2k − 1. (4.9)

For such a choice, by (4.8) and lemma 4.4, ∥umk
− u0∥ < 1/k whence limk→∞ umk

= u0, and
similarly for vmk

. This implies (4.7). "

5. Specifications of Φ

Lemma 5.1. Assume (2.8), (2.10), (2.11), (3.1)–(3.3), (4.2) and (4.3). Assume that the
sequences {tk}∞k=1 and {nk}∞k=1 satisfy (4.6) and

lim
k→∞

(1 − θk)
t
qk
k = 0, where qk = 2n2k−1 − 1, θk ∈ (0, 1)

and lim
k→∞

θk = 1. (5.1)

Then, for any α ∈ Sx , x ∈ Q there is an arc A ⊂Sx such that any two points from A are
proximal.

Proof. It suffices to show that, for any α := (x, u), there is a β := (x, v) ̸= α proximal to α.
Fix an x ∈ Q and assume without loss of generality that u is in S0 = [0, 1].

Denote by νq(z0) the right-hand side of (4.4). Since any of the maps ϕk
i in % preserves

the distance of the endpoints of any Sn (cf (3.1), (3.3), (4.2) and (4.3)),

ρS(νq(0), νq(1)) = ρS(0, 1) = 1, for any q ∈ N. (5.2)

For y ∈ (0, 1), denote

µ(y) = lim inf
q→∞

ρS(νq(y), νq(1)), M(y) = lim sup
q→∞

ρS(νq(y), νq(1)). (5.3)

To prove the lemma it suffices to show that

µ(y) = 0 or M(y) = 1, for any y ∈ (0, 1). (5.4)

Indeed, by (5.2), 0 ! µ ! M ! 1. For u = 0 put v = − 1
2 if µ( 1

2 ) = 0, and let v = 1
2 if

M( 1
2 ) = 1. For u ∈ (0, 1), let v = 0 if µ(u) = 1, and v = 1 if M(u) = 0. To prove (5.4)

assume

y ∈ (0, 1) and δ < µ(y) ! M(y) < 1 − δ, for some δ > 0. (5.5)

Denote

m(q, j, s) :=mq − e(x1x2 . . . xq) + s · mj, (τ j (x), yj ) :=F
j
%(x, y), q, j, s ∈ N.

(5.6)

By (2.13) and (4.4), for 0 ! k < q and 0 < s < 2nk+1 ,

um(q,k,s) = ϕs−1
k+1 ◦ ϕs−2

k+1 ◦ · · · ◦ ϕ1
k+1 ◦ ϕ0

k+1 ◦ νq(u), 0m(q,k,s) = νq(0). (5.7)

Hence, by (4.2), (5.6), (5.7), (5.5) and (5.1),

ρS(um(q,2k−1,qk), 0m(q,2k−1,qk)) ! [νq(u) − νq(0)]t
qk
k → 0, if k, q → ∞, k <

q

2
.

(5.8)

"



Li–Yorke sensitivity 527

Lemma 5.2. Assume (2.8), (2.10), (2.11), (3.1)–(3.3), (4.2) and (4.3). Then there are
sequences {n2k}∞k=1 and {tk}∞k=1 satisfying (4.6) and (5.1) such that F% is not LYS.

Proof. Let u = 1
2 be the centre of S0 = [0, 1]. It suffices to show that tk and n2k satisfying

(4.6) and (5.1) can be chosen such that, for suitable x ∈ Q and δ0 > 0,

ρS(F
n(α), F n(β)) ! ρS(α, β), α = (x, u − δ), β = (x, u + δ),

0 < δ < δ0, n # 1, (5.9)

since τ on Q is distal (actually, τ preserves the distances between points in Q) and hence points
in different fibres of Q × S are distal. To do this assume that, instead of (5.1), the stronger
condition

(1 − rk+1)
pk <

1
2
rk+1, where pk = t

qk

k = t2n2k−1−1
k , k # 1, (5.10)

is satisfied. Let x = x1x2 . . . xk . . . be such that

e(x2k) = 2n2k − qk − 1, k # 1. (5.11)

Since
(

1
2

+ δ

)t

−
(

1
2

− δ

)t

! 2δ, t ∈ R, 0 ! δ <
1
2
,

the Uδ = {x} × [ 1
2 − δ, 1

2 + δ], with δ < 1
2 , could be mapped by an Fn

% to a set with greater
diameter than 2δ only when the end-points of Uδ are mapped by a rotation of the circle to
different sets Si and Sj . But this is impossible by (5.10) and (5.11). "

Theorem 5.1. Assume (2.8), (2.10), (2.11), (3.1)–(3.3), (4.2) and (4.3). If the sequences
{tk}∞k=1 and {nk}∞k=1 satisfy (4.6) and (5.10) then the system (Q × S, F%) is STC and not LYS.

Proof. If α ̸= β are points in Q × S then they are not asymptotic. This follows by lemma 4.5
if α, β ∈ Sx , for some x. Otherwise, α, β have different first coordinates and hence they are
distal since Q is a distal system. On the other hand, any point α ∈ Q × S is a limit of points
proximal to α, by lemma 5.1. Hence, the system is STC. Finally, the system is not LYS, by
lemma 5.2. "
Lemma 5.3. Assume (2.8), (2.10), (2.11), (3.1)–(3.3), (4.2) and (4.3). Then there are
sequences {n2k}∞k=1 and {tk}∞k=1 satisfying (4.6) and (5.1) such that F% is LYS.

Proof. By (3.1), n2k−1 = 3k and rk = 6/(2n2k−1 − 2). Define sequences {pk}∞k=1 and {δk}∞k=1
by

(1 − 2rk+1)
pk = 1

2
and δk = (3rk+1)

1/pk . (5.12)

Obviously, pk < pk+1, for any k # 1, and limk→∞ pk = ∞. Similarly, δk > 0 for any k # 1
and it is easy to verify that

lim
k→∞

δk = 0. (5.13)

Indeed, by (5.12),

δk = (3rk+1)
1/pk =

(
3 · 6

23k − 2

)1/pk

.

Then (5.13) follows since, for ak > 0, limk→∞ a
1/k
k = a if and only if limk→∞ ak+1/ak = a.
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Hence there is a unique tk > 1 such that

p0 = 1, pk = t2n2k−1−1
k pk−1 = t

qk

k pk−1, k # 1, (5.14)

where qk is given in (5.1). Thus,

pk = t
qk

k · t
qk−1
k−1 · · · tq2

2 · t
q1
1 , k # 1. (5.15)

It is easy to see that

tk > 1, k # 1 and lim
k→∞

tk = 1. (5.16)

Denote ψ2k = ϕ
qk

2k ◦ ϕ
qk−1
2(k−1) ◦ · · · ◦ ϕ

q2
4 ◦ ϕ

q1
2 . Then

ψ2k(y) = ypk , k # 1, y ∈ [0, 1]. (5.17)

Let u, v ∈ Si , for some i ∈ {0, 1, 2} with u < v, and let δk0 be given such that

|u − v| # δk0 .

Then, by (5.12) and (5.17),

|ψ2k0(u) − ψ2k0(v)| = |upk0 − vpk0 | # |u − v|pk0 # 3rk0+1. (5.18)

Let x ∈ Q, and put α = (x, u), β = (x, v). Since any of the maps ϕ
j
2k−1 is rotation it preserves

the distance between points. Therefore, by (5.18),

|um2k0+1−e(x1x2...x2k0+1) − vm2k0+1−e(x1x2...x2k0+1)| # |ψ2k0(u) − ψ2k0(v)| # 3rk0+1, (5.19)

where yn denotes the second coordinate of Fn(x, y). For simplicity, denote 2k0 + 1 = K and
M = mK − e(x1x2 . . . xK). Then

FM(α) = FM(x, u) = (0n1 0n2 . . . 0nK τ (xK+1xK+2 . . .), uM), (5.20)

and similarly for FM(β). Find 0 < s ! 2nK−1 −1 such that (ϕ1
K)s(uM) and (ϕ1

K)s(vM) belong
to different intervals [i, i + 1] of S, separated by a point, say, j ; here (ϕ1

K)s denotes the sth
iterate of ϕ1

K . Thus, (ϕ1
K)s(uM) < j < (ϕ1

K)s(vM). Moreover, let s be such that the distance
between (ϕ1

K)s(uM) and j is greater than 2rk0+1. By (5.19), this is always possible since ϕ1
K is

the rotation which shifts any point of S to the right at distance rk0+1. By (5.12),

lim sup
n→∞

ρ(F n
%(α), F n

%(β)) >
1
2
. (5.21)

Since α, β are arbitrary distinct points with the same first coordinate, we proved the following:
for any α ∈ Sx there is a neighbourhood Uα of α in Sx such that, for any β ∈ Uα , (5.21) is
satisfied. Since lim pk = ∞, there exists a sequence {θk} satisfying (5.1). Hence, by lemma
5.1 and (5.21), (Q × S, F%) is LYS. "

Theorem 5.2. There exists a minimal system which is LYS but has no weak mixing factor.

Proof. The theorem follows by lemmas 3.1, 3.2, 5.3. "
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M. Mlı́chová, Mathematical Institute, Silesian University, 746 01 Opava, Czech Republic

E-mail: michaela.mlichova@math.slu.cz

Received 5 December 2008, in final form 24 April 2009
Published 28 May 2009
Online at stacks.iop.org/Non/22/1569

Recommended by M Tsujii

Abstract
In a previous paper (Čiklová 2006 Nonlinearity 19 517–29) a family of minimal,
Li–Yorke sensitive dynamical systems (X, T ) without weak mixing factors
has been constructed, disproving a conjecture by Akin and Kolyada (2003
Nonlinearity 16 1421–33). In this article we show that, in addition, any system
in the above-mentioned family has an almost one-to-one minimal extension
which fails to be Li–Yorke sensitive. This disproves another conjecture by
Akin and Kolyada.

Mathematics Subject Classification: 37B05, 37D45, 54H20

1. Introduction

Akin and Kolyada [1] introduced and studied the concept of Li–Yorke sensitivity, in brief LYS,
for surjective continuous maps T : X → X of a compact metric space (X, ρ). A map T is LYS
if there is an ε > 0 such that any neighbourhood of any u ∈ X contains a point v satisfying

lim inf
n→∞

ρ(T n(u), T n(v)) = 0 and lim sup
n→∞

ρ(T n(u), T n(v)) > ε, (1.1)

where T n denotes the nth iterate of T . Any such pair u, v is an ε-Li–Yorke pair, briefly εLY or
LY pair. In [1] they also provide five conjectures concerning LYS. Two of them are disproved
in [4]. In particular, the following is proved.

Theorem 1.1 (see [4]). There is a parametric family F of minimal skew-product
homeomorphisms F : X = Q× S1 → X, where Q is a Cantor set and S1 the unit circle, such
that for any F ∈ F , (X, F ) is Li–Yorke sensitive and possesses no weak mixing factor.

Recall that a system (X, T ) is a factor of a system (Y, S), or (Y, S) is an extension of (X, T ),
if there is a continuous surjective map π : Y → X, a factor map, such that π ◦ S = T ◦ π .
A system (Y, S) is an almost one-to-one extension of (X, T ) if X contains a dense subset
of points x such that π−1(x) is a singleton. A system (X, T ) is weak mixing if the system

0951-7715/09/071569+05$30.00 © 2009 IOP Publishing Ltd and London Mathematical Society Printed in the UK 1569
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(X × X, T × T ) is transitive, i.e. contains a point whose trajectory is dense in X × X. A
system (X, T ) is minimal if any point x ∈ X has a dense trajectory in X. A skew-product map
F : X × Y → X × Y , where X, Y are compact spaces, is any continuous map of the form
(x, y) '→ (f (x), g(x, y). Points x, y in (X, T ) are distal if lim infn→∞ ρ(T n(x), T n(y)) > 0,
and are proximal otherwise. By a Cantor set we mean any compact, totally disconnected set
without isolated points; any such set is homeomorphic to the middle-third Cantor set on [0, 1].
For more information concerning terminology, the reader is referred to [1] or [4].

In this note we show that the family F from theorem 1.1 consists of LYS maps F such
that (X, F ) is a factor of a minimal system (Y, S) which is not LYS. This disproves another
conjecture of Akin and Kolyada, namely that any minimal system with a LYS factor must be
LYS (cf [1 question 3]). Our main result is the following:

Theorem 1.2. There is a minimal system which is not LYS, but has a LYS factor. In fact, any
system (Q×S1, F ), with F ∈ F , where F is as in theorem 1.1, has almost one-to-one minimal
extension (Y, S) with S being a homeomorphism but not LYS.

Remark. If (X, T ) is a factor of (Y, S) then a LY pair in (X, T ) need not be a projection of a
LY pair in (Y, S) [3]. This is not the case of theorem 1.2 since we have the following:

Proposition 1.1. Let (Y, S) be an almost one-to-one extension of a LYS minimal system (X, T ),
with a factor map π . Then there is an ε > 0 such that, for any x ∈ X, there is a u ∈ π−1(x)

such that any neighbourhood U of u contains a v satisfying (1.1) such that (x, π(v)) is a
Li–Yorke pair, too.

Consequently, any (not necessarily minimal) almost one-to-one extension of a minimal
LYS system is ‘almost’ LYS. This shows that theorem 1.2, in some sense, is the best possible
result since the factor map π from theorem 1.2 is at most two-to-one, i.e. #π−1(x) is 1 or 2 for
any x ∈ X (see the proof of theorem 1.2).

Proof of proposition 1.1. Let x ∈ X and, for any n ∈ N, let xn ∈ X be such that xn → x,
and x, xn is an ε′LY pair. Since Y is compact, π−1 is an upper-semicontinuous set-valued
map. Thus, for any neighbourhood V of π−1(x), π−1(xn) ⊂ V , whenever n is sufficiently
large. Hence, by compactness of Y , there is a u ∈ π−1(x) such that any neighbourhood U of
u intersects some π−1(xn). Take v ∈ U ∩ π−1(xn). Since π is continuous, there is an ε > 0
such that the distance of any two points a, b in Y is greater than ε whenever π(a), π(b) are
more than ε′ apart. It follows that lim supi→∞ ρ(Si(u), Si(v)) > ε, where ρ is the metric in Y .

To finish the argument it suffices to show that the points u, v are proximal. Let z ∈ X

be such that π−1(z) = {w}, and let W be a δ-neighbourhood of w. Since π−1 is upper
semicontinuous there is an open G ̸= ∅ such that π−1(G) ⊂ W . Since (X, T ) is minimal
and x, xn are proximal, there is an m ! 0 such that T m(x), T m(xn) ∈ G. It follows
ρ(Sm(u), Sm(v)) < δ. Since δ is arbitrary, u, v are proximal. "

2. Proof of theorem 1.2

Lemma 2.1. Let X, R be compact metric spaces such that R is the interval I = [0, 1], or the
circle S1, equipped with the standard topology. Assume that

(i) F : X × R → X × R is a surjective skew-product map, (x, y) '→ (τ (x), gx(y)), and
(X, τ ) is distal;
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(ii) & is a countable family of homeomorphisms R → R containing the identity and such
that, for any x ∈ X, gx ∈ &;

(iii) there are points x0 ∈ X and y0 ∈ R, and an open interval V ⊂ R with y0 as one of its
endpoints such that no point v = (x0, y

′
0) with y ′

0 ∈ V is proximal to u = (x0, y0).

Then there is an almost one-to-one extension (Y, S)of (X×R, F)which is not LYS. If (X×R, F)

is minimal then (Y, S) is minimal.

Proof. Let D ⊂ R be the set of points ψk ◦ ψk−1 ◦ · · · ◦ ψ2 ◦ ψ1(y0), for all finite choices of
ψj ∈ &. Then D is a countable set, y0 ∈ D, ψ(D) = D for any ψ ∈ & and hence, since F is
a skew-product map, F(X × D) = X × D. Now we use the standard technique of doubling
points in D (see, e.g., [5] for details). Assuming that R is ordered in the usual way, we split
any point a ∈ D into a pair a− < a+, and compress the rest of R preserving the order to
obtain a Cantor set P (which may be considered as a subset of R). Let π0 be the associated
continuous projection of P onto R. Thus, π−1

0 (a) = {a−, a+} if a ∈ D, and π−1
0 (a) is a

singleton otherwise. For any ψ ∈ & there is a unique homeomorphism ψ̃ : P → P such that
π0 ◦ ψ̃ = ψ ◦ π0. Let &̃ be the family of all ψ̃ , ψ ∈ &.

To finish the argument let Y = X × P , and let S(x, y) = (τ (x), g̃x(y)), where g̃x = ψ̃

provided gx = ψ . Let π : Y → X × R be the factor map given by π(x, y) = (x, π0(y)).
Obviously, π is a factor map whence (X × R, F) is a factor of (Y, S). Moreover, (Y, S) is not
LYS. Assume that, e.g., y0 is the right-hand endpoint of V , and let Ṽ = π−1

0 (V ) \ {y+
0 }. Then

G = X × Ṽ is an (open) neighbourhood of u = (x0, y
−
0 ). However, by the definition of V , no

v = (x, y) ∈ G is proximal to u. This is clear if x ̸= x0 since (X, τ ) is distal. If x = x0 then
the statement follows by the definition of V . Consequently, points u, v cannot satisfy (1.1).
The statement concerning minimality of (Y, S) is obvious. "

To prove theorem 1.2 it suffices to show that any map F ∈ F satisfies the hypothesis of
lemma 2.1. First we give a brief description of F . For details see [4]; the general form of the
parametric family was introduced in [2]. Let Q ⊂ I be the Cantor set represented as the space
Q = {0, 1}N of sequences of two symbols, with the topology of pointwise convergence, and
the mapping τ : Q → Q given by x '→ x + 1000 · · ·, the adding machine or odometer. Then
τ is a distal homeomorphism of Q.

Any map F ∈ F has the form (x, y) '→ (τ (x), gx(y)) where, for any x, gx is a continuous
homeomorphism of the unit circle S1. It is associated with a sequence ν = {nk}∞k=1 of positive
integers, and a family & = {ϕj

k ; 0 # j < 2nk }∞k=1 of homeomorphisms of S1; any map ϕ
j
k is a

map of rank k.
For any (finite or infinite) sequence x = x1x2 . . ., xi ∈ {0, 1}, with finitely many nonzero

terms define the evaluation e(x) of x as

e(x) = x1 + 2x2 + 22x3 + · · · + 2k−1xk · · · .
The map gx is defined as follows. If x = 1∞ then gx = Id, the identity. If x ̸= 1∞, write x in
blocks as x = x1x2x3 · · · where xj is the block of nj digits of x, and let xk be the first block
containing at least one zero digit. Then gx = ϕ

j
k where j = e(xk). From the above description

it is obvious that any map F ∈ F satisfies hypotheses (i) and (ii) of lemma 2.1. A special
choice of ν and & implies that F is minimal and LYS, see theorem 5.2, or lemmas 3.1 and 5.3
in [4]. Hence to prove theorem 1.2 it suffices to show that there are x0, y0 and V satisfying
hypothesis (iii) of lemma 2.1. This is given in the next lemma 2.2.

To simplify the notation we may assume that S1 is a positively oriented circle with
perimeter 3, composed of three closed arcs S0, S1, S2, each of length 1, with endpoints
a0 < a1 < a2 < a3 = a0 so that Sj is the arc with endpoints aj < aj+1(mod 3). For a, b ∈ S1
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denote by ρ(a, b) the length of arc connecting a with b in the positive direction; thus, ρ is not
a metric since ρ(a0, a1) = 1 ̸= ρ(a1, a0) = 2. Denote by 0j and 1j the block of j zeros or
ones, respectively.

Lemma 2.2. Keeping the notation as above, let

x0 = 0n1+n2−110n3+n4−11 · · · 0n2k−1+n2k−11 · · · , y0 = a0 and V = (a2, a0).

Then, for any z0 ∈ V , lim infn→∞ ρ(F n(x0, y0), F
n(x0, z0)) > 0, i.e. (x0, y0) and (x0, z0) are

distal points.

Proof. We need more information on the family & from [4]. Maps in & are defined using a
sequence θ1, ζ2, θ3, ζ4, θ5, ζ6, . . . of auxiliary maps of S1, where θk are rotations of S1 in the
positive direction by a small angle so that θk(y) > y with θk(y) ≈ y, for any y ∈ S1 [4]. Any
ζk acts on any Sj as y '→ ytk on [0, 1] (with 0 and 1 replaced by aj and aj+1, respectively),
with tk > 1. Thus, ζk(y) > y, for any y ∈ S1, y ̸= a0, a1, a2, while a0, a1 and a2 are fixed
points. The maps ϕ

j
k , for j, k ∈ N, 0 # j < 2nk , are defined by the following rule:

k odd ⇒ ϕ0
k = Id, ϕ

j
k = θk if 1 # j < 2nk−1 and ϕ

j
k = θ−1

k if 2nk−1 # j < 2nk − 1,

(2.2)

k even ⇒ ϕ0
k = Id, ϕ

j
k = ζk if 1 # j < 2nk−1 and ϕ

j
k = ζ−1

k if 2nk−1 # j < 2nk − 1.

(2.3)

For any k ∈ N, let yk, zk be given by Fk(x0, y0) = (xk, yk) and Fk(x0, z0) = (xk, zk),
where xk = τ k(x0). Since any ϕ

j
k is an orientation preserving homeomorphism, we always

have zk < yk which actually means that ρ(zk, yk) < ρ(yk, zk). To prove the lemma it suffices
to show that

ρ(zk, yk) ! ρ(z0, y0), for any k ∈ N. (2.4)

Let wk ∈ {yk, zk}. Then wk = ,k(w0) where ,k is the formal composition ψk ◦ ψk−1 ◦ · · · ◦
ψ2 ◦ ψ1 of k maps θs , ζt , their inverses, or the identities. The map ψ1 is applied as the first
one, and ψk as the last one; their order is given by (2.2) and (2.3). It follows (see [4] for more
details) that

,2n1+n2 = ζ2 ◦ · · · ◦ α1 ◦ ζ2 ◦ α1 ◦ Id ◦ α1︸ ︷︷ ︸
2n2−1−1 maps ζ2, 2n2−1 blocks α1

◦ Id ◦ α1 ◦ ζ−1
2 ◦ · · · ◦ α1 ◦ ζ−1

2 ◦ α1︸ ︷︷ ︸
2n2−1−1 maps ζ−1

2 , 2n2−1 blocks α1

=: β2 ◦ α2, (2.5)

where the block α1 = Id is a formal composition of 2n1 − 1 maps of rank 1, i.e. rotations
and identities, and any of α2 and β2 is a formal composition of 2n1+n2−1 maps of rank 1 or 2.
Similarly,

,2n1+n2+n3 = α2 ◦ γ ′
2 ◦ β2 · · · ◦ β2 ◦ γ ′

2 ◦ β2 ◦ γ ′
2︸ ︷︷ ︸

2n3−1−1 blocks γ ′
2, 2n3−1 blocks β2

◦ β2 ◦ γ2 ◦ · · · ◦ γ2 ◦ β2 ◦ γ2 ◦ β2 ◦ α2︸ ︷︷ ︸
2n3−1−1 blocks γ2, 2n3−1 blocks β2

=: β3 ◦ α3, (2.6)

where

γ2 = θ3 ◦ α1 ◦ ζ−1
2 ◦ · · · ◦ α1 ◦ ζ−1

2 ◦ α1︸ ︷︷ ︸
2n2−1−1 maps ζ−1

2 , 2n2−1 blocks α1

, γ ′
2 = θ−1

3 ◦ α1 ◦ ζ−1
2 ◦ · · · ◦ α1 ◦ ζ−1

2 ◦ α1︸ ︷︷ ︸
2n2−1−1 maps ζ−1

2 , 2n2−1 blocks α1

.

(2.7)
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Obviously, any of α3 and β3 is a composition of 2n1+n2+n3−1 maps of rank # 3, and, by
(2.5)–(2.7),

α2 ◦ β2 = β2 ◦ α2 = Id, γ2 ◦ β2 = θ3, γ ′
2 ◦ β2 = θ−1

3 and β3 ◦ α3 = Id. (2.8)

Since rotations and identities do not change δ(i) := ρ(zi, yi) we have δ(i+1) = δ(i), whenever
the ith map in (2.6) is not ζk or its inverse. In particular, the equality holds if the ith map is
in any of the blocks α1. Any map ζ−1

2 in the block α2 is applied to yi, zi in the situation
when yi = y0(= a0) is a fixed point of ζ−1

2 which repulses zi so that δ(i + 1) > δ(i). After
application of all maps in α2 we have δ(2n1+n2−1) = ζ−m

2 (z0) where m = 2n2−1 − 1 is the
number of ζ−1

2 in α2, see (2.5). Then, successive application of the maps ζ2 in β2 decreases
δ(i) back to δ(0). This proves (2.4) for k # 2n1+n2 .

Application of the maps in the first block γ2 in (2.7) again is similar as for α2, except for
the last map which is not the identity, but the rotation θ3. So, the first map ζ2 in the next block
(the second block β2 in α3) is applied in the situation when yi is not its fixed point. It follows
that to prove (2.4) for j < 2n1+n2+n3 it suffices to show that

ρ(ζ k
2 ◦ θ3 ◦ ζ−k

2 (zi), ζ
k
2 ◦ θ3 ◦ ζ−k

2 (yi)) ! ρ(zi, yi), for any i, k ! 0. (2.9)

Denote ỹi = θ3 ◦ ζ−k
2 (yi), and similarly with z̃i , and consider two cases.

If the points z̃i < ỹi are separated by one of the points a0, a1, a2 on S1 (i.e. z̃i < aj < ỹi ,
0 # j # 2), let h = ρ(aj , ỹi). Then, by the definition of ζ2,

ρ(ζ k
2 (z̃i), ζ

k
2 (ỹi)) = (ρ(z̃i , ỹi) − h)k·t2 + 1 − (1 − h)k·t2 =: λ(h) > (ρ(z̃i , ỹi))

k·t2

≡λ(0) (2.10)

since t2 > 1 whence λ(h) is an increasing function.
If the points are not separated by an aj then we may assume a0 < ỹi < z̃i < a1 and,

letting h = ρ(a1, ỹi), we have

ρ(ζ k
2 (z̃i), ζ

k
2 (ỹi)) = (ρ(z̃i , ỹi) + h)k·t2 − (h)k·t2 =: ν(h) > (ρ(z̃i , ỹi))

k·t2 ≡ν(0) (2.11)

since ν(h) is an increasing function. So, we have proved (2.4) for j < 2n1+n2+n3 .
The argument now follows by induction, using the above approach and formulae similar

to (2.10) and (2.11), since, by (2.2) and (2.6), for odd k, ,2n1+n2+···+nk = βk ◦ αk , where αk and
βk are obtained when in (2.6), index 2 is replaced by k − 1. Blocks γk , γ ′

k are obtained from
βk using θk+1 and θ−1

k+1 instead of θ3 and θ−1
3 , respectively. "
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ABSTRACT

Akin and Kolyada in 2003 [E. Akin, S. Kolyada, Li–Yorke sensitivity,
Nonlinearity 16 (2003), pp. 1421–1433] introduced the notion of
Li–Yorke sensitivity. Theyproved that everyweakmixing system (X , T ),
where X is a compact metric space and T a continuous map of X is
Li–Yorke sensitive. An example of Li–Yorke sensitive system without
weakmixing factorswasgiven in [M. Čiklová, Li–Yorke sensitiveminimal
maps, Nonlinearity 19 (2006), pp. 517–529] (see also [M. Čiklová-
Mlíchová, Li–Yorke sensitive minimal maps II, Nonlinearity 22 (2009),
pp. 1569–1573]). In their paper, Akin and Kolyada conjectured that
every minimal systemwith a weak mixing factor, is Li–Yorke sensitive.
We provide arguments supporting this conjecture though the proof
seems to be difficult.
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1. Introduction

A topological dynamical system (X,T) is a compactmetric space (X, ρ) endowedwith a con-
tinuous surjective map T : X → X. Denote by Tn the nth iterate of T , n ≥ 0. Points x, y ∈
X are proximal, or δ-asymptotic (with δ ≥ 0), or distal if lim infn→∞ ρ(Tn(x),Tn(y)) =
0, lim supn→∞ ρ(Tn(x),Tn(y)) ≤ δ, or lim infn→∞ ρ(Tn(x),Tn(y)) > 0, respectively;
instead of 0-asymptotic we say asymptotic. A system (X,T) is distal if all pairs of points
x ̸= y are distal. A map T : X → X is Li–Yorke sensitive, briefly LYS or LYSε , if there is an
ε > 0 with the property that every x ∈ X is a limit of points y ∈ X such that the pair (x, y)
is proximal but not ε-asymptotic, i.e. if

lim inf
n→∞ ρ(Tn(x),Tn(y)) = 0, and lim sup

n→∞
ρ(Tn(x),Tn(y)) > ε. (1)

Every pair (x, y) ∈ X × X satisfying (1) is an ε-Li–Yorke pair. A set S ⊆ X such that any
points x ̸= y in S satisfy (1) is an (ε-)scrambled set. A map T is Li–Yorke chaotic, briefly
LYC or LYCε if it has an uncountable ε-scrambled set, for some ε > 0.

A system (X,T) is transitive if for every pair of open, nonempty subsetsU ,V ⊂ X there
is a positive integer n such that U ∩ T−n(V) ̸= ∅, or equivalently, if there is a transitive
point, i.e. a point x ∈ X having a dense orbit {Tn(x)}∞n= 0; it is weakly mixing if the product
system (X ×X,T ×T) is transitive; it isminimal if every point x ∈ X is transitive. Finally,
a system (Y , S) is a factor of (X,T) if there is a surjective continuous map π : X → Y such
that π ◦T = S ◦π . In this case we say that (X,T) is an extension of (Y , S). A skew-product

CONTACT Michaela Mlíchová Michaela.Mlichova@math.slu.cz
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system is a system (X × Y , F) where X,Y are compact metric spaces, and F a continuous
map such that F(x, y) = (f (x), gx(y)), for every x ∈ X, y ∈ Y . Other notions will be
defined later, or can be found in [1] or in related papers listed in references.

The notion of LYS was introduced and studied by Akin and Kolyada [2]. It turns
out that such systems are related to weak mixing systems. For example, every nontrivial
weak mixing system is LYS. Therefore, Akin and Kolyada stated in [2] five conjectures
concerning LYS systems. Three of them were disproved in [5] and [6]. In particular, it was
proved that a minimal LYS system need not have a nontrivial weak mixing factor, and that
a minimal system with a nontrivial LYS factor need not be LYS. The remaining two open
problems are the following:

(P1) Is every minimal system with a nontrivial weak mixing factor LYS?
(P2) Does LYS imply LYC?

Both problems seem to be difficult but, in contrast to the preceding ones, it seems that the
answer is in both cases positive. In this paper we give partial solutions. Recall that the only
known result related to (P1) is the following

Theorem 1.1 (See [2,3]): If (X,T) is minimal weak mixing and (Y , S) minimal and distal
then (X × Y ,T × S) is minimal and LYS.

We generalize it to some skew-product extensions of the original system in Theorems
2.5, 3.1 which represent the main results of this paper. Then, in Theorem 4.4 we show
that the restriction to skew-product extensions is not too limiting. Finally, our last result,
Theorem 5.1, essentially diminishes the possible class of systems which may not satisfy
(P2). For convenience, we recall several known results which will be of use in the next
sections.

Lemma 1.2 (See [8 ]): If (X,T) is a minimal system then, for every open set G ⊆ X there is
an open set H ⊆ X such that H ⊆ T(G) ⊆ H.

Lemma 1.3 (See [7 ]): Let X be a complete separable metric space without isolated points.
If R ⊆ X × X is a symmetric relation with the property that for each x ∈ X, R(x) = {y ∈
X; (x, y) ∈ R} contains a dense Gδ subset, then there is a dense uncountable set D ⊆ X such
that D × D \" ⊂ R, where" is the set of pairs (x, x), x ∈ X.

The following is a topological version of the Fubini Theorem.

Lemma 1.4 (See [1] or [7 ]): Let R be a relation on a complete separable metric space X
which contains a dense Gδ subset of X ×X. Then there is a dense Gδ set A ⊆ X such that for
each x ∈ A, there exists a dense Gδ set Xx ⊆ X with {(x, y); x ∈ A, y ∈ Xx} ⊆ R.

Lemma 1.5 (See [7 ] and [2]): If (X,T) is LYS then, for some δ > 0, the set of δ-asymptotic
pairs is a first category subset of X × X.

2. Minimal finite-type skew-product extensions of weakmixing systems

Lemma 2.1: If (X,T) is minimal weak mixing, then for every x ∈ X the set Tran(x) ⊂ X
of points y such that (x, y) is a transitive point with respect to T × T, is a dense Gδ set.



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 669

Proof: Let x0 ∈ X be given. The set Tran(x0) of points y ∈ X such that (x0, y) is a transitive
point of T × T , is a Gδ set since it is the intersection of two Gδ sets, the set of transitive
points (x, y) ∈ X × X, and {x0} × X. So it suffices to show that Tran(x0) is dense in X.
Let {Gn}n≥1 be a base of open sets for X × X of the form Gn = In × Jn, where In, Jn are
open sets. Let U0 ⊂ X be nonempty open. By induction, there are nonempty open sets
U0 ⊃ U1 ⊃ U2 ⊃ · · · , and a sequence n1 < n2 < · · · of positive integers such that

Uj ⊂ Uj−1, Tnj(x0) ∈ Ij and Tnj(Uj) ⊂ Jj, j ∈ N. (2)

Indeed, since T is minimal, there is a k1 > 0 such that, for every j, there is an s,
0 ≤ s < k1, with Tj+s(x0) ∈ I1. Since T is weak mixing, the set N(U0, J1) of times i such
that Ti(U0) ∩ J1 ̸= ∅, contains arbitrarily long blocks of successive integers. It follows
that there is an n1 such that Tn1(x0) ∈ I1 and Tn1(U0) ∩ J1 ̸= ∅. Since T is minimal
and U0 open, Tn1(U0) has nonempty interior (see Lemma 1.2) and hence Tn1(U0) ∩ J1
contains a nonempty open set H . It suffices to take for U1 a nonempty open set such that
U1 ⊂ T−n1(H). Thus, we have n1 and U1 satisfying (2) (for j = 1). Next we apply the
above process withU0 replaced byU1,G1 by G2, obtainingU2 ⊂ U1 and n2 > n1, etc. This
proves (2).

To finish the argument put Y = ⋂
j≥1 Uj = ⋂

j≥1 Uj. Then Y is a nonemptyGδ set and,
by (2), for every y ∈ Y ⊂ U0, (x0, y) is a transitive point.

Let (X,T) be a minimal weak mixing topological dynamical system. Let A be a finite
space with discrete topology, Y = X × A with the max-metric, and (Y , S) a skew-product
extension of (X,T) such that S(t, a) = (T(t),Gt(a)), where every fibremapGt is a bijection
of A. The following terminology and notation will be useful. For ξ > 0 let #ξ ⊆ X × X
be the set of pairs (x, y) such that ρ(x, y) < ξ . For every z = (x, y) ∈ X × X and
i ∈ N, denote by (T × T)i(z) = (xi, yi) the ith iterate of z, with x0 := x, y0 := y. Let
g0 = h0 = Id, the identity and, for i > 0 let gi = Gxi−1 ◦ Gxi−2 ◦ · · · ◦ Gx0 , similarly let
hi be the composition of i − 1 corresponding maps Gyj , and let ci := (gi, hi). For η > 0
let N = N(x, y, η) = {i ∈ N; (xi, yi) ∈ #η}. The sequence {ci}i∈N is the η-characteristic
sequence of (x, y). Let j0 < j1 < · · · be the numbers in N . A finite string cj0 , cj1 , . . . , cjk−1
is an η-saturated chain for (x, y) of length k if the string contains all members of the η-
characteristic sequence of (x, y); we denote it as M(x, y, η), and we let C(x, y, η) denote
the set of elements in M(x, y, η). Notice that we do not determine uniquely the length of
a saturated string: if M(x, y, η) = {cj0 , . . . , cjk−1} then {cj0 , . . . , cjk−1 , cjk} is also saturated
string.When dealing with an another pair, (x′, y′), we use primes to distinguish the related
symbols like x′

i , y
′
i , j

′
i, c

′
j′i
, k′, etc. By the continuity there is an ε > 0 such that u, v ∈ #ε

impliesGu = Gv . Again by continuity, for every saturated chainM(x, y, η) there is an open
neighborhoodU(x, y, η) of (x, y) such that every pair (x′, y′) ∈ U(x, y, η), {(x′

i , y
′
i)}0≤i≤jk−1

ε-traces {(xi, yi)}0≤i≤jk−1 so that the distance between (xi, yi) and (x′
i , y

′
i) is less than η and

(x′
i , y

′
i) ∈ #η for i ∈ {j0, j1, j2, . . . jk−1}. In particular,M(x, y, η) = M(x′, y′, η).

Saturated strings M(x, y, η),M(x′, y′, η′) with η′ ≤ η of two transitive pairs (x, y)
and (x′, y′) of length k and k′, respectively, can be joined in a single chain of (x, y) in
the following sense. Since (x, y) is transitive, there is an n ≥ jk−1 such that (xn, yn) ∈
U(x′, y′, η′). It follows that n = js for some s ≥ k − 1, and the trajectory {(xn+i, yn+i)}
traces the trajectory {(x′

i , y
′
i)} for i ∈ [0, j′k′−1], remaining within distance η′ ≤ η for
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i = j′l , 0 ≤ l ≤ k′ − 1. The resulting string is obtained fromM(x, y, η) and we denote it as
M(x, y, η) ∗ M(x′, y′, η′). Its length is s + k′. Thus, we have the following

Lemma 2.2: Let (X,T) be a minimal weak mixing topological dynamical system. Let A
be a finite space with discrete topology, Y = X × A with the max-metric, and (Y , S) a
skew-product extension of (X,T) such that S(t, a) = (T(t),Gt(a)), where every fibre map
Gt is a bijection of A. Let η ≥ η′ > 0, and M(x, y, η),M(x′, y′, η′) be saturated strings of
transitive pairs, of length k and k′, respectively. Then

(i) The stringM(x, y, η)∗M(x′, y′, η′) need not be saturated for η or η′, but it is obtained
from M(x, y, η) of sufficiently hight length by omitting some elements;

(ii) C(x, y, η) ⊇ C(x′, y′, η′) ◦ cjs , where js is specified above (cjs is the element “connect-
ing”both saturated strings), and { f , g} ◦ h means { f ◦ h, g ◦ h}.

Lemma 2.3: Let (X,T) be a minimal weak mixing topological dynamical system. Let A
be a finite space with discrete topology, Y = X × A with the max-metric, and (Y , S) a
skew-product extension of (X,T) such that S(t, a) = (T(t),Gt(a)), where every fibre map
Gt is a bijection of A. Let (x, y), (x′, y′) be transitive pairs. Then

(i) #C(x, y, η) = #C(x′, y′, η) for any η > 0;
(ii) there is a ξ > 0 such that if (x, y), (x′, y′) ∈ #ξ and 0 < η, η′ < ξ then #C(x, y, η) =

#C(x′, y′, η′).

Proof:

(i) Assume m := #C(x, y, η) < m′ := #C(x′, y′, η). Then #C(x′, y′, η) = m′ and, by
Lemma 2.2(ii), C(x, y, η) containsm′ distinct elements, a contradiction.

(ii) Wemay assume η′ < η. Then obviously #C(x, y, η′) ≤ #C(x, y, η). Since a collection
of permutations ofA is finite, there is a ξ > 0, andm0 ≥ 1 such that #C(x, y, η) = m0
whenever η < ξ . To finish apply (i).

Lemma 2.4: Let ξ be as in Lemma 2.3, and (x, y) ∈ #ξ be a transitive pair, and η′ < η :=
ξ . If cjs ∈ C(x, y, η) is the element connecting the strings M(x, y, η) and M(x, y, η′), then
C(x, y, η′) ◦ cjs contains the identity map (Id, Id).

Proof: Let x, y be as in the hypothesis. By Lemma 2.2,M(x, y, η) ∗M(x, y, η′) contains the
stringM(x, y, η′) ◦ cjs . ButM(x, y, η′) ◦ cjs must contain the identity. To see this note that,
by definition, the first member c0 of the η-characteristic sequence is the identity. Since
ρ(x, y) < η ( = ξ , c0 is also the first member of M(x, y, η), i.e. j0 = 0. By Lemma 2.3
(ii), C(x, y, η) has the same cardinality as C(x, y, η′) hence as C(x, y, η′) ◦ cjs , since cjs is a
bijection. Thus C(x, y, η′) ◦ cjs contains the identity map (Id, Id).

Theorem 2.5: Let (X,T) be a minimal weak mixing topological dynamical system. Let
A be a finite space with discrete topology, Y = X × A with the max-metric, and (Y , S) a
skew-product extension of (X,T) such that S(t, a) = (T(t),Gt(a)), where every fibre map
Gt is a bijection of A. Then (Y , S) is LYSε for any 0 < ε < diam(X).

Proof: Let x ∈ X and U be an arbitrary neighborhood of x. Assume that ξ > 0 is as in
Lemma 2.3. By Lemma 2.1 there is a point y ∈ U such that (x, y) ∈ #ξ is transitive with
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respect to T ×T . Since Y is equipped with the max-metric it suffices to prove that if a ∈ A
then, for every 0 < η′ < ξ , ((x, a)(y, a)) is an η′-proximal pair. This follows by Lemma
2.4.

Theorem 2.6: Let (X,T) be minimal weak mixing, and A ̸= ∅ a finite metric space. Let S
be a skew-product map of X × A. Then, for every 0 < ε < diam(X), S is LYCε.

Proof: Let V ⊂ X be an open set such that V × V ⊂ $ξ , where ξ > 0 is as in Lemma
2.3. By the proof of Theorem 2.5, for arbitrary a ∈ A and a transitive pair (x, y) ∈ $ξ with
respect to T × T , a pair

(
(x, a), (y, a)

)
is ε-Li–Yorke in X × A. To finish the argument, fix

an a ∈ A, and let Y := V × {a}. Denote by R the set of ε-Li–Yorke pairs (x, y) in Y ×Y . By
Lemma 1.3 there is an uncountable dense scrambled set Da ⊂ Y such that every distinct
points in Da form an ε-Li–Yorke pair.

3. Infinite type skew-product extensions of weakmixing systems

Theorem 2.5 and hence, Theorem 2.6 can be generalized to certain types of skew-product
maps ofX×A, where (X,T) isminimalweakmixing, andA is infinite compact. As a sample
we provide the following. Recall that an adding machine or odometer related to a sequence
p1, p2, . . . of primes is a system (X, τ ), where X = ∏

j≥1 Xj, Xj = {0, 1, . . . , pj − 1}, and
τ (x1x2x3 . . . ) = x1x2x3 . . . + 1000 . . ., when adding is modulo pj at the jth position from
the left to the right, see, e.g. [4]. Obviously X is a Cantor-type set. Let A be a collection
of odometers. We say that elements of A are synchronous if there are naturals number
m1 < m2 < . . . such that for any odometer (X, τ ) ∈ A related to a sequence p1, p2, . . . of
primes and for any j ∈ N there is lj ∈ N withmj = p1 · p2 · . . . · plj .
Theorem 3.1: Let (X,T) be minimal weak mixing, Y a Cantor-type set, A be a collection
of synchronous odometers on Y and S : X × Y → X × Y a skew-product map, S(x, y) =
(T(x),Rx(y)) such that, for every x ∈ X, Rx is an odometer in the class A, or the identity.
Then (X × Y , S) is LYS.

Proof: It follows by the following Lemma 3.2, and from Theorem 2.5 and Lemma 2.1.

Lemma 3.2: Let X,Y and S be as in Theorem 3.1. Then for every δ > 0 there is an m > 0
such that, for every x ∈ X, y ∈ Y and k ∈ N, |y − Rkm

x (y)| < δ.
Proof: It suffices to show that, for every δ > 0 and for every x ∈ X, there is a decomposition
of Y into clopen portions Y1,Y2, . . . ,Ym forming an Rx-periodic orbit, such that the
diameter of every Yj is less than δ. Assume the contrary. Then there is an increasing
sequence m1 < m2 < · · · of positive integers, a sequence x1, x2, . . . in X, and a sequence
Y1,Y2, . . . of clopen portions of Y such that, for every j, diam(Yj) ≥ δ and Yj is a periodic
portion with respect to Rxj of period mj. Taking a subsequence if necessary, we may
assume that limj→∞ xj = x0, and limj→∞ Yj = Y0. Then Y0 is a compact portion of Y
with “infinite”period, i.e. Rn

x0(Y0) is disjoint from Y0, for every n > 0, contrary to the
assumption that Rx0 is an odometer, or the identity.
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4. Finite-type extensions and skew product systems

Here we show that the assumption in Theorem 2.5, that the corresponding map is a
skew-product map on Y × {1, 2, . . . , n} is not too restrictive since, for certain but not all
types of minimal weak mixing systems every n to one extension is a skew-product map,
see Theorem 4.4. On the other hand not every finite type extension of a minimal weak
mixing system is (conjugate to) a skew-product map. Recall (see, e.g. [9] for details) that a
continuum is a nonempty connected compact metric space. A continuum X is unicoherent
if for every two continua A,B with A ∪ B = X the set A ∩ B is connected.
Lemma 4.1: Let (X, ρ) be a compact metric space such that every connected component
of X is nowhere dense in X. Then, for every δ > 0 there is a finite decomposition X1 ∪
X2 ∪ · · · ∪ Xm of X into disjoint compact subsets such that, for every j, Xj is a subset of the
δ-neighborhood of a connected component of X.

Proof: Let Xδ be the union of connected components of X with diameter ≥ δ. Then Xδ is
a closed set. Indeed, let xn ∈ Xδ be such that limn→∞ xn = x. Then there are connected
components Kn ⊆Xδ such that xn ∈ Kn, for every n. Since the set of nonempty compact
subsets of X, with the Hausdorffmetric ρH , is a compact set, we may assume that there is a
compact set K ⊂X such that limn→∞ ρH(Kn,K) = 0. Since x ∈ K , it suffices to show that
K is a connected component of X with K ⊂Xδ . Obviously, diam(K) ≥ δ. To show that K
is connected, assume the contrary. Then there are disjoint closed setsG,H withK = G∪H
such that K ∩ G ̸= ∅ ̸= H ∩ K . Let G′, H ′ be disjoint closed neighborhoods of G and H ,
respectively. Then, for every sufficiently large n, Kn ⊆G′ ∪ H ′, Kn ∩ G′ ̸= ∅ ̸= Kn ∩ H ′

which is a contradiction. Thus, Xδ is a closed set.
Next we show that for every connected component K ⊂ Xδ there is a compact

neighborhood U(K) = U of K such that X\U is compact, and U is contained in the
open δ-neighborhood V of K . Since K is a component, for every x ∈ X\V there is a
decomposition of X into disjoint compact sets Gx ,Hx such that Gx is a neighborhood of x
and K ⊆Hx . Since X\V is compact, there is a finite cover Gx1 ∪ Gx2 ∪ · · · ∪ Gxk = X\V .
Take U(K) = Hx1 ∩ · · · ∩ Hxk .

To finish the proof it suffices to take a finite cover W = W1 ∪ W2 ∪ · · · ∪ Ws of
Xδ consisting of disjoint compact sets such that every Wj is a set U(Kj) with Kj ⊆ Xδ
a connected component. Then X\W is a compact set which can be divided into finitely
disjoint compact sets with diam ≤ δ.

We say that a set A in a metric space is δ-separated if ρ(u, v) ≥ δ for every distinct
u, v ∈ A.
Lemma 4.2: Let X,Y be compact metric spaces, n > 0 an integer, and π : X → Y a
continuous map such that, for every y ∈ Y, #π−1(y) = n. Assume that (Y , S) is a minimal
system. Then there is a δ0 > 0 such that every set π−1(y) is δ0-separated.

Proof: For δ > 0 let Yδ be the set of y ∈ Y such that π−1(y) is δ-separated. Then Yδ is a
compact set. Indeed, let yj ∈ Yδ such that limj→∞ yj = y0. Since the space of nonempty
compact subsets of X, equipped with the Hausdorffmetric ρH , is a compact space there is
a subsequence j1 < j2 < · · · and a set A ⊂X such that limk→∞ ρH(π−1(yjk),A) = 0. By
the continuity, π(A) = y0 and #A = n. Hence A = π−1(y0) is δ-separated, i.e. y0 ∈ Yδ .
Since every π−1(y) is finite,

⋃
j > 0 Y1/j = Y . By the Baire category theorem there is a
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k > 0 such that Y1/k has nonempty interior. Since Y is minimal, there is anm > 0 such that⋃
0≤ j≤m S−j(Y1/k) = Y . By the continuity of S there is a δ0 > 0 such that S−j(Y1/k) ⊂ Yδ0 ,

0 ≤ j ≤ m. Consequently, Y = Yδ0 .

Lemma 4.3: Let (Y , S) be a factor of (X,T), with factor map π : X → Y. Assume that
(Y , S) is minimal, weak mixing, not connected, and such that every subcontinuum of Y is
unicoherent. Finally, let n > 0 be an integer such that, for every y ∈ Y, #π−1(y) = n. Then
(X,T) is conjugate to a skew-product map F : Y × N → Y × N, where N = {1, 2, . . . , n}.
Proof: By Lemma 4.2 there is a δ0 > 0 such thatπ−1(y) is δ0-separated, for every y ∈ Y . Let
0 < η < δ0/3 be such that, for every u, v ∈ X, ρ(u, v) < 2η implies ρ(T(u),T(v)) < δ0/3.
Since (Y , S) is weak mixing and not connected every connected component of (Y , ρ)

is nowhere dense. By Lemma 4.1, there is a finite decomposition Y1 ∪ Y2 ∪ · · · ∪ Ym
of Y into disjoint compact sets such that Yj is contained in the η-neighborhood of a
connected component Pk of Y . Let pk ∈ Pk and let U0 be a compact η-neighborhood of
pk. Define a continuous map ψk : π−1(U0 ∩ Pk) → (U0 ∩ Pk) × N . If Yk ⊂ U0 extend
ψk continuously onto π−1(Yk); by the choice of η this extension is uniquely determined
by ψk restricted to π−1(U0 ∩ Pk). Otherwise take U1 the compact η-neighborhood of U0
and extend ψk continuously to a map π−1(U1 ∩ Pk) → (U1 ∩ Pk) × N , etc. Since Pk is
compact after finite number of steps ψk is continuously extended onto π−1(Pk) such that
ψk(π

−1(Pk)) = Pk × N . Since Pk is unicoherent continuum, this extension is uniquely
determined by ψk on π−1(U0 ∩ Pk). Finally, by the choice of η, ψk can be continuously
(and uniquely) extended onto π?−1(Yk). To finish the argument take ψ = ψ1 ∪ · · · ∪ ψm
which is a continuous bijective map X → Y × N , and take F = ψ ◦ T ◦ ψ−1.

Theorem 4.4: Let (Y , S) be minimal, weak mixing, not connected, and such that every
subcontinuum of Y is unicoherent. Let n > 0 be an integer, and let (X,T) be an extension of
(Y , S) such that #π−1(y) = n for every y ∈ Y. Then (X,T) is LYS.

Proof: It follows by Lemma 4.3 and Theorem 2.5.

5. Li–Yorke sensitivity and Li–Yorke chaos

In [2] there is a problem whether LYS implies LYC; the converse implication obviously
is not true. Here we show that under some additional conditions, the answer is positive.
This significantly restricts the class of systems (X,T) for which the implication need not
hold. To simplify the argument, we will use the following notation. Given a system (X,T)

denote by Dist the set of distal pairs (x, y) ∈ X × X, and by Asymε the set of ε-asymptotic
pairs (x, y) in X × X.
Theorem 5.1: Let (X,T) be LYS. Assume there is a non-empty open set H ⊂ X such that
(H ×H) ∩Dist has empty interior or (equivalently) that (H ×H) ∩Dist is a set of the first
Baire category. Then there is an ε > 0 such that (X,T) is LYCε.

Proof: By Lemma 1.5 there is an ε > 0 such that T is LYSε , and Asymε is a first category
set. It is easy to see that Dist and Asymε are Fσ sets hence, by the Baire category theorem,
(H × H) ∩ Dist is of the first category if and only if it has the empty interior. Assume
(H × H) ∩ Dist is a first category set and put L = X × X\(Dist ∪ Asymε). Then L is a
Gδ set dense in H × H . By Lemmas 1.4 and 1.3, there is an uncountable set D ⊂ H such
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that D × D \! ⊂ L. Obviously, L is the set of ε-Li–Yorke pairs in X × X. Hence, D is an
ε-scrambled set for (X,T) and hence, T is LYCε .

Remark 1: For a minimal (X,T) which is both LYS and LYC, the set Dist can be very
large. In [5] there is an example of such a system, even without a weak mixing factor such
that the set Dist contains an open dense subset of X × X.
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