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0 Introduction

In mathematical physics, one of the goals in the study of classical field theory (essentially, a
variational partial differential equation (PDE)) with gauge symmetries (a.k.a gauge theories) is
a precise and rigorous construction of the corresponding reduced phase space [6, 12, 22, 23]: the
space of solutions, endowed with the canonical Poisson structure, and quotiented by the gauge
transformations. A large number of technical problems stands in the way, including but not limited
to describing the solutions of a non-linear PDE as an infinite dimensional space with some kind
of smooth structure, specifying a sufficiently regular class of functions on this space on which the
Poisson structure is well-defined, explicitly describing the structure of the quotient, or alternatively
the structure of the functions invariant under gauge symmetries. The functions in the latter class
are referred to as gauge-invariant observables (or invariants).

The scope of this Habilitation Thesis is to address some purely geometric problems that arise
in the study of gauge-invariant observables and can be attacked using tools from the theory of
differential invariants [30] and the theory of formal integrability of overdetermined PDEs [31, 35].
The main focus is on General Relativity (GR) as a non-trivial representative example, but the
perspective is such that the tools used would also apply to other gauge theories, of which Electro-
dynamics, Yang-Mills, Chern-Simons, Supergravity and many other models used in fundamental
theoretical physics and geometry [12], are prominent examples. The papers collected in this Thesis
consist of [25], [27], [26], [10], [28], [29], all of which have been published with the exception of [29],
which has been submitted for publication to Communications in Mathematical Physics.

In the remainder of the Introduction, we give a brief summary of relevant geometric notions
(Section 0.1) and summarize the main problems addressed and results obtained in the above papers,
grouped by theme in Sections 0.2, 0.3 and 0.4.
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0.1 Geometric background

We will be mostly working with smooth finite dimensional manifolds and smooth functions between
them, where smooth means C∞ differentiable. Any references to infinite dimensional manifolds
may be made precise by reference to the theory from [32].

0.1.1 Jets and PDEs

The main references for this section can be taken as [31, 2, 35].
Given a smooth bundle B →M , the corresponding k-jet bundle JkB →M is a smooth bundle,

where a point in the fiber over x ∈ M can be identified with an equivalence class of sections
Γ(B) 3 β : M → B whose Taylor series at x agree up to order k in a fixed coordinate system (a
coordinate invariant condition). Setting k = ∞, we get the (infinite) jet bundle whose fibers are
infinite dimensional (Fréchet manifolds modelled on R∞). The jet bundles are natural with respect
to smooth bundle maps f : B → B′ over M , which induce the bundle maps jkf : JkB → JkB,
and are equipped with natural obvious projections JkB → J lB for k ≥ l, with J0B = B. The
topology and smooth structure of J∞B are such that any smooth function on it is locally (on some
open neighborhood of any given point j∞x β ∈ J∞B) a function of only finitely many coordinates,
or equivalently is a pullback from a corresponding locally defined function on JkB with k possibly
depending on the given point j∞x β and the neighborhood.

When V → M is a vector bundle, then J∞V → M is naturally also a vector bundle. But in
the general case, Jk+1B → JkB is only an affine bundle modeled on the vector bundle TVB ⊗B
Sk+1T ∗M → B (pulled back to JkB, of course), where TV denotes the vertical tangent bundle
and S• denotes the symmetric tensor product.

For any section β ∈ Γ(B), the jet extended section jkβ : M → JkB assigns x 7→ jkxβ. The jet
extension j∞ : Γ(B)→ Γ(J∞B) defines a universal differential operator, in the sense that for any
(non-linear) differential operator D : Γ(B) → Γ(B′), there exists a unique bundle map denoted
(slightly abusing notation) by D : J∞B → B′ such that D[β] = D(j∞β). For a linear differential
operator L : Γ(V ) → Γ(V ′), the corresponding L : J∞V → V ′ is also linear. The composition
D2 ◦D1 of two differential operators, say D1 : Γ(B) → Γ(B′) and D2 : Γ(B′) → Γ(B′′), is again a
differential operator. Let us denote the corresponding jet bundle map by D2 ◦ D1 : J∞B → B′′.
It is not strictly speaking a composition of the corresponding bundle maps D1 : J∞B → B′ and
D2 : J∞B′ → B′′, but the latter two maps are anyway not directly composable. Hence there should
be no confusion in this notation.

Jet extended sections j∞β ∈ Γ(J∞B) are also called holonomic, to distinguish the from those
sections β∞Γ(J∞B) for which β∞ 6= j∞β for any β ∈ Γ(B). The linear span of the tangent
spaces of all holonomic sections define a distribution C ⊂ TJ∞B known as the Cartan (alternately
contact) distribution. Any maximal integral leaf of the Cartan distribution is necessarily the graph
of some section.

There are two ways to define PDEs, via differential operators and via submanifolds. Given a
compound bundle V → B → M , where V → B is a vector bundle, and a differential operator
E : J∞B → V that covers the identity morphism B → B, the equation E[β] = 0V , where 0V ∈
Γ(V → B) is the zero section, defines the PDE “submanifold” E = {β∞ ∈ J∞B | E(β∞) = 0V }.
The condition j∞β ⊂ E is then equivalent to the equation E[β] = E(j∞β) = 0V . Of course, as
defined, E need not be a submanifold (level sets of smooth functions may have singularities). But
when E ⊂ J∞B is a submanifold and itself a smooth bundle E →M , and in addition the Jacobian
of E[β] is of maximal rank on E , the corresponding equation E[β] = 0V is called regular. When E is
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not a submanifold (it could even be an arbitrary subset), the condition j∞β ⊂ E is called a partial
differential relation [20]. The same PDE submanifold E ⊂ J∞B can be specified by more than
one differential operator E, or specified independently from any such differential operator. Hence
the PDE submanifold description is in a way a more intrinsic way to define a PDE, as opposed to
using a specific equation.

On the other hand, the equation approach has some advantages too. It is well-known that
just because β∞x ∈ Ex, there is no guarantee that there exists an actual solution section β ∈ Γ(B)
(even locally), such that jkβ(x) = β∞x and j∞β(M) ⊂ E . An obvious set of necessary conditions
on β∞x are the differential consequences p∞E(β∞x ) = j∞0V = 0J∞V , where on the left-hand side
the infinite prolongation of E is defined to satisfy (p∞E)[β] = j∞[E[β]]. The corresponding PDE
submanifold is E∞ = {β∞ ∈ J∞B | p∞E(β∞) = 0J∞V } is the infinite prolongation of E. When
E∞ is itself regular, the corresponding PDE is said to be formally integrable. The prolongation from
E to E∞ can be carried out without a presenting differential operator E, but is more cumbersome to
describe. When considering a vector bundle V →M , instead of a general smooth bundle B →M ,
all the compound bundles collapse to bundles over M .

A vector field ξ∞ ∈ X(J∞B) = Γ(TJ∞B → J∞B) is vertical if it is tangent to the fibers
of J∞B → M . A general bundle does not have a natural notion of a horizontal vector field,
but on the infinite jet bundle we define horizontal vector fields to be those η ∈ X(J∞B) that
are everywhere tangent to the Cartan distribution C ⊂ TJ∞B. Any vector field on J∞B then
uniquely decomposes into its horizontal and vertical parts. Any vector field that preserves the
Cartan distribution is called a C-vector field or a contact vector field. It is a non-trivial but
basic result of jet bundle theory, that the horizontal (a.k.a total horizontal) and vertical (a.k.a
evolutionary) parts of a C-vector field satisfy special properties. Namely, any total horizontal vector
field is a linear combination of horizontal lifts of vector field on M , while an evolutionary vector
field is the prolongation of a differential operator J∞B → TVB, called the generator. That is, if
ξ : J∞B → TVB is the generator then its evolutionary prolongation ξ∞ acts as Lξ∞j∞β = j∞ξ[β],
with every evolutionary vector field being of that form.

Given a PDE submanifold E ⊂ J∞B, a (local) symmetry of E is a C-vector field on J∞B
that is tangent to E . It so happens that a total horizontal vector field is always a symmetry
of any PDE submanifold. Hence local symmetries come in equivalence classes, where two C-
vector fields are considered equivalent if they differ by a total horizontal vector field. Obviously,
any such equivalence class is uniquely represented by an evolutionary vector field. Thus, while
looking for local symmetries of PDEs, it is sufficient to concentrate on evolutionary vector fields.
If ξ : J∞B → TVB generates an evolutionary symmetry of the PDE presented by E[β] = 0, then
the fact that it is a symmetry on an open neighborhood of the graph of j∞β0(M) for some solution
of E[β0] = 0V is equivalently detected by the condition

Ė[β; ξ[β]] = L[β;E[β]], (1)

where Ė : J∞(B ×B ×TVB)→ V is the so-called universal linearization of the operator E (linear
in its second argument) defined by the identity

E[β + εβ̇] = E[β] + εĖ[β; β̇] +O(ε2) (2)

for small ε (at least informally), and L : J∞(B ×B V ) → V is just some differential operator also
linear in its second argument (though L might be well-defined only on some open neighborhood
of the graph j∞β0(M), with possibly different L’s defined for different solutions β0). Since the
property of being a symmetry is determined by the behavior of an evolutionary vector field ξ∞

only on the PDE submanifold E , its behavior away from E could be arbitrary. It could even happen
that ξ∞ vanishes when restricted to E even though it is not zero elsewhere, in which case we say
that ξ∞ is a trivial symmetry.

A variational PDE is a PDE that can be presented by an equation derived from an action or
variational principle, which ostensibly is a (non-linear) functional

S =

∫
M

L̃[β], (3)

where L̃ : J∞B → B∗(ΛnM) is a (n = dimM)-form valued differential operator called the La-
grangian (density), where we denoted by B∗ the pullback of a bundle from M to B. That is, the
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corresponding PDE is the condition on β to be a critical point of S. One must be careful with
interpreting the integral over M in the above formula when M is not compact, since the integral
may not converge for arbitrary β. However, when everything is well-defined, the critical point
condition ends up being a PDE E(L̃)[β] = 0 that is derived by purely local operations from the
Lagrangian density L̃[β], the so-called Euler-Lagrange equation of L̃. Hence, the Euler-Lagrange
equations can be well-defined even if the above integral over M is not well-defined for every β. The
Euler-Lagrange equations E(L̃) : J∞B → T ∗VB ⊗B B∗(ΛnM) are uniquely and invariantly defined
by the identity,

Lξ∞L̃[β] = ξ[β] · E(L̃)[β] + dW [β; ξ[β]] (4)

for some differential operator W : J∞(B ×M TVB) → B∗(Λn−1M) linear in its second argument,
which must hold for any evolutionary vector field ξ∞. On the other hand, it is easiest to write
down in explicit adapted coordinates. Namely, let (xi, ua) be an adapted chart on B → M and
(xi, ua, uai , u

a
ij , u

a
ijk, . . .) be an induced adapted chart on J∞B, such that, e.g., uaij(j

∞β(x)) =

∂i∂ju
a(β(x)). Then for L̃[β](x) =

(
L(xi, ua, uai , u

a
ij , . . .) dnx

)
[β], the Euler Lagrange equations are

η · E(L̃) = ηa

(
∂L

∂ua
+ (−∂i)

∂L

∂uai
+ (−∂i)(−∂j)

∂L

∂uaij
+ · · ·

)
dnx, (5)

where η is now used just as a TVB-valued dummy argument. To summarize, a PDE is variational
if it is presented by the Euler-Lagrange equations E(L̃)[β] = 0 for some Lagrangian density L̃.

It is well-known that an exact (a.k.a trivial or total divergence) Lagrangian, one of the form
L̃[β] = dK̃[β] for some K̃ : J∞B → B∗(Λn−1M), has vanishing Euler-Lagrange equations E(dK̃) =
0. In that sense, two Lagrangian densities are equivalent if they differ by an exact one. In this
sense, one naturally defines a (local) variational symmetry as an evolutionary vector field ξ∞ such
that

Lξ∞L̃[β] = dÑ [β; ξ[β]] (6)

for some differential operator Ñ : J∞(B ×B TVB) → B∗(Λn−1M) linear in its second argument.
A non-trivial but basic result of local variational calculus is that any variational symmetry of L̃ is
a symmetry of the PDE presented by E(L̃)[β] = 0, which is due to the following identity implied
by (6):

Ė(L̃)[β; ξ[β]] = −ξ̇∗
[
β; E(L̃)[β]

]
, (7)

where ∗ denotes the formal adjoint of ξ̇[β; β̇] with respect to its linear second argument. For any
linear differential operator Q : J∞V → W between vector bundles V,W → M , its formal adjoint
is the differential operator Q∗ : J∞W̃ ∗ → Ṽ ∗ between the densitized dual bundles uniquely defined
by the identity

ω ·Q[φ]−Q∗[ω] · φ = dU [ω, φ], (8)

for some bilinear differential operator U : J∞(W̃ ∗⊗M V )→ Λn−1M , where of course the densitized
dual of a vector bundle V → M is the vector bundle Ṽ ∗ = V ∗ ⊗M ΛnM → M . In local adapted
coordinates, (x, ua, uai , . . .) on J∞V →M and (x, vA, vA,i, . . .) on W̃ ∗ →M , the formal adjoint of

ω ·Q[φ] = ωA
(
QAa u

a +QA,ia uai +QA,ija uaij + · · ·
)

(j∞φ) (9)

is given by

Q∗[ω] · φ = φa ·
(
QAa vA(j∞ω) + (−∂i)[QA,ia vA(j∞ω)] + (−∂i)[−∂j)(QA,ija vA(j∞ω)] + · · ·

)
. (10)

Clearly, Q∗ is obtained from Q by local operations. This means that the definition of Q∗ easily
extends to any differential operator depending on multiple arguments, as long as the adjoint is
taken with respect to a specific linear argument, as for instance in (7).

Two important properties of the formal adjoint are that it is an involution, Q∗∗ = Q (after
taking some obvious canonical isomorphisms between the bundles on which these operators act),
and that it reverses the order of composition of linear differential operators, namely (Q ◦ R)∗ =
R∗ ◦Q∗.
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The formal adjoint also has a crucial relationship with the Euler-Lagrange operator E(L̃)[β].
This expression is not linear, so it does not make sense to consider its adjoint. On the other hand,
the linearization Ė(L̃)[β; β̇] is linear in its second argument, so its adjoint can be taken. It is a
non-trivial but basic property of the linearized Euler-Lagrange operator that it is self-adjoint,

Ė(L̃)∗[β; β̇] = Ė(L̃)[β; β̇]. (11)

Let us conclude this section with

Definition 1. A classical field theory on a manifold M and bundle B →M is a variational PDE
presented by E(L̃)[β] = 0 for a Lagrangian density L̃. The manifold M is then referred to as
the spacetime, the bundle B → M as the field bundle, its sections β ∈ Γ(B) as fields (or field
configurations) and the variational PDE itself as the equations of motion (EOM).

It is worth observing that, when linearizing using β 7→ β + εβ̇ about a solution β of E(L̃)[β] =

0, the linearized EOM become the Euler-Lagrange equations of the quadratic part L̃
(2)
β [β̇] =

1
2

d2

dε2 L̃[β + εβ̇]
∣∣∣
ε=0

of the Lagrangian density expanded about β. That is,

Ė(L̃)[β; β̇] = E(L̃
(2)
β )[β̇]. (12)

So a linearized variational PDE is still a variational PDE.

0.1.2 Gauge symmetry

The main references for this section can be taken as [4, 41].
In theoretical physics, the notion of a gauge symmetry is rather broad and refers to a family of

variational symmetries locally parametrized by free functions. To formalize this, we start with a
classical field theory with field bundle B →M , Lagrangian density L̃ and a vector bundle P → B,
the bundle of gauge parameters. A differential operator γ : J∞(B ×B P ) → TVB linear in its
second argument is a gauge symmetry generator if the evolutionary vector field ξ[β; ρ]∞ ∈ X(J∞B)
prolonging the generator ξ is a variational symmetry of L̃ for an arbitrary section ρ ∈ Γ(P → B).
Alternatively, there exists a differential operator K̃ : J∞(B ×B P ) → B∗(Λn−1M) linear in the
second argument such that

γ[β; ρ] · E(L̃)[β] = dK̃[β; ρ]. (13)

The family of symmetries generated by acting with γ on ρ ∈ Γ(P → B) is called a gauge
symmetry or (infinitesimal) gauge transformation, the same term is also used for any element of
such a family. If γ[β; ρ] happens to vanish at x when j∞x β is restricted to the PDE submanifold
E of the equations of motion, for any x ∈ M and ρ ∈ Γ(P → B), we say that γ is a trivial gauge
symmetry.

Definition 2. A gauge theory is a classical field theory with non-trivial gauge symmetries.

Example 1 (Maxwell electrodynamics). The fields of the theory are 1-forms on a Lorentzian
manifold (M, g), B = Λ1M , whose sections we denote by A ∈ Γ(Λ1M). The Lagrangian is
L̃[A] = − 1

4Fab[A]F ab[A] dgx, with Fab[A] = (dA)ab, the indices raised and lowered by the met-

ric gab and dgx is the g-volume form on M . The EOM are E(L̃)b[A] = ∇aFab[A] dgx, while all
infinitesimal gauge symmetries are of the form γ[A; ρ] = dρ, with the gauge parameters ρ being
scalars, P = Λ0M .

Example 2 (Yang-Mills (YM) theory). Consider a Lie group G and a G-principal bundle P →
M over a Lorentzian manifold (M, g). Let g be the Lie algebra of G and denote by gP → M
the associated bundle for the adjoint representation of G on g. For convenience, fix a reference
connection on the G-principle bundle P →M and denote the induced connection on gP →M by
D0 : Γ(gP)→ Γ(gP ⊗M Λ1M). Any other G-equivariant connection on gP can be parametrized as
Du = D0u+ [A, u], for any u ∈ Γ(gP) and some A ∈ Γ(gP ⊗M Λ1).

Let the fields of the theory be G-equivariant connections D on gP →M , parametrized as above
by sections A of B = gP ⊗M Λ1M . The curvature of D is F [A] = D0 ∧A+ 1

2 [A∧A] is a gP -valued
2-form, where ∧ acts on the 1-form parts of A and [−,−] acts on the gP parts of A. The Lagrangian
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is L̃[A] = − 1
4 〈Fab[A], F ab[A]〉dgx, where 〈−,−〉 is the pointwise bilinear form on gP induced by

the Killing form on g, the indices raised and lowered by the metric gab and dgx is the g-volume

form on M . The EOM are E(L̃)b[A] = DaFab[A]. All infinitesimal gauge symmetries are of the
form γ[A; ρ] = Dρ, with gauge parameters ρ being sections of the bundle P = gP .

Example 3 (General Relativity (GR)). Let the field bundle B = S̊2T ∗M be the bundle of Lorentz

signature metrics (distinguished by the ˚(−) notation) on a manifold M , and denote its sections
by g ∈ Γ(S̊2T ∗M). If Rabcd[g] is the Riemann tensor of g, then Rac[g] = Rabcd[g]gbd is the Ricci
tensor, and R[g] = Rac[g]gac is the Ricci scalar. The Lagrangian of the theory is L̃[g] = R[g] dgx,

where dgx is the g-volume form on M . The EOM E(L̃)ab[g] = (Rab[g] − 1
2R[g]gab) dgx are the

Einstein equations. All infinitesimal gauge symmetries are of the form γab[g; ρ] = Kg
ab[ρ], where

the right-hand side is given by the Killing operator

Kg
ab[ρ] = Lρgab = ∇aρb +∇bρa, (14)

with gauge parameters ρ being vector fields, sections of the bundle P = TM .

Consider a universal linearization of (13) in the direction β 7→ β + εβ̇:

γ[β; ρ] · Ė(L̃)[β; β̇] = −γ̇[β; β̇, ρ] · E(L̃)[β] + d ˙̃K[β; β̇, ρ]. (15)

For a solution β, satisfying E(L̃)[β] = 0, using the fact that the linearized variational equations
are still variational, we arrive at the identity

γβ [ρ̇] · E(L̃
(2)
β )[β̇] = dK̃β [β̇, ρ̇] (16)

for arbitrary β̇ ∈ Γ(β∗TVB) and ρ̇ ∈ Γ(β∗P ), where we have set γβ [β∗ρ] = γ[β; ρ] and K̃β [β̇, β∗ρ] =
˙̃K[β; β̇, ρ], which are now differential operators linear in each of their arguments. In other words,

the linearization of a gauge theory inherits field independent gauge symmetries. Thus, owing to
the identity (7), this field independent gauge symmetry is a symmetry “on the nose,” meaning
that

E(L̃
(2)
β )[γβ [ρ̇]] = 0, (17)

with the right-hand side exactly vanishing for any ρ̇ ∈ Γ(β∗P ) (in general it need only be propor-
tional to the EOM). These observations motivate the following

Definition 3. A linear gauge theory is a linear classical field theory with a quadratic Lagrangian
and non-trivial field-independent gauge symmetries.

0.1.3 Compatibility operators and complexes

The main references for this section can be taken as [19, 37, 35].
Motivated by Definition 3, let us consider a linear field bundle V →M (alternative notation to

B →M , since V is a vector bundle), a quadratic Lagrangian L̃, and the corresponding linear EOM
E[φ] = E(L̃)[β] = 0. Supposing that it is a linear gauge theory means that there is also the gauge
parameter vector bundle P →M and a linear differential operator γ : P → V generating the gauge
symmetries. While we have previously made a distinction between symmetries of the EOM and
symmetries of the Lagrangian, the difference disappears for field-independent gauge symmetries:

Lγ[ρ]∞L̃[φ] = γ[ρ] · E[φ] + dK̃[φ, ρ]

= E∗[γ[ρ]] · φ+ d(WE [γ[ρ], φ] + K̃[φ, ρ])

= E[γ[ρ]] · φ+ d(WE [γ[ρ], φ] + K̃[φ, ρ])

= d(WE [γ[ρ], φ] + K̃[φ, ρ]) (18)

where the last equality follows from the self-adjointness E∗ = E. In other words, while we already
knew that a field-independent gauge symmetry satisfies E ◦ γ = 0, now we also know that the
converse is true as well. Hence, from now on, for linear gauge theories, we can forget about the
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Lagrangian, and define field-independent gauge symmetries as linear operators φ = γ[ρ] annihilated
by E[φ], i.e., E ◦ γ = 0.

Other than γ 6= 0, we have not yet imposed any conditions on the gauge generator γ. It is
important to note that for the same EOM operator E[φ] there may exist multiple unequal gauge
generators. Let us distinguish certain gauge generators as universal or complete by the following
property. We call a gauge generator γ : J∞P → V universal when any other gauge generator
γ′ : P ′ → V can be factored through γ. More precisely, for any such γ′, there should exist another
linear differential operator δ : J∞P ′ → P such that γ′ = γ ◦ δ.

As mentioned at the beginning of the introduction, we are eventually interested in quotienting
the solutions of the EOM with respect to all gauge symmetries. That is, we need to consider
equivalence classes of fields under the equivalence relation φ ∼ φ + γ[ρ] for any ρ ∈ Γ(P ), with
γ being a universal gauge generator. These are also known as physical equivalence classes (also
gauge equivalence class).

A natural question to ask is the following: given two fields φ, χ ∈ Γ(V ), do they belong to the
same or different equivalence classes? This question can be partially answered with the help of a
differential operator F : J∞V → W that satisfies F ◦ γ = 0. In the literature on overdetermined
PDEs, F is called a compatibility operator for γ, while in the study of linear gauge theories, F is
called an local linear gauge-invariant observable or a local gauge-invariant field combination. Given
such an F , we can definitely decide that φ and χ belong to different physical equivalence classes
whenever F [φ] 6= F [χ]. On the other hand, the equality F [φ] = F [χ] or F [φ − χ] = 0 is not by
itself enough to conclude that φ − χ = γ[ρ] for some ρ ∈ Γ(P ), without more information about
F . After all, so far the zero operator F = 0 still fits all of our definitions. The desired condition
on F is that F [φ] = 0 implies φ = γ[ρ] for some ρ (at least locally on open neighborhoods in M).
In that case, it is said that the composition of F and γ is locally exact.

Unfortunately, local exactness may be a rather subtle property and its verification or disproof
could involve a significant amount of analysis. On the other hand, under certain conditions (which
are frequently verified in practice), we can deduce local exactness from a more geometric property,
dual to the universality property for gauge generators. Namely, we say that F is universal or
complete as a compatibility operator for γ when for any other compatibility operator F ′ : J∞V →
W ′, there exists another differential operator G : J∞W → W ′ such that F ′ = G ◦ F , that is, F ′

necessarily factors through F . While the condition of being a universal compatibility operator is
easier to analyze geometrically than local exactness, under some conditions it actually implies local
exactness (see [27] for references).

Consider a sequence of linear differential operators Ki : J
∞Wi → Wi+1, i ≥ 0, such that

Ki+1 ◦Ki = 0. Such a sequence is called a complex and can be visually represented as

• • • • · · ·K0 K1 K2 K3 . (19)

Note that we can consistently omit the function spaces or jet bundles on which these operators act,
as the domain or codomain of a given linear differential operator can be thought to be implicitly
part of its definition. The complex is said to terminate at i = k if K•≥k = 0. The following
stronger definition is quite useful.

Definition 4. A complex of linear differential operators Ki is said to be a universal (or complete)
compatibility complex for K0 if each of the Ki+1 operators, i ≥ 0, is a universal compatibility
operator for Ki.

Often the attribute universal (or complete) is dropped and the term compatibility complex is
used to mean the same thing (when no confusion is possible).

It is easy to see that setting K0 = γ and K1 = F , with W0 = P , W1 = V and W2 = W , defines
the beginning of a complex, since K1◦K0 = F ◦γ = 0, while the universality of F as a compatibility
operator for γ makes it also into the beginning of the universal compatibility complex for γ.

As we have seen, given a gauge generator γ, it is natural to try to find a complete set of corre-
sponding local linear gauge-invariant field combinations, which is the same as finding a universal
compatibility operator for γ. It is equally natural to further ask to find the full compatibility
complex of γ. We will return to this question later in this Thesis (see Problem 1).
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0.2 Local functionals and invariants

This section covers the papers [25] and [29].
Consider a classical gauge theory theory (Definition 1) on a field bundle B → M , with La-

grangian L̃, EOM E(L̃) and gauge symmetry generator γ[β; ρ], with ρ ∈ Γ(P → B) being sections
of the gauge parameter bundle. As discussed at the top of the Introduction, we would eventually
like to construct its phase space S. As a space, it consists of the space of solutions

S = {β ∈ Γ(B) | E(L̃)[β] = 0}, (20)

which under favorable hypotheses can be endowed with a smooth structure of a Fréchet manifold.
The family of gauge symmetries generated by γ[β; ρ] can be prolonged to vector fields on J∞B that
are tangent to S, which generate the gauge symmetry distribution G ⊂ TS when linearly spanned
over all possible gauge symmetry generators γ and all gauge parameter sections β ∈ Γ(P → B).
Leaves of this distributions are gauge orbits.

At any (non-singular) point β ∈ S, the tangent space TβS can be identified with the solution
space of the gauge theory linearized at β. As described in Sections 0.1.1 and 0.1.2, the linearized
theory is defined on the field bundle β∗TVB → M , whose sections we denote by β̇ ∈ Γ(β∗TVB),

with Lagrangian L̃
(2)
β and field-independent gauge symmetry generator γβ [ρ̇], whose gauge param-

eters are sections ρ̇ ∈ Γ(β∗P ). The linear span of γβ [ρ̇] over ρ̇ then coincides with the gauge
symmetry distribution Gβ ⊂ TβS at the background solution. As a result, we can think of linear
gauge theories (Definition 3) as models for the tangent space TβS at a regular point. At singular
points of S (in the neighborhood of which S fails to have the structure of a manifold) some of these
statements may fail, so these cases have to be studied separately [24].

The gauge orbit space S̄ = S/G, endowed with a so-called canonical Poisson structure, which
happens under favorable conditions, is the ultimately desired reduced phase space. This Poisson
structure may not be defined on the unreduced solution space S, which in the worst case carries
only a gauge-invariant pre-symplectic structure (also called canonical or Hamiltonian). Under
favorable conditions, this pre-symplectic structure can be extended to compatible symplectic and
Poisson structures, via what is commonly called gauge-fixing, which are also gauge-compatible and
descend to the desired Poisson structure on S̄. Incidentally, since pre-symplectic, symplectic and
Poisson structures only need information about the tangent spaces TS and T S̄ (as well as the
corresponding cotangent spaces), it is sufficient to construct them pointwise over S, that is, for the
linear gauge theories modelling these tangent spaces in TS. I considered the geometric details of
these constructions, with special attention to the Poisson structure in [22, 23].

There are multiple functional analytic details that may modify this basic definition. For in-
stance, for fields, instead of C∞ smooth sections of B → M , we might consider also sections of
finite Ck smoothness or some Sobolev regularity, which would naturally give rise to Banach man-
ifolds. Also, when the spacetime M is non-compact, we may also restrict the asymptotic behavior
of the fields in the neighborhood of infinity. All the same comments apply to gauge parameters,
which are sections of P → B, hence modifying the gauge symmetry distribution. We shall not
consider such details here and will stick to the smooth setting described in the previous paragraph.

Understandably, the structure of the gauge orbit space S̄ = S/G may be complicated and
singular in any number of ways. Its construction can be simplified (in the sense of being replaced
by a simpler problem), while still giving us a lot of useful information. For instance, instead of
constructing the quotient space itself, we may be happy to just describe some “sufficiently large”
and “nice” class of functions on S that are gauge-invariant (or constant on the gauge orbits).
Furthermore, given a smooth gauge-invariant function Φ ∈ C∞(S) (frequently, Φ is referred to as
a functional, since it is a function on a space of sections, which are themselves functions) and a
solution β ∈ S, the differential dΦ must annihilate the gauge symmetry distribution Gβ ⊂ TβS.
Hence dΦβ is a linear gauge-invariant functional for the linear gauge theory modeling the tangent
space TβS. In fact, one way to describe the desired class of invariant functions Φ on S is to specify
the behavior of their differentials dΦβ pointwise over β ∈ S (at least the subset of the regular
points of S).
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0.2.1 Linear invariants

In the case of linear gauge theories, which as we have seen serve as a simpler model of the full non-
linear case, there is a commonly accepted notion of both “sufficiently large” and “nice” attributes
of gauge-invariant functionals, they are subsumed by the respective technical terms gauge orbit
separating and local functional. Of course, in this case we restrict ourselves to linear functionals.

Definition 5. Consider a linear gauge theory defined on the field space V →M , with dimM = n,
with field-independent gauge generator γ : J∞P → V , and with EOM solution space T ⊂ Γ(V ). A
linear functional Ψ on Γ(V ) is local if it is of the form

Ψ(φ) =

∫
M

α · ψ, (21)

where α ∈ Γc(Ṽ
∗) is a smooth compactly supported section of the densitized dual Ṽ ∗ = V ∗⊗MΛnM .

The functional Ψ is gauge-invariant when Ψ(γ[ρ]) = 0 for every ρ ∈ Γ(P ). A set of gauge-invariant
linear functionals {Φi} on Γ(V ) is gauge orbit separating if the condition ∀i : Φi(φ) = 0 implies
that φ = γ[ρ] for some ρ ∈ Γ(P ).

A linear functional on T is local ( gauge-invariant) if it is the restriction of a local (gauge-
invariant) functional on Γ(V ).

Clearly, if a set of functionals {Φi} separates gauge orbits on Γ(V ), then their restrictions also
separate the orbits on T . We have formulated the above notions of local and gauge-invariant
functionals even without reference to the solution space T (that is, off-shell, rather than on-shell).
The reason is that these definitions are easier to state and the distinction with purely on-shell
definitions is immaterial for our purposes [22, 23, 5]

An obvious way of producing local gauge-invariant functionals is to use smearing functions
α ∈ Γc(Ṽ

∗) satisfying γ∗[α] = 0. In fact the fundamental lemma of the calculus of variations
implies that all local gauge-invariant functionals are of that form. If a complete compatibility
operator F : J∞V → W is known, then it is easy to generate such smearing functions by the
formula α = F ∗[ω] for any ω ∈ Γc(W̃

∗), since differential operators preserve supports and the
identity F ◦ γ = 0 implies also γ∗ ◦ F ∗ = 0. This observation provides an extra motivation for
constructing a complete compatibility operator F for the gauge generator γ.

This is certainly a way to generate a large set of gauge-invariant observables, one for each
ω ∈ Γc(W̃

∗). However, it is not obvious whether this set really does separate the gauge orbits in
Γ(V ). This issue has to be investigated on a case by case basis [23, 5]. The conditions for orbit
separation end up being cohomological, related to the cohomologies of the compatibility complex
for γ or its formal adjoint complex. This observation provides an extra motivation for constructing
the full compatibility complex (Definition 4) for the gauge generator γ.

It is important to note that each tangent space TβS of the phase space of a non-linear gauge
theory potentially models a different linear gauge theory. Thus, the construction of a compatibility
complex for the linearized gauge generator γβ [ρ̇] for some background solution β ∈ S does not
automatically translate to the same construction by for a different background solution β′ ∈ S.
Given the importance of the examples of General Relativity and Yang-Mills gauge theories, it
would be already important to solve this problem for these two theories, linearized about different
non-trivial background solutions. Unfortunately, until my work in [29] only very few results of
this type have been available in the literature. This leads us to the following concrete geometric
problem.

Problem 1. Consider the Killing operator Kg : J∞(TM) → S2T ∗M on a pseudo-Riemannian
geometry (M, g), or a covariant derivative D : J∞gP → gP ⊗M Λ1M on Lie algebra g-valued
forms, where gP → M is the bundle associated to a G-principal bundle P → M by the adjoint
representation of G on its Lie algebra g. Construct a full compatibility operator for the
operators Kg or D in some cases of interest.

I first formulated this problem precisely in [22, 23, 27] and finally gave a reasonable solution
in [29]. The solution is based on a combination of methods from the theory of formal integrability
of overdetermined PDEs [19, 37, 35] and from homological algebra [42]. The key observation is
that both the Killing Kg and the connection D operators are overdetermined opeartors of finite
type.

11



Definition 6. Let V →M and W →M be vector bundles and K : J∞V →W a linear differential
operator. The PDE K[v] = 0 (or just the operator K) is said to be of finite type when locally there
exists an integer N < ∞, a vector bundle morphism κ : JNV → JN+1V and a linear differential
operator λ : Γ(W ) → Γ(JN+1V ) such that jN+1v − κ(jNv) = λ[K[v]] for any v ∈ Γ(V ). If in
addition locally the dimension of the solution space of K[v] = 0 is finite and constant, the equation
is said to be regular.

It is well-known that a PDE that is of regular finite type is equivalent in a suitable sense to the
parallel section equation for a flat connection (see for instance Rmk.2.3.3, Rmk.2.3.6, and Ex.2.3.17
of [35]). The amount of work needed to reduce a particular PDE of this type to the form of a flat
connection is roughly equivalent to the amount of work needed to explicitly prolong the equation
to involutive form, which is the central problem in the theory of formal integrability.

My solution starts from the observation that a flat connection D defined on an auxiliary vector
bundle U →M has a well-known full compatibility complex, namely the twisted de Rham complex
D ∧ (−) : J∞(U ⊗M ΛiM)→ U ⊗M Λi+1M . The other crucial observation is that the equivalence
of a regular finite type equation K[v] = 0 with Du = 0 allows one to lift the full compatibility
complex from D to K. The final result is the following theorem:

Theorem 7. Given a regular finite type PDE K[v] = 0 on a vector bundle V → M , together
with an explicit equivalence of this PDE to Du = 0, where D is a flat connection a vector bundle
U →M . There exists an explicit construction of a full compatibility complex for the operator K.

After formulating this general result, I applied it to produce full compatibility complexes for
the Killing operator Kg in two specific cases of practical importance in General Relativity: FLRW
cosmological spacetimes in n-dimensions (n ≥ 3) [29, Sec.3.2], and Schwarschild-Tangherlini spher-
ically symmetric black hole spacetimes in n-dimensions (n ≥ 4) [29, Sec.3.3]. Both results are new
and original to [29].

Using the template of the above calculations and results, one could apply the same method to
other geometries of interest in General Relativity. For instance, the case of the Kerr rotating black
hole is currently under investigation [1, 3].

Also, since theG-principal bundle connection operatorD is also of finite type, the same methods
could be easily applied to that case as well. A Yang-Mills instanton field configuration [36] could
be an interesting case to consider in detail.

0.2.2 Non-linear invariants

Consider now again a non-linear gauge theory defined on the field bundle B → M , with solution
space S ⊂ Γ(B). Since S is no longer is a linear space, we must now consider non-linear functionals.
Unfortunately, now the situation may be more complicated. But, motivated by Definition 5 for
linear gauge theories, for non-linear gauge theories, the following definitions have been used [8, 15,
22, 25]:

Definition 8. A partial functional Φ ∈ C∞(U) is a smooth function on an open subset U ⊂ Γ(B)
(in a reasonable topology, to be specified as part of the problem). A partial functional Φ is gauge-
invariant if it is annihilated by every Lie derivative LξΨ|U = 0 with respect to a vector field ξ on
Γ(B) that is induced by a gauge symmetry generator γ[β; ρ]. A partial functional Ψ ∈ C∞(U) is
local if its functional derivative δΨ

δβ(x) has compact support on M for every β ∈ U (though possibly

depending on β), and the support of every higher functional derivative δkΦ
δβ(x1)···δβ(xk) is both compact

and is contained within the total diagonal x1 = · · · = xk.
A local (or gauge-invariant) partial functional on S ⊂ Γ(B) is the restriction of a local (or

gauge-invariant) functional on Γ(B).

For a long time it was a matter of some controversy whether local gauge-invariant functionals for
the particular example of General Relativity (considered as a non-linear classical gauge theory) exist
at all. The easiest way to generate non-linear local functionals is by the following generalization
of formula (21)

Φ(β) =

∫
M

α[β] (22)
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where α : J∞B → ΛnM is a differential operator such that suppα[β] is contained in a fixed compact
subset of M for every β ∈ Γ(B). In fact, roughly until the recent works [15, 8, 22, 25], formula (22)
together with these support restrictions on α[β] has been the standard notion of non-linear local
functional. On the other hand, the above formula and restriction on α[β] are well-known to be in
tension with the gauge-invariance (meaning diffeomorphism invariance in the case of GR) of Φ (see
the Introduction to [25] for a brief survey and historical references). Moreover, the existence of a
sufficiently large family of local gauge-invariant observables to separate gauge orbits on the phase
space of GR was certainly in question. This tension lead to the following long standing geometric
problem.

Problem 2. Consider the phase space S of General Relativity on a manifold M , with the gauge
symmetry distribution G ⊂ TS generated by infinitesimal diffeomorphisms. Does there exist
a suitable notion of locality, generalizing (22), such that there exist gauge-invariant
local functionals on S? If so, are there sufficiently many of them to separate the gauge
orbits in S?

In [25] I addressed this problem by introducing Definition 8 as the new sufficiently general no-
tion of local functional. This definition generalized the rough one based purely on formula (22) and
previous more precise definitions given in [15, 8]. The main innovations in Definition 8 consisted of
allowing the support of the functional derivative δΦ

δβ(x) to depend on β (while remaining compact),

and also of allowing partial functions (defined only on some open U ⊂ S). This generalization is
reasonable because allowing the support of δΦ

δβ(x) allows many more functionals Φ to be admissible,

yet retaining the main benefits of having the convergence of any integrals involving the functional
derivatives of Φ. When partial functionals are allowed, restricting to open neighborhoods of par-
ticular solutions β ∈ S, there is no difference between partial and globally defined functionals.
On the other hand, if we can construct a sufficiently rich family of gauge-invariant functionals
on elements of an open cover {Ui} of S (or at least some dense subset of S), we leave open the
possibility that globally defined gauge-invariant functionals could still be constructed by some kind
of glueing procedure.

Under this relaxed definition of locality, I then proved the following

Theorem 9. Consider the phase space S of General Relativity on a manifold M , consisting of
globally hyperbolic Lorentzian metrics g solving the Einstein equations. There exists an open gauge-
invariant subset U ⊂ S of sufficiently generic metrics. For any two metrics g, g′ ∈ U , there exists
a joint gauge-invariant open neighborhood Ug,g′ ⊂ U of both g and g′ and a local gauge-invariant
functional Φ ∈ C∞(Ug,g′) that separates the gauge orbits of g and g′.

The method of proof relied on some results from the theory of scalar differential invariants [30]
of (pseudo-)Riemannian metrics. In particular, it is known that scalar differential invariants allow
the local distinction on an open subset of sufficiently generic metrics [11]. Basically, there exists
an integer N and an invariant differential operator R : J∞(S2T ∗M) → RN such that any two
sufficiently generic metrics g and g′ on M belong to the same gauge orbit (i.e., are isometric) iff
graphs R[g](M) and R[g′](M) coincide in RN . Then, it is sufficient to observe that, for any two
non-isometric metrics g and g′, there must exist an n-form α ∈ Ωn(RN ) such that suppα∩R[g](M)
and suppα∩R[g′](M) are both compact, but only exactly one of

∫
R[g](M)

α and
∫
R[g′](M)

α is non-

zero. Then it can be proven that the formula

Φ(h) =

∫
M

(R[h])∗α (23)

is well-defined on at least a joint gauge-invariant open neighborhood Ug,g′ 3 g, g′ (here we must
use the so-called strong Whitney topology on the space of smooth metrics [33]), where it defines a
gauge-invariant local observable. Then, by construction, exactly one of Φ(g) and Φ(g′) is non-zero.

Similar basic results exist also for Yang-Mills theory [34], where scalar invariants based on the
curvature of a G-principal bundle connection operator D can be used to distinguish the local gauge
equivalence classes for sufficiently generic connections. Hence an analogous result to Theorem 9
can be easily proven for Yang-Mills theory as well.

Note that the above results in GR refer to the open subset U ⊂ S of sufficiently generic field
configurations. It remains an open (and rather technical) question whether this open set can be
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dense in S and under what conditions. It is not hard so hard to deduce that U = V ∩ S, where
V ⊂ Γ(S̊2T ∗M) is a corresponding dense subset of all Lorentzian metrics by appealing to a jet
transversality theorem [40]. However, it is not immediately clear why the intersection V ∩S should
be dense in S.

The final result that we reproduce from [25] links in a satisfactory way linear and non-linear
gauge-invariant functionals.

Theorem 10. Consider a non-linear local gauge-invariant partial functional Φ (Definition 8)
defined on an open U ⊂ S. Let g ∈ U and let Φ̇g(h) be the linearization of Φ at g, defined by

Φ(g + εh) = Φ(g) + εΦ̇g(h) +O(ε2). Then there exists a linear local gauge-invariant functional Ψ

on TgS (Definition 5), such that Φ̇g(h) = Ψ(h).

0.3 Hodge-like structure and cohomology

This section covers the papers [26] and [27].
In the lead up to the statement of Problem 1, from the results of previous works [22, 23, 5],

we motivated the importance of the construction of a full compatibility complex Ki, i ≥ 0, for the
gauge generator K0 = γ of a linear gauge theory. In particular, once the full compatibility complex
is known, the cohomological information associated to it can be quite useful. For instance, the ob-
struction to the separation of gauge orbits by the class of local gauge-invariant observables defined
using K1 in Section 0.2.1 is essentially cohomological, as shown in [22, 23, 5]. Also, the canonical
Poisson structure (specifically given by the so-called Peierls formula or Peierls bracket) on the re-
duced phase space S̄ = S/G of the linear gauge theory may or may not be degenerate (recall that a
Poisson structure on a linear vector space is a skew-symmetric bilinear form {−,−} : S̄ ⊗S̄ → R, so
that its degeneracy is in the sense of this bilinear form being degenerate). The degeneracy subspace
of the canonical Poisson bracket has relations to physical phenomena like super-selection sectors,
topological charges, and Aharonov-Bohm type effects. In [22, 23], I proved that the dimension of
the degeneracy of subspaces of the canonical Poisson structure on S̄ is bounded from above by the
some cohomological dimensions associated to the compatibility complex Ki.

Let us denote by H•(K•) the cohomology of the complex Ki : Γ(Wi) → Γ(Wi+1). There are
a few variations on this basic definition. For instance, denote by H•(K∗• ) be the cohomology of
the formal adjoint complex K∗i−1 : Γ(W̃ ∗i ) → Γ(W̃ ∗i−1). Other variations include H•(∗)(K•) and

H•(∗)(K
∗
• ), where (∗) ∈ {∅, c,+,−, fc, pc, sc, tc} are different support restrictions indicating that

we should use sections Γ(∗)(−) with restricted supports, rather than arbitrary smooth sections
Γ(−), to define the cohomology. The various support restrictions of interest are c—compact,
+/−—retarded/advanced, pc/fc—past/future compact, sc/tc—spacelike/timelike compact. Here,
the attributes retarded, advanced, future, past, spacelike and timelike refer to a presumed causal
order [17, 22] defined on our spacetime manifold M .

The causal order should be such that it is compatible with the natural structure of the EOM
E(L̃)[φ] = 0 of the gauge theory (which may become manifest only up gauge-fixing), which is
encoded in the principal symbol of the E(L̃) operator. The compatibility should be such that there
should be unique solutions of the inhomogeneous equation

E(L̃)[φ] + (gauge-fixing)[φ] = α (24)

with compact suppα when suppφ is restricted to be either +—retarded (extending into the future
of suppα) or −—advanced (extending into the past suppα). On the other hand, a subset S ⊂M
is spacelike compact when it is a union S = S+ + S− where S+ is retarded and S− is advanced
with respect to some compact subset of M . The c, fc, pc and tc support restrictions are respec-
tively geometrically dual to the ∅, +, − and sc restrictions, ensuring that the spaces of sections
Γ∅/+/−/sc(V ) and Γc/fc/pc/tc(Ṽ

∗) have a well-defined and non-degenerate natural pairing defined

by the formula 〈α, φ〉 =
∫
M
α · φ. When the principal symbol E(L̃) is determined by a Lorentzian

metric g on our spacetime (M, g). Then this causal order coincides with the usual notion of causal-
ity in General Relativity [17] and any hyperbolic PDE whose principal symbol coincides with that
of the wave operator �g is compatible with this causal order.

This leads us to the following concrete geometric
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Problem 3. Consider a compatibility complex Ki (i ≥ 0), defined on a spacetime M with a
causal order. Determine the following cohomologies with and without causal support
restrictions: H•(∗)(K•) and H•(∗)(K

∗
• ), for (∗) ∈ {∅, c,+,−, pc, fc, sc, tc}.

My papers [26, 27] were dedicated precisely to the above problem. Two hypotheses ended being
being crucial to obtain the strongest form of the results: (a) the finite type of K0 (Definition 6) and
(b) the existence of a Hodge-like structure on the complex Ki. By a Hodge-like structure, I mean
the existence of the following diagram, where the arrows denote differential operators between the
bundles on which the Ki complex is defined:

0 • • · · · • · · ·

0 • • · · · • · · ·

K0

�0

K1

�1

δ0

Ki

δ1 �i+1

δi

K0 K1 Ki

, (25)

where the solid arrows commute,
Ki�i = �i+1Ki+1, (26)

with the vertical arrows hence constituting a morphism of complexes (a.k.a a chain (or cochain)
map), while the dashed arrows constitute a (chain or cochain) homotopy from the complex to
itself, inducing the vertical operators by the formula

�i = δiKi +Ki−1δi−1. (27)

The reason I refer to the above operators and identities as Hodge-like structure is that it is highly
reminiscent of the Hodge theory for the de Rham complex [18], where we have a Riemannian metric
(M, g), Kp = d (the exterior derivative on p-forms), δp = divg is the g-divergence on (p+ 1)-forms,
and �p = ∆ = dδ+δd is the Hodge-de Rham Laplacian on p-forms. The main result of this original
Hodge theory is the unique representation of cohomology classes of M by harmonic forms, when
(M, g) is a compact Riemannian manifold, where the above structure is crucial.

In our cases of interest, we expect the �i operators not to be elliptic (like the Hodge-de Rham
Laplacian), but rather hyperbolic and compatible with a causal structure on M . In that case, we
can still put the existence of a Hodge-like structure to good use by appealing to the snake lemma
of homological algebra [42]. In particular, the main result from [26] can be stated as follows:

Theorem 11. Consider a complex Ki on a manifold M with a causal structure, and suppose that
there exists a Hodge-like structure (25) on it, where the �i are hyperbolic and compatible with
the causal structure. Then, all the cohomologies with unrestricted, compact and causally restricted
supports mentioned in Problem 3 can be computed (using direct sums, shifted degrees and linear
duals) from just H•(K•) and H•(K∗• ).

The paper [27] is largely a review article about the structure and properties of the so-called
Calabi complex, with some novel perspectives, which is a full compatibility complex for the Killing
operator on a (pseudo-)Riemannian geometry (M, g) of constant curvature, which means that
locally the geometry is characterized by a single constant λ and the Riemann curvature identity

Rabcd − λ(gacgbd − gadgbc) = 0. (28)

Until the new results of my work [29], the Calabi complex was one of the very few cases where the
full compatibility complex of the Killing operator was known. So I used it in [27] as a test case to
collect various results that would be useful for working with compatibility complexes in general.

The novel perspective in [27] included the following: (a) Explicit expressions for all the dif-
ferential operators Ki in the Calabi complex, expressed in the usual tensorial language. Such
expressions were difficult to find in the existing literature. In particular, Calabi’s original paper [9]
used a moving frame formalism. (b) An explicit description of the Hodge-like structure on the Cal-
abi complex, as needed to apply Theorem 11. (c) The identification of the adjoint Calabi complex
with the full compatibility operator for the Killing-Yano operator on (n− 2)-forms.

Notable general results reviewed in [27] include the following. For the following results, it is
useful to recall the notion of sheaf and sheaf cohomology as used in differential geometry [7].
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Proposition 12. If a complex Ki (i ≥ 0) on M is locally exact, then H•(K•) ∼= H•(K ), where
the right-hand side denotes the sheaf cohomology of the sheaf K of local solution to the equation
K0[φ] = 0.

When K0 = d is the exterior derivative on 0-forms. Then the sheaf K is the sheaf of locally
constant functions. The isomorphism in Proposition 12 is the well-known isomorphism between
the de Rham cohomology and the cohomology of the sheaf of locally constant functions (which
is independently known to be a homotopy invariant, coinciding with the singular cohomology of
M) [7].

When K0 is the Killing operator on a pseudo-Riemannian manifold (M, g), the sheaf K is the
sheaf of local solutions to the Killing equation (basically, local infinitesimal isometries of (M, g)),
which could be called the Killing sheaf of (M, g). Recall that there could of course be more local
solutions to the Killing equation than global solutions. For instance, on a flat compact torus,
local (infinitesimal) translations can be extended to global ones, but local (infinitesimal) rotations
cannot be extended to global ones. However, on a simply connected flat space (like the universal
cover of a flat torus), there every local (infinitesimal) isometry can be extended to a global one.

In general, when K0 is of regular finite type (Definition 6), the sheaf K has finite dimensional
stalks, with this dimension being locally constant. This kind of sheaf is called locally constant and
the computation of the sheaf cohomology of a locally constant sheaf essentially becomes a problem
in algebraic topology. Some practical methods of computing sheaf cohomology in the locally
constant case are reviewd in [27]. In some cases, the computation could in principle be reduced
to finite dimensional linear algebra, giving an effective way, when coupled with Proposition 12, of
computing the cohomologies H•(K•).

When K0 is of finite type but is not regular, then the sheaf K will no longer be locally
constant, but instead only constructible [21]. Of course, the computation of the sheaf cohomology
of a constructible sheaf is expected to be more complicated.

The finite type condition also enters crucially into the following result (reviewed in [27, Sec.3.2]):

Proposition 13. Consider a compatibility complex Ki (i ≥ 0) on M . If the initial operator K0

is of finite type (Definition 6), the complex Ki is locally exact.

Note that Theorem 11 reduces all the cohomology computations to those of H•(K•) and
H•(K∗• ). We have now see that H•(K•) may be effectively evaluated by algebro-topological meth-
ods when K0 is of regular finite type. If the complex Ki actually terminates at say Kp (meaning
that Kp<• = 0) and the formal adjoint K∗p is of regular finite type, then the adjoint complex K∗i
can be considered as a (renumbered) compatibility complex for the operator K∗p , so that similar
statements can be made about H•(K∗• ). It is actually an immediate consequence of the results
of [29] that there exists a p > 0 such that these conditions on K∗p are automatically satisfied,
whenever K0 is of regular finite type.

Theorem 14. If Ki (i ≥ 0) is a compatibility complex for a regular finite type operator K0, then
this complex terminates and its adjoint complex K∗i is also a (renumbered) compatibility complex
for a regular finite type opretator.

0.4 IDEAL characterization

This section covers the papers [10] and [28].
As was mentioned in Section 0.2.2, in General Relativity (or in pseudo-Riemannian geometry in

non-definite signature) there exist metrics that cannot be locally distinguished from non-isometric
metrics by the values of local scalar curvature invariants (these are some of the metrics that fail
the “sufficiently generic” condition of Section 0.2.2). One example is of course flat Minkowski
space, for which the Riemann tensor Rabcd = 0 is identically zero. However, there exists a non-
trivial family of non-flat (where Rabcd is not identically zero, hence not even locally isometric to
Minkowski space) metrics that nonetheless have only vanishing scalar curvature invariants. These
metrics constitute the so-called VSI (vanishing scalar invariants) class [11].

Hence, the gauge orbit of Minkowski space cannot be separated from the gauge orbit of any
other VSI spacetime by the local gauge-invariant observables that we referred to in Theorem 9.
However, we can imagine a gauge theory, where, besides the metric g, we also have other scalar or
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tensor fields, say φ. Then, supposing that the field configurations of φ permitted by the EOM on
top of Minkowski and other VSI spacetimes allow us to define at least two linearly independent
vector fields ua[g, φ] and va[g, φ], then the scalar contraction

Rabcd[g]ua[g, φ]vb[g, φ]uc[g, φ]vd[g, φ] (29)

could serve as the operator R used to construct local gauge-invariant observables according to
formula (23). Such a functional would definitely vanish on Minkowski space, but might not vanish
on some non-flat VSI spacetimes, depending of course on the values of the extra fields φ. Thus,
the contraction of the Riemann tensor with non-purely metric tensor fields has the potential to
allow the construction of local gauge-invariant functionals that are capable of separating (g, φ)
from (g′, φ), where g is the Minkowski metric, while g′ is a non-flat VSI metric.

The above discussion motivates the following concrete geometric definition and problem state-
ment.

Definition 15. Consider a pseudo-Riemannian reference metric (M, g0) and a set of tensor valued
differential operators {Ti[g]} on a general (M, g), built covariantly from the metric g, its Riemann
tensor Rabcd[g], and its covariant derivatives ∇e1 · · · ∇ekRabcd[g]. We call the set {Ti[g]} an IDEAL
characterization of the reference geometry (M, g0) when the vanishing ∀i : Ti[g] = 0 on a neighbor-
hood of x ∈M implies that there exists a (potentially smaller) neighborhood of x that is isometric
to an open subset of (M, g0). The tensors Ti[g] may be referred to as the IDEAL tensors.

Problem 4. Consider a pseudo-Riemannian geometry (M, g0) that is of interest in General Relativ-
ity for mathematical or theoretical reasons. Determine an explicit IDEAL characterization
of the reference geometry (M, g0), or determine that it does not exist.

IDEAL (Intrinsic, Deductive, Explicit, and ALgorithmic) characterization [13, 14] is in a way
an alternative to the more widely known Cartan-Karlhede method [38], which is based on the
introduction of an adapted frame. However, the introduction of a frame, in addition to the metric
g and its curvature tensors, may not be practically or conceptually desired. On the other hand,
IDEAL characterization works only with the metric itself and quantities covariantly obtained from
it.

Despite their obvious geometric interest, the investigation of IDEAL characterizations of in-
teresting spacetimes has been confined to the papers of only a few authors. Nonetheless, these
authors managed to obtain IDEAL characterizations for the important cases of the Schwarzschild
and Kerr black holes in n = 4 dimensions [13, 14]. But few other ones are known. A more extensive
list of references to works on this topic can be found in the Introductions to [10, 28].

My papers [10, 28] were aimed specifically at filling this gap in the literature. Their main new
results can be simply stated as follows.

Theorem 16. If an n-dimensional Lorentzian manifold (M, g0) is a cosmological spacetime (be-
longing to a regular FLRW or inflationary class) or a spherically symmetric black hole (belonging
to the generalized Schwarzschild-Tangherlini class), then it possesses an IDEAL characterization.

In each case, the relevant IDEAL tensors have been given explicitly.
The construction strategy that was used is roughly the following. Suppose that it is al-

ready known that the spacetime geometry (M, g0) can be locally characterized by the existence of
some tensor fields {u, v, . . .} satisfying some set of covariant differential and algebraic equations
{Ci[u, v, . . .] = 0}. Suppose also that there exist tensors {U [g], V [g], . . .} covariantly constructed
from the metric alone, such that U [g0] = u, V [g0] = v, . . . , from the previous supposition. Then
defining {Ti[g] = Ci [U [g], V [g], . . .]} will give an IDEAL characterization of (M, g0).

The IDEAL tensors have a curious connection to the problem of constructing a complete com-
patibility operator for the Killing operator on (M, g0), which was discussed in Problem 1. The
key observation is the following result referred to as the Stewart-Walker lemma [39] in the GR
literature.

Proposition 17. Consider a pseudo-Riemannian geometry (M, g0). Let T [g] be a tensor-valued
differential operator constructed covariantly out of the metric g, and define its linearization Ṫ [h]
about g0 by the identity T [g0 + εh] = T [g0] + εṪ [h] +O(ε2). Then, if T [g0] vanishes or is a linear
combination of products of Kronecker δ’s with constant coefficients, then Ṫ ◦K = 0, where K is
the Killing operator on (M, g0).
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The proof is an immediate consequence of the elementary identity LvT [g] = Ṫ [Lvg], while
Lvg0 = K[v].

Thus, the linearizations of the ideal tensors {Ṫi[h]} immediately give a set of operators obeying
Ṫi ◦K = 0. Now, by their definition, we know that the IDEAL tensors {Ti[g]} jointly vanish only
on those metrics lying on the gauge orbit (diffeomorphism orbit, in this case) of g0. Thus, it stands
to reason that the joint kernel of Ṫi consists only of the image of K[v] spanned over all vector fields
v ∈ Γ(TM). In other words the Ṫi would constitute the components of a complete compatibility
operator for K. This heuristic observation is essentially correct, except for the possibility that
some of the components of Ti[g] vanish at higher than linear order as g → g0, in which case the
joint kernel of the Ṫi may be strictly larger. Thus, the operators Ṫi constitute the components of a
good, geometrically motivated candidate for a complete compatibility operator for K on (M, g0),
but its completeness should strictly speaking be checked independently, for instance using the
results of [29]. For example, the completeness of the linearizations of the FLRW IDEAL tensors
from [10] does hold. This was first checked in [16], though by ad hoc methods. A similar check for
generalized Schwarzschild-Tangherlini geometries (thus comparing the results from [28] and [29])
is yet to be done.

One of the conceptual advantages of Cartan-Karlhede characterizations method [38] is that
they has been proven to exist for a rather general class of metrics (where the main requirement
is that the ranks of certain curvature tensors remain locally constant). On the other hand, at the
moment, it is not clear for which class of metrics do IDEAL characterizations exist. Neither do we
know of an example where an IDEAL characterization is known not to exist. These questions are
certainly worth investigating in more detail.
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Abstract
It is well known that general relativity (GR) does not possess any non-trivial
local (in a precise standard sense) and diffeomorphism invariant observable.
We propose a generalized notion of local observables, which retain the most
important properties that follow from the standard definition of locality, yet is
flexible enough to admit a large class of diffeomorphism invariant observables
in GR. The generalization comes at a small price—that the domain of defi-
nition of a generalized local observable may not cover the entire phase space
of GR and two such observables may have distinct domains. However, the
subset of metrics on which generalized local observables can be defined is in a
sense generic (its open interior is non-empty in the Whitney strong topology).
Moreover, generalized local gauge invariant observables are sufficient to
separate diffeomorphism orbits on this admissible subset of the phase space.
Connecting the construction with the notion of differential invariants gives a
general scheme for defining generalized local gauge invariant observables in
arbitrary gauge theories, which happens to agree with well-known results for
Maxwell and Yang–Mills theories.

Keywords: local observables, differential invariants, QFT in curved spacetime

1. Introduction

The goal of this note is to outline a connection between the theory of differential invariants
and local observables in gauge theories, in the sense of classical and quantum field theory.
The main example we will treat is gravity, or more precisely general relativity (GR) possibly
coupled to matter fields, which is a gauge theory with diffeomorphisms as the group of gauge
transformations. The differential invariants in this case are essentially scalars that can be
tensorially constructed from the Riemann curvature tensor and its covariant derivatives. The
core idea of the connection to local observables appeared already in the proposal of Bergmann
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and Komar [2, 3]. However, it seems, that the idea has never been taken to the logical
conclusion that we intend to sketch below.

Consider the theory of a, say scalar, field f on an n-dimensional spacetime manifold M.
The prototypical example of a local observable in this theory is a smeared field

f x f x , 1
M

( ) ( ) ( ) ( )òf f=

where the smearing test function f Mn ( )Î W is C¥ with compact support. Those last two
properties are key to making f( )f a useful observable. Classically, an observable
F F: ( )F F is a map from field configurations to real numbers. A smeared field acts as

f x f x:
M

( ) ( ) ( )òf F F . The compactness of the support of f makes sure that this integral

converges for an arbitrary field configuration, so that f( )f has a large domain of definition on
the phase space of the theory (on all of it, in this case). The smoothness of f makes sure that
the Poisson bracket

f g f x E x y g y, , , 2
M M

{ ( ) ( )} ( ) ( ) ( ) ( )òf f =
´

where E x y,( ) is the distributional kernel of the Peierls formula and g( )f is a similar smeared
field, is well defined as a distributional integral. Compact support also helps with the
convergence of the Poisson bracket integral. Quantum mechanically, the field x( )f is
promoted to an operator valued distribution. The smoothness of the smearing function f is
then essential to get an honest (though unbounded) operator corresponding to f( )f . The
expectation values of products of smeared fields like

f g x y f x g y , 3
M M

( ) ( ) ( ) ( ) ( ) ( ) ( )òf f f f=
´

are also distributional integrals with respect to the 2-point singular kernel x y( ) ( )f f . Thus,
the smoothness of f and g are again necessary to make sure that this integral is locally well-
defined (UV finite), with their compact support ensuring its global convergence (IR
finiteness). In short, we say that the smoothness of test functions, like f, diffuses the UV
singularities of local fields, like x( )f , and their compact support IR regularizes them.

An immediate generalization is the notion of a multilocal observable, which is given by a
formula of the form

x x f x x, , , 4
M

m m1 1m
( ) ( ) ( ) ( )ò f f ¼

where the smearing test function f Mmn m( )Î W is C¥ with compact support. It should be
noted that the Poisson bracket of two local observables, as defined by equation (2), is in
general no longer a local observable. Rather, as in the example of f x f x

M

2 2( ) ( ) ( )òf f= , it

is (almost) bilocal (multilocal with l = 2),

f g x f x E x y y g y, 2 , 2 , 5
M M

2 2{ }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )òf f f f=
´

with the caveat that the smearing function f x E x y g y,( ) ( ) ( ) is a distribution and could be
non-smooth. Thus, another natural generalization that invites itself is that of multilocal
observables with distributional smearing, though the identification of the class of distributions
that can be consistently allowed becomes rather technical. We mention these generalizations
only for completeness, with the remainder of this note concentrating on local observables with
smooth smearings. However, we do briefly come back to multilocal observables in sections 5
and 6.
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In the case when x( )f is a local field in a gauge theory, another important property
demanded of a local observable like f( )f is gauge invariance. That is, the value of f( )f
(numerical value classically and operatorial value quantum mechanically) stays invariant
under the action of gauge transformations. Any physically meaningful quantity may only be
represented by a gauge invariant observable. It is common knowledge that, in gravitational
theories, the set of local gauge invariant observables is trivial (see for instance [16] or [7], for
a clear discussion). Such a statement can of course be made once a suitably precise notion of
locality and gauge invariance is given, as we do in section 2. On the other hand, a slight
relaxation of that standard notion of locality, which we propose in section 3, opens the door to
the introduction in section 4 of a large class of gravitational observables that are gauge
invariant (thanks to the use of differential invariants), diffuse UV singularities and are IR
regularizing. Finally, we address the computation of Poisson brackets between generalized
local gauge invariant gravitational observables in section 5. Ultimately, we propose to treat
this generalized notion as the true definition of local observables.

In the rest of the note we discuss only classical observables. Comments on how the
constructions outlined below impact perturbative quantum field theory are left for the dis-
cussion in section 6, where we also mention various limitations and open problems of our
proposal.

We finish this section with a brief historical remark. The idea of constructing observables
in gravitational theories based on differential invariants (curvature scalars) first appeared
clearly in the works of Bergmann and Komar [2, 3]. Unfortunately, they never published a
computation of Poisson brackets for such observables. Such computations appeared first in
the work of DeWitt [12], who used the Peierls bracket formalism. Since then, related ideas
have appeared sporadically in the literature, more recently referred to as relational observables
[34]. Some ideas in spirit similar to those presented below can also be found in [16] and [7],
with the latter following-up a slightly different line of ideas that attempted to expand the
notion of local obsrvables by modifying the notion of gauge invariance [15, 31].

2. Standard local observables in field theories

Let us briefly set up the geometric formalism of classical field theory. We will mostly follow
the references [21, 23], with [6, 8, 15, 18] being complementary sources. We take M to be an
oriented n-dimensional smooth manifold. Usually one endows M with a Lorentzian metric,
but we are working at a level of generality where that is not necessary. Take a vector bundle
F M , the field bundle, and denote its sections as M F:F  , a field configuration. In more
generality, F M could be a more general smooth bundle, but we will stick to the vector
bundle case for simplicity.

By J F M:k kp  , for k 0, 1, ,= ¼ ¥, we denote the bundle of k-jets of the field bundle
F M . Jets1 naturally and geometrically capture information about higher derivatives of
sections of F M over a point of M. Given a k-jet, throwing away all the information about
order-k derivatives gives a k 1( )- -jet. In other words, we have natural bundle projections

J F J F:k
k k k

1
1p -

- over M, until we get J F F0 = . Any section M F:F  can be naturally
augmented with the information about its derivatives (its jet) at every point of M, thus
defining the k-jet extension section j M J F:k kF  . To be more concrete, consider a fiber-
adapted local coordinate system x ,i a( )f on F. It induces an adapted local coordinate system
x ,i I

a( )f on J kF over that on F, where I i ij, , ,= Æ ¼ ranges across all possible multi-indices.

1 Jets are a standard construction in differential geometry. An introduction to jets, operations on them and their
applications to differential equations can be found in [28]. See also the relevant appendices to [21, 23].
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The coordinate system is adapted in the sense that the following identity holds for any field
section Φ:

j x x . 6i i
a k

i i
a

l l1 1( )( ) ( ( )) ( )f fF = ¶ ¶ F

Next, we introduce the field configuration space F( )= GC , consisting of smooth
sections of the vector bundle F M . It is an infinite dimensional vector space. It is con-
venient to endow it with the Whitney weak topology, which gives it the structure of a Fréchet
space [20, 24]. Unfortunately the Whitney weak topology is too coarse for some of our
purposes (its fundamental neighborhoods do not control the behavior of sections toward the
open ends of non-compact manifolds), so we will mostly make use of the Whitney strong
topology (see the discussion in section 3). Further, the equations of motion of the field theory
(e.g., Klein–Gordon equation for a scalar field or Einstein’s equations for the gravitational
field) select the subspace of solutions, ÌP C, which we refer to as the (covariant) phase
space. For nonlinear equations, P is in general not a linear subspace of C; however, we will
presume that P has a well-defined Fréchet manifold structure induced by its inclusion as a
submanifold of the Fréchet space C. We are ultimately interested in the algebra of obser-
vablesC ( )¥ P . However, it is often more convenient to discuss elements ofC ( )¥ P as images
of elements of C ( )¥ C under the projection induced by the inclusion ÌP C. We make the
simplifying assumption that this inclusion is sufficiently regular for the projection to be
surjective. Then, strictly speaking, observables correspond to equivalence classes of elements
of C ( )¥ C . However, we will not need to make use of this distinction below and may also
refer to elements of C ( )¥ C as observables, or alternatively as functionals.

On C, we can define a special class of functions called local functionals (or observables)
with the help of horizontal forms on J kF. Horizontal forms, whose space we denote as

F k J F,p p k,0 ( ) ( )W Ì W , are generated as linear combinations from the pullback Mk p( ) ( )*p W
of forms on the spacetime with coefficients from C J Fk( )¥ , meaning they are of the form

x x x, d di i
i

I
a i i

k
k

1
1( )a f  . Of course, elements of F k,p,0 ( )W can be pulled back to F l,p,0 ( )W

along the natural jet projections J F J Fl k for any l k> . It is convenient to take the
increasing union (or direct limit) F F k,p

k
p,0

0
,0( ) ( )W = Å W ~=

¥ , where the equivalence
relation identifies a form in F k,p,0 ( )W with its pullback to any higher jet bundle, so that we
do not need to worry about the order k when it is not necessary. We call elements of Fn,0 ( )W
horizontal densities. For any form J Fp k( )a Î W , we define its spacetime support as the
closure of the projection of its support onto M, supp suppM

ka p a= .
It is helpful to note that any form J Fp k( )b Î W can be projected to a horizontal form

F k, 1p,0[ ] ( )b a= Î W +h , where the map acts as x xd di i[ ] =h and xd dI
a

Ii
a i[ ]f f=h on

coordinate forms, extends linearly and respects the wedge product. Another convenient
operator to define is the Euler–Lagrange derivative ELd of a horizontal density Fn,0 ( )a Î W .
Locally, we define EL [ ]d a by the following identity on M:

t
j t x j x x

d

d
d ; , 7

t

k k
a

a

0
EL( ) ( )( ) ( ) [ ] ( ) ( ) [ ] ( )* *a d a xF + Y = F Y + F Y

=

where each Fa
n

EL
,0[ ] ( )d a Î W and ξ is some differential operator that depends linearly on its

second argument. Globally, EL [ ]d a is a horizontal density valued in the dual bundle F M* .
By the usual methods of variational calculus, this relation makes EL [ ]d a unique and well-
defined. All of these constructions, and more, naturally live in the context of the variational
bicomplex [28], of which we shall not need to make further use in this note.

To any horizontal density Fn,0 ( )a Î W with compact spacetime support, we can
associate a functional
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A j . 8
M

k( )[ ] ( )*ò aF = F

If, in local adapted coordinates, we have x x, , , , di a
i
a

ij
a n˜ ( )a a f f f= ¼ , then

A x x x x x, , , , d . 9
M

i a
i

a
i j

a n( )[ ] ˜ ( ( )) ( ( )) ( ( )) ( )ò a f f fF = F ¶ F ¶¶ F ¼

It is straightforward to verify that, by the compact spacetime support condition, the above
integral converges for an arbitrary field configuration F Î C and in fact A C ( )Î C . Of
course, we would like A to be not only continuous, but also in some sense smooth on the
infinite dimensional manifold C. It is in fact possible to make use of an infinite dimensional
calculus on Fréchet manifolds such that A C ( )Î ¥ C [8, 15, 24]. We will not enter into such
details, and simply declare functions like A to be in C ( )¥ C . The class of functions on C
defined by an equation like (8) will be referred to as local functionals.

On the other hand, given an element A C ( )Î ¥ C , we can define a notion of spacetime
support that can be attributed directly to A. If A is local and comes from a horizontal density
α, there will of course be a relation between these two notions of support. More precisely, we
define [6 equation (5.22)]

A x M U x
U A A

supp open , :
supp and , 10

{ ∣
[ ] [ ]} ( )

= Î " $ F Y Î
Y Í F + Y ¹ F

C

which is always closed. In words, for any point y MÎ outside Asupp , there is a sufficiently
small neighborhood V y so that any perturbation Ψ of the argument of A [ ]F with

Vsupp Y Í must leave the numerical value of A unchanged, that is, A A[ ] [ ]F + Y = F . In
other words, A [ ]F does not depend on the value of Φ in some neighborhood of y.

As mentioned above, we can give a precise relation between the spacetime support of a
horizontal density and that of the corresponding local functional. Recall the Euler–Lagrange
derivative EL [ ]d a of a horizontal density α defined by equation (7). Since EL [ ]d a is not
strictly speaking a horizontal density, we extend to it the notion of spacetime support so that
suppM EL [ ]d a is the union of the spacetime supports suppM aEL [ ]d a of its components.

Lemma 2.1. Let Fn,0 ( )a Î W be a horizontal density with compact spacetime support and

A j
M

k[ ] ( )*ò aF = F . Then

Asupp supp supp . 11M MEL [ ] ( )d a aÍ Í

Proof. The second inclusion is trivial, because j jk k( ( )) ( )* *a aF + Y = F whenever supp Y
is outside of suppMa, since the restriction of both sides of the equality to supp Y is simply
zero. The rest, namely Asupp suppMaÍ , follows from the defining equation (10).

On the other hand, suppose that p J Fsupp k
EL [ ]d aÎ Í . Then, we can always find a

section F Î C such that j x pk ( )F = , where x p suppk
M EL( ) [ ]p d a= Î . Since by

construction j x 0k
EL( ) [ ]( )*d aF ¹ , for each open U x there must exist a (without loss of

generality compactly supported) Y Î C with Usupp Y Í such that

j x x 0. 12
M

k
a

a
EL( ) [ ] ( ) ( ) ( )*ò d aF Y ¹

Therefore, by continuity in t, the formula in equation (7) tells us that there must exist a t 0¹ ,
however small, such that A t A[ ] [ ]F + Y ¹ F . That concludes the proof that

Asupp suppM EL [ ]d a Í . ,
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3. Generalized local observables

A precise notion of a local functional on the space C of field configurations on a field bundle
F M was given in section 2. This notion is plenty sufficient to identify a rich set of
observables in the usual relativistic field theories, including gauge theories like Maxwell
electrodynamics and Yang–Mills theory, but notably excluding gravitational theories like GR
or GR with matter fields. The reason gravitational theories are different is because, as will be
discussed in section 4, the intersection between the space of local functionals and gauge
invariant functionals on C is trivial (it consists only of constant functions). On the other hand,
we can relax the above notion of locality in a precise way, without sacrificing much in the
way of the physical motivation that lead to it, such that the new class of generalized local
functionals does admit a rich set of gauge invariant observables even in gravitational theories.
We discuss this precise generalized notion of locality below and leave the applications to
gravitational theories to section 4.

The two main properties of local functionals that we would like to relax are the (a) global
domain of definition and (b) field independent compactness of support. We explain both of
these properties and how they could be relaxed below.

Any element A C ( )Î ¥ C , by definition, gives a well-defined value A [ ]F for any F Î C.
That is, the domain of definition of A is all ofC (it is global). Imagine, on the other hand, that A
is defined only on a subset ÍU C. Could then A still play the role of a physically meaningful
observable? The answer is a qualified yes, providedU is sufficiently large, for example an open
set. Such a restriction may be necessary if, for instance, we have precise control only over
solutions that are not too distant from a reference solution2, some F Î U. At the classical level,
having A and B defined on an open neighborhood  FU is sufficient to compute their Poisson
brackets3 at Φ because that involves only local, differential operations. Perturbative quantum
field theory (QFT) about Φ will also not be sensitive to anything outside an arbitrary neigh-
borhood. Eventually, a non-perturbative formulation of a QFT would likely require observables
to be globally defined. However, even then, we are likely to be interested in quantum states that
(e.g., in a phase space formulation of quantum theory) would assign negligible weight to
solutions outside a neighborhood U of some reference solution Φ. To accommodate such an
eventual situation, we could globalize the domain of definition of A C ( )Î ¥ C by extending it
in an arbitrary, though controlled, way to all ofC using standard geometric tools, like the Tietze
extension and Steenrod–Wockel approximation theorems [37].

Given that we would like the domain ÌU C of a generalized local functional to be open,
it is important to reflect on the topology that we use on C. Technical details on various
topologies on function spaces can be found in the references [20, 24]. It was stated in the
Introduction that it is conventional to endow F( )= GC with the Whitney weak topology,
whose open sets are generated by those of the form

F j K U , 13K U
k k

, { }( )∣ ( ) ( )= F Î G F ÍU

where k 0 , K MÍ is compact and U J FkÍ is open. The big disadvantage of the weak
topology is that its neighborhoods cannot control the behavior of a section outside of a

2 An example of this kind is the celebrated result of Christodoulou and Klainerman [9] on the stability of Minkowski
space in GR. Their result essentially constructs an open neighborhoodU of the Minkowski metric on the phase space
P of GR on 4 with asymptotically flat boundary conditions. On the other hand, we still have very little information
about P outside that neighborhood.
3 Strictly speaking, Poisson brackets are expected to be defined only upon restriction to the phase space ÌP C.
However, it is sometimes possible to lift Poisson brackets even to C. This will be discussed in more detail in
section 5.
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compact subset of the spacetime M, as we will need to do in the sequel. However, except in
some cases when boundaries are present, the spacetimes that are of physical interest are non-
compact. For example, any globally hyperbolic spacetime must be of the form M @ ´ S.
An alternative topology is the Whitney strong topology, whose open sets are generated by
those of the form

F j M U , 14U
k k{ }( )∣ ( ) ( )= F Î G F ÍU

where k 0 and U J FkÍ is open. The big disadvantage of the strong topology is that it is
incompatible with the structure of a topological vector space on C (multiplication by scalars
fails to be continuous), let alone a Fréchet or any other kind of manifold structure. Note,
though, that since our manifolds can be exhausted by compact sets, any open set in the strong
topology is at worst a Gd set in the weak topology (a countable intersection of open sets).
Fortunately, there are many intermediate topologies between the weak and the strong that
both allow a Fréchet structure and control the behavior of sections on all of M. One example
is a variation on the strong topology that allows only those openU J FkÍ that have ‘uniform’

vertical size over M with respect to some connection, such as one induced by an auxiliary
Riemannian metric. Another possibility is to add a compactifying boundary to M and restrict
our attention only to those sections that extend in some nice way to the boundary4, then using
the weak topology on that subspace with respect to the compactified spacetime M. However,
it does not seem that there is an a priori canonical choice of such an intermediate topology
and that the choice must be made in a way that is compatible with the behavior of solutions of
the equations of motion of the theory. Note that a similar discussion, and in a related context,
can be found in section 5.2.1 of [21].

Being pragmatic, we stick to the Whitney strong topology for the remainder of this note,
despite its drawbacks. The working hypothesis is that the results that will be found in the
sequel, and the methods used to obtain them, will naturally generalize to the appropriate
choice of intermediate topology.

Next, having taken the liberty of considering functionals that are defined only on open
subsets ÍU C, let us consider the difference between the spacetime supports of a functional
A C ( )Î ¥ C and its restriction A C∣ ( )Î ¥ UU . We can reasonably define Asupp ∣U by
replacing C with U in the definition (10). The logical quantifiers are arranged such that

A Asupp supp∣ ÍU . In fact, we can define the even finer notion of spacetime support at Φ
with respect to U given by

A x M U x
U A A

supp open :
supp and , 15

∣ { ∣ ( )
[ ] [ ]} ( )

= Î " $ F + Y Î
Y Í F + Y ¹ F

F UU

which is also always closed. A further refinement is the notion of spacetime support at Φ
given by

A Asupp supp , 16⋂ ∣ ( )=F F
U

U

with the intersection taken over all open neighborhoods  FU such that A is defined on U.
The distinction is that while Asupp ∣F U depends on the domainU, AsuppF only depends on the
germ of A at Φ. Then A Asupp supp⋃ ∣ÍFÎ FU U and A Asupp supp∣ ⋃ ∣= FÎ FU U U. So,
clearly, Asupp ∣U may fail to be compact, even if each individual Asupp ∣F U or AsuppF is.

4 Perhaps the simplest implementation of this idea is to consider a piece of a globally hyperbolic spacetime that is
bounded by two compact Cauchy surfaces as a compact spacetime in its own right with the future and past Cauchy
surfaces as its boundaries.
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For A∣U to be IR regularizing, as discussed in the Introduction, it suffices that the
spacetime supports AsuppF be compact for eachF Î U. Thus, the much stronger condition of
compact Asupp ∣U for an observable A∣U, while obviously sufficient for IR regularity, is not
necessary. Such a relaxation of the requirements on the field-dependent spacetime support of
observables was previously considered in [21 section 5.3.5] (see also [32]).

At the level of local functionals, we can relax the notion of locality given in section 2 in
the following way. Let F Î C be a field configuration and Fn,0 ( )a Î W be a horizontal
density such that the intersection j M J Fsuppk k( ) Ç aF Í is compact. Then we call the
functional

A j 17
M

k( )[ ] ( )*ò aY = Y

a generalized local functional (or observable) at Φ. The following result makes precise the
way in which the properties of the functional A fit with the preceding discussion.

Theorem 3.1. With Φ and a as above, there exists an open ÍU C (in the strong topology)
with F Î U such that, for all Y Î U, the integral in (17) is convergent and both Asupp ∣Y U

and AsuppY are compact.

Proof. Pick a compact neighborhood Q of K j M suppk k( ( ) )Çp a= F and an open
neighborhoodU J FkÌ of j M Qk ( ⧹ )F that does not intersect supp a. Let ÍU C be the set of
all sections M F:Y  such that j M Q Uk ( ⧹ )Y Ì . Clearly, F Î U and, by the definition of
the Whitney strong topology, U is open. By construction, for any Y Î U, we have
j 0k( )*aY = on M Q⧹ . This means that j Qsupp k[( ) ]*aY Í and is itself compact (by virtue
of being a closed subset of a compact set) and hence the integral defining A [ ]Y is convergent.
Finally, from the definition of U, any point x M Q⧹Î has a neighborhood V M Q⧹Í such
that any Δ that has Vsupp D Í and with Y + D Î U and must satisfy j 0k ( )*aY + D =
on V and hence A A[ ] [ ]Y + D = Y . Therefore A Qsupp ∣ ÍY U and hence is itself compact.
Its subset A Asupp supp ∣ÍY Y U is closed and hence also compact. ,

4. Gauge invariance and local observables in gravitational theories

GR is the theory of a Lorentzian metric field G, so that F S T M2 *= , with the equation of
motion (Einstein equation) specified by the Einstein–Hilbert Lagrangian, G R G volG[ ] [ ] = ,
where R G[ ] is the Ricci scalar and volG is the metric volume form. This Lagrangian also
determines the gauge symmetries of the theory, which consist of diffeomorphisms ofM acting
by pullback on metrics, G G*c for a diffeomorphism M M:c  . Thus, the physical (or
reduced) phase space of GR is the quotient ¯ =P P G, where ÌP C is the set of solutions
of Einstein equations (usually also taken to be globally hyperbolic) and G is the group of
gauge transformations (diffeomorphisms of M). The observables that we are really interested
in are those that constitute the algebra C ( ¯ )¥ P . As before, it is convenient to use the quotient
map ¯P P to identify C C( ¯ ) ( )Ì¥ ¥P P with those observables that are invariant under
the action of the group G of gauge transformations. We refer to any element A C ( )Î ¥ P , or
C ( )¥ C , as a gauge invariant observable (or functional) if it is left invariant by the action of
G, that is, A G A G[ ] [ ]*c = for any diffeomorphism M M:c  . For our purposes, a
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gravitational theory is a field theory that involves a metric tensor G (though possibly other
fields as well) and has the diffeomorphism group as the group G of gauge transformations.
Clearly, GR is the representative example of a gravitational theory, but GR coupled to matter
fields also falls into the same category. We will only consider pure GR below, but the
discussion will also apply to more general gravitational theories.

It is a well-known folk result that GR does not have any local and gauge invariant
observables in the standard sense of locality discussed in section 2. However, the main
observation of this note is that there in fact do exist local and gauge invariant observables in
the generalized sense discussed in section 3. The non-existence argument is pretty straight-
forward. Let α be a horizontal density on k-jets with suppMa compact and hence

A G j G
M

k[ ] ( )*ò a= a local observable. A diffeomorphism M M:c  acts on it as

A G A G j G j G p ,

18

M

k

M

k k( ) ( ) ( )( )( )[ ]

( )

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦* * * * * *ò òc c c a c a= = =

where p J F J F:k k k*c  is the natural k-jet prolongation of the pullback action of a
diffeomorphism on metrics F F:*c  . Clearly, the spacetime support of α transforms as

psupp suppM
k

M[( ) ] ( )* *c a c a= . Thus, by lemma 2.1, the Asupp c moves around on M
under the action of diffeomorphisms. So, since we can choose χ such that Asupp and

Asupp c do not coincide, the functionals A and Ac themselves cannot coincide. In particular,
no observable A can be gauge invariant if its spacetime support is different from M
(diffeomorphisms act on M transitively). Spacetime manifolds of physical interest are never
compact, hence no local observable (with, by definition from section 2, compact spacetime
support) can be gauge invariant. Colloquially, this is phrased as follows: gauge
transformations of gravitational theories move spacetime points. This property is in contrast
with gauge theories of Maxwell or Yang–Mills type, where gauge transformations leave intact
the spacetime support of observables, thus allowing local observables to be gauge invariant.

We now give an explicit example of a functional that is both gauge invariant and local in
the generalized sense. Subsequently, we will outline a general method for constructing more
examples of a similar kind. Let us restrict for the moment the dimension Mdim 4= . We will
construct a horizontal density F4,0 ( )a Î W on J F3 . Let W W Gabcd abcd [ ]= and

Gabcd abcd [ ]e e= denote respectively the Weyl and Levi-Civita tensors of the metric G. Then,
define the dual Weyl tensor W Wab

cd
abc d

c d cd* e= ¢ ¢
¢ ¢ and also the following curvature scalars

b W W b W W W

b W W b W W W

, ,

, . 19

ab
cd

cd
ab

ab
cd

cd
ef

ef
ab

ab
cd

cd
ab

ab
cd

cd
ef

ef
ab

1 3

2 4 ( )* *

= =

= =

We have essentially defined maps b b b b b J F, , , : k1 2 3 4 4( ) =  , for any k 2 . We will
also use the notation bi( ) for the standard global coordinates on this target 4 . It is sufficient
for us to take k = 3 because we then want to define the horizontal density

b b b b F Fd d d d , 31 2 3 4 4,0 4,0[ ] ( ) ( )b =    Î W Ì Wh . Choose a point r 4Î , and a
function f C 4( )Î ¥ with compact support, such that r fsuppÎ but fsupp does not
intersect any of the planes b i = 0. Finally, we define the desired horizontal density

f b F4,0( ) ( )a b= Î W , which gives rise to the functional

A G j G j G f b b b b b b b b, , , d d d d . 20
M

k

M

k 1 2 3 4 1 2 3 4( )( ) ( ) ( )[ ] ( )⎡⎣ ⎤⎦* *ò òa= =   h

By construction, α satisfies two important properties. First, there is a non-empty open set
ÍU C (in the strong topology) such that the form j Gk( )*a is smooth and has compact

support on M for any G Î U. Thus, A G[ ] is well-defined on U and hence constitutes a
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generalized local observable in the sense of section 3. The existence of such a domain U
follows from a general result that will be discussed in theorem 4.2 (see also the comments
thereafter). Second, A G[ ] is invariant under the action of diffeomorphisms. That is,
pk( )* *c a a= for any diffeomorphism M M:c  , which implies A G A G[ ] [ ]*c = for any
G on which the defining integral converges. The last invariance identity has to be used with a
little bit of care, in that it only makes sense when both G and G*c belong toU, the domain of
definition of A. Since, a prioriU is not guaranteed to be itself diffeomorphism invariant, that
condition may not be satisfied for an arbitrary G Î U. One way to get around this issue is to,
very reasonably, declare A to be invariant under diffeomorphisms if A G A G[ ] [ ]*c =
whenever both G G, *c Î U. Another way is to simply enlarge the domain to ¢ ÊU U to the
smallest diffeomorphism invariant domain that containsU. Clearly, if A is well defined onU
it is also well defined on ¢U . A note of caution for the second approach: while AsuppF , for any
F Î U, is not altered by extending A from U to ¢U , the inclusion A Asupp supp∣ ∣ÍF F ¢U U

may be strict, with Asupp ∣F ¢U possibly failing to be compact even if Asupp ∣F U is.
In other words A C∣ ( )Î ¥ UU is a local and gauge invariant observable in the generalized

sense of section 3.
The idea of using the curvature scalars b i to define observables in pure gravity goes back

to the proposal of Komar and Bergmann [2, 3]. However, these authors, as well as many
subsequent ones who came back to this idea (see [34] and references therein), intended to use
b i as independent coordinates and simply express all other fields in terms of them. However,
the resulting observables were often too singular in the sense discussed in the Introduction,
since they would correspond to something like replacing our test function f with a δ-dis-
tribution. On the other hand, our addition of the integral and the smooth compactly supported
function f and the definition (20) provides the diffusion of UV singularities and the IR
regularization, again discussed in the Introduction, that are needed in the contexts of QFT and
classical Poisson structure.

The key ingredients in the above construction were that we could choose the horizontal
density Fn,0 ( )a Î W to be invariant under the prolonged action of diffeomorphisms on J kF
and that we could choose such an α to have support on J kF that intersects compactly the
image of the prolongation j G M J Fk k( ) Ì of a certain metric G. Natural questions arise. Are
there more local and gauge invariant observables that could be defined in the same way? Are
there sufficiently many such observables to separate points5 on the physical phase space P̄
of GR?

The general mathematical context in which the answers must be sought is known as
differential invariant theory [25, 26, 30]. Classical invariant theory is concerned with identi-
fying functions on aG-space (a space with an action of a groupG) that are invariant under theG
-action—these are the usual invariants. On the other hand, differential invariant theory is
concerned with fiber preserving group actions (more generally pseudogroup or groupoid
actions) on the total space of a bundle, like our field vector bundle F M and the actions
induced on J F Mk  by prolongation. Then, differential invariants (of order k) are functions
on J F Mk  that are invariant under the group action. For our purposes, the field bundle of
metrics is F S T M2 *= and the group is MDiff( )=G , consisting of diffeomorphisms

M M:c  , and acting by pullback F F:*c  . Differential invariants are then precisely the
so-called curvature scalars, that is, scalar functions tensorially constructed out of the metric, the
Riemann curvature tensors and its covariant derivatives. For example, the b i defined in
equation (19) are differential invariants of order k = 2. There are two ways of looking at

5 A set of functions separates the points of a space if, for each pair of points, there exists at least one function that
takes on different values at these points.
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differential invariants: algebraically and geometrically. Most structural results are proven from
the algebraic perspective. On the other hand, it is easier to see from the geometric perspective
how to construct local gauge invariant observables similar to the example of equation (20).

The main structural algebraic result that we would like to mention is the so-called Lie–
Tresse theorem, which dates back to the end of the 19th century, but was established in its
global form only rather recently (see [25] and the references therein). This theorem is an
analog of the finite generation results, originally due to Hilbert, in classical invariant theory
[29]. For differential invariants, in addition to algebraic operations, we also need to allow
differentiation to generate differential invariants of arbitrary orders from finite data. Before
stating the result, let us recall the geometric formulation of differential equations in terms of
jets; see [23 apx. B] for more details and references. A differential equation of order m 0 is
usually specified in equational form, P 0[ ]y = , where P F E: ( ) ( )G  G is a possibly non-
linear differential operator of order m that takes sections of a bundle F M as arguments
and output sections of some other vector bundle E M . Essentially equivalently, we can
specify a differential equation of order m as submanifold J Fm Í . Roughly, the set of all m-
jets that satisfy P = 0 constitutes the subset  and inversely, any bundle map P J F E: m 
that is zero only on J Em Í defines the corresponding differential operator. A particular
example could be J Fm = , which corresponds to the trivial equation 0 0= . A differential
equation J Fm Í has natural prolongations J Fk k( ) Í for all k m , which corresponds to
taking into account all equations of the form P 0i ik m1 [ ]y¶ ¶ =- implied by P 0[ ]y = . The
following result is a rough restatement (sufficient for the purposes of this note) of the precise
results of theorems 1 and 2 of [25].

Proposition 4.1 (Lie–Tresse). Consider a differential equation J Fk Í with gauge
symmetry,6 defined on a field bundle F M , with the action of gauge symmetries naturally
prolongued to J F Mk  . Assume that the equation and the gauge symmetry action satisfies a
specific global algebro-geometric regularity condition (which is in fact satisfied by GR with
diffeomorphisms as gauge symmetries). Then, there exists a finite order l 0 , a finite number
of differential invariants (those left invariant by gauge transformations) Ij on JlF, and a finite
number of invariant differential operators Di (such an operator acting on an invariant yields
another invariant) such that any polynomial differential invariant of an arbitrary order k 0
can be expressed as a polynomial in the generators Ij, possibly repeatedly differentiated by
the Di. Finally, for arbitrary order k 0 , the differential invariants separate the orbits of the
gauge symmetry on a dense open subset

k k( ) ( ) Í consisting of generic orbits.

More geometrically, we can look at differential invariants as follows. Consider the
quotient spaces7 J F MDiffk k ( ) = , known as the moduli spaces of k-jets of metrics on M
[17], with the projections denoted by J F:k

k km  . Clearly, differential invariants are
precisely the smooth functions on J kF that come from the pullback of continuous functions on

k , those that belong to C J F Ck
k

k( ) [ ( )]* Ç m¥ . If k were a manifold, it would be
sufficient to consider C k( )¥ instead of C k( ) . However, while k is well-defined as a
topological space, it is only a manifold on a dense open subset [17], say k k Ì . Outside

k
 , k contains orbifold-type singularities, which correspond to jets of metrics admitting
non-trivial isometries. A further complication is that k is in general not Hausdorff. This
means that there exist jets of metrics that cannot be distinguished by continuous scalar

6 In the language of [25], this means that the equation is invariant under a pseudogroup action.
7 At the moment, we are not making a notational distinction, but we are really only interested in the subset of J kF
corresponding to the jets of Lorentzian metrics, thus excluding degenerate metrics and metrics of other signatures.
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curvature invariants alone. This phenomenon is particular to Lorentzian (and other pseudo-
Riemannian) metrics and is absent when consideration is restricted to only Riemannian
metrics. The failure of the Hausdorff property can be traced back to the non-compactness of
the orthogonal group in Lorentzian signature [17].

To connect the algebraic and geometric points of view, consider Einstein’s equations
prolonged to an arbitrary order k 2 and represented as a submanifold J Fk k( ) Í . Clearly,

k( ) is invariant under diffeomorphisms and so projects to :k
k k k( )  m  Í , with

k k k
  Ç=  a submanifold of

k
 . The polynomial differential invariants mentioned in

proposition 4.1 are then functions on k and in fact separate the points of
k

 and, by the
Stone–Weierstrass theorem, generate C

k( )¥  by limits uniformly converging on com-
pact sets.

Now we come to the main observation that prompted this note. The connection between
differential invariants and local observables in the generalized sense of section 3 is most
clearly seen with the help of the manifold

k
 . Namely, consider an n-form n k( )b Î W 

with compact support and the horizontal density Fn,0 ( )a Î W obtained by the horizontal
projection of the pullback of β, k[ ]*a m b= h . Letting ÌU C be the subset of all metrics
G M F:  such that j G M suppk ( ) Ç a is compact, we can define a local and gauge
invariant observable with domain of definition U by the usual formula

A G j G . 21
M

k( )[ ] ( )*ò a=

It is clearly gauge invariant, since by construction pk( )* *c a a= . Further, it is clearly local in
the generalized sense of section 3, provided that U is open and non-empty. These properties
do hold because of the following.

Theorem 4.2. Given a non-empty compact set K
k

Ì  , there exists a metric G Î C such
that j G K Mk

k 1( ◦ ) ( )m Í- is non-empty and compact. Further, such a metric G has an open
neighborhood ÌU C (in the strong topology) such that j H M Kk

k◦ ( ) Çm is compact for
each H Î U.

Proof. First, we deal with the statement about existence. Let us ignore for the moment issues
that might arise from non-trivial topology of M and assume that M n@ , with some fixed
global coordinate system. Let M F:h  be the standard Minkowski metric in those global
coordinates. Take a point r K

k
Î Ì  , a point x MÎ and an open neighborhoodU MÌ of

x with compact closure. By construction, there is a jet p J Fx
kÎ such that p rk ( )m = . Consider

the closed set Q M U x( ⧹ ) { }È= . Define G Q J F:Q
k k so that G x p J FQ

k
x
k( ) = Î and

G y j J FQ
k

y
k

y
k( ) h= Î for any y x¹ . By the Whitney extension theorem [24 section 22], there

exists a metric G Î C such that j G x Gk
Q Q

k( )∣ = , which we can choose to be everywhere
Lorentzian (non-degenerate). Thus, j Gk

k◦m and K have at least the point r in common. On

the other hand, by construction, the pre-images j G K j G Mk
k

k
k k1 1( ◦ ) ( ) ( ◦ ) ( )m mÌ Ì- - 

must be contained in Ū , which is compact. Hence,the pre-image of K must be compact, since
it is closed and contained in Ū . The same argument can be adapted without much difficulty to
the case when M has a more complicated topology.

Second,we deal with the statement about an open neighborhood of G Î C,which was
constructed above. The following argument echos the proof of theorem 3.1. We will define

H j H M Uk{ ∣ ( ) }= Î ÌU C , for some to be determined open neighborhood U FÌ of
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j G Mk ( ). Obviously G Î U andU would be open in the strong topology. We build U as the
pre-image of an open set V M kÍ ´ with respect to the map J F M, :k

k
k k( ) p m  ´ .

If V is an open neighborhood of the graph of j G M:k
k k◦ m  , then U is an open

neighborhood of j G Mk ( ). The way we constructed G above, the intersection I of the set
M×K with the graph of j Gk

k◦m is compact. Take an open neighborhood V′ with a compact
closure of I and letV M K Vk( ⧹ ) È= ´ ¢. Thus, if H Î U, the intersection of the graph of

j Hk
k◦m with M×K must be confined to V′, which has compact closure, and hence be

compact. The last statement is equivalent to the pre-image j H K Mk
k 1( ◦ ) ( )m Ì- being

compact, which concludes the proof. ,

Note that a direct application of the above theorem to the compact fsupp appearing in

the definition of the functional A G[ ] given by equation (20), interpreted as a subset of
2

 ,
establishes the claimed existence of a non-empty open domain ÍU C, making A∣U a gen-
eralized local observable.

While we have concentrated on the case of gravitational theories, whose group of gauge
transformations consists of diffeomorphisms, this method of defining gauge invariant local
observables happens to reproduce the set of local observables for theories without gauge
symmetries (the group of gauge symmetries is trivial) and those with gauge theories with
gauge transformations that do not move points. Examples of the latter include the Maxwell
and Yang–Mills theories. In the Maxwell theory, the basic differential invariant is the field
strength. In the Yang–Mills case, the basic differential invariants are the compositions of the
Lie algbra valued curvature forms composed with invariant polynomials on the Lie algebra.
Smearing these basic invariants (or derivatives thereof) with compactly supported test
functions reproduces the well-known standard local and gauge invariant observables in these
theories [1].

We conclude this section by coming back to this natural question: are there enough local
and gauge invariant observables in GR to separate the points of C? In a sense, the answer is
no, because we have already discussed above the fact that certain metrics cannot be dis-
tinguished by local curvature scalars. Further, some metrics may be resistant to belonging to
the domain of definition U of any generalized local observable A∣U. This may happen when
M is non-compact and a metric G possesses a regionU MÍ such that nearly isometric copies
of G U∣ repeat infinitely often throughout M (a kind of almost periodic property). There is
essentially no obstacle to engineering a gauge invariant local density α on J kF such that
j Gk( )*a has compact support in U, but it will likely also have support within any region
nearly isometric to G U∣ , thus making the integral over M ill defined. However, these are the
only obstacles. We need to introduce a natural but somewhat technical condition on metrics
that avoids these difficulties.

First, we say that a map M N:n  is image proper8 if there exists an open set N N0 Í
such that M N0( )n Í and M N: 0n  is proper (the pre-image of any compact set is com-
pact). Any proper map is image proper, since we can just choose N N0 = . On the other hand,
any embedding is image proper, even if it is not proper, with any tubular neighborhood
fulfilling the role of N0. Let us say that two metrics G G,1 2 Î C can be distinguished by
curvature scalars if there exists a k 0 such that j G M:i k

k
i

k◦ g m=  are image proper

and the images M
k

1( ) Çg  and M
k

2 ( ) Çg  do not coincide as subsets of
k

 .

8 See [20 exr.2.4.13], where this concept is used but not named.
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Theorem 4.3. For any two metrics G G,1 2 Î C that can be distinguished by curvature
scalars, there exists a local functional A G[ ] defined on a domain ÍU C (open in the strong
topology) such that both G G,1 2 Î U and A G A G1 2[ ] [ ]¹ .

Proof. By hypothesis, there is a k 0 and a point r
k

Î  such that, say,
r M j G Mk

k
1 1( ) ◦ ( )g mÎ = but r M j G Mk

k
2 2( ) ◦ ( )g mÎ = . Take a n k( )b Î W  with

compact support such that r supp bÎ but M supp2 ( ) Çg b = Æ. Let

A G j G
M

k
k[ ] ( ◦ )*ò m b= . Since the map 1g is image proper, we can always choose β so that

supp b is small enough to have compact intersection with M1( )g and so that A G 01[ ] ¹ . On
the other hand, by construction, A G 02[ ] = . Finally, since both Mi ( )g have compact
intersection with supp b (one of the intersections being empty), by theorem 4.2, there exist (in
the strong topology) open neighborhoods 1U and 2U of G1 and G2, respectively, such that

j G M suppk
k◦ ( ) Çm b is also compact for each G 1 2ÈÎ =U U U . Clearly, A G[ ] is well

defined on U and G G,1 2 Î U. ,

5. Linearization and Poisson brackets

Once a class of gauge invariant observables has been defined, as was done in section 4, we
would like to compute Poisson brackets between them. In general, neither the product nor the
Poisson bracket of two local observables is a local observable (instead it is bilocal, with
distributional smearing in case of the Poisson bracket) and the same is true for local obser-
vables in the generalized sense. It is an important and non-trivial question to decide on a
minimal physically reasonable class of observables that is closed both under multiplication
and Poisson brackets. The answer is essentially a class of multilocal observables with dis-
tributional smearings, which satisfy a certain microlocal spectral condition, which is dis-
cussed in more detail in [6, 8]. Below, we shall not be concerned with these details and
instead content ourselves with a gauge invariant formula for the Poisson bracket of two local
and gauge invariant observables.

As discussed extensively in [21, 23], what is usually known as the canonical Poisson
bracket on the physical phase space P̅ can be equivalently expressed using the so-called
Peierls formula (or Peierls bracket). The Peierls formula actually defines a Poisson bracket
not only on C ( ̅ )¥ P , but also extends it to C ( )¥ P and even C ( )¥ C . This extension is not
unique and is influenced, for instance, by the choice of gauge fixing. However, the restriction
of the formula to C ( ̅ )¥ P is unique. The computation of the value of the Poisson bracket
A B G,{ }[ ] of arbitrary observables A and B at a particular point (or gauge equivalence class of
field configurations) G ̅Î P of a nonlinear field theory reduces to the computation of the
Poisson bracket of linear observables AG

˙ and BG˙ in the linear theory obtained by linearization
about G. Consider the linearized perturbation H of the metric G. The relation between
nonlinear observables and linearized observables is

A G H A G A H O . 22G
2( )[ ] [ ] ˙ [ ] ( )l l l+ = + +

In the case of a local observable A G j G
M

k[ ] ( )*ò a= , the linearized observable is also local,

A H HG
M

˙ [ ] ˙ [ ]ò a= , where ȧ is a density-valued differential operator defined by
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j G H j G H O . 23k k
G

2( ) ( ) ( )( ) ˙ [ ] ( )* *l a a la l+ = + +

We can define similarly B G j G
M

k[ ] ( )*ò b= and B H HG
M

G˙ [ ] ˙ [ ]ò b= .

It is also useful to consider the formal adjoint differential operators G˙ *a and G
˙ *b defined by

the existence of form-valued bidifferential operators Wa and Wb such that

f H f H W f H f H f H W f Hd , and d , 24G G G G˙ [ ] ˙ [ ] · [ ] ˙ [ ] ˙ [ ] · [ ] ( )* *a a b b- = - =a b

for arbitrary f C M( )Î ¥ and H F( )Î G , with the adjoint operators valued in the densitized
dual bundle F F Mn˜* *= Ä L . Let ¯ÍU P be a common domain on which A and B are
defined and let G Î U. Then, by the generalized locality property, HG˙ [ ]a and HG

˙ [ ]b have
compact support for arbitrary H. It is then not hard to see that all of 1G˙ [ ]*a , W H1,[ ]a , 1G

˙ [ ]*b
and W H1,[ ]b will also have compact support for arbitrary H. Therefore, an application of
Stokes’ lemma gives us the identities

A H H B H H1 and 1 . 25G
M

G G
M

G
˙ [ ] ˙ [ ] · ˙ [ ] ˙ [ ] · ( )* *ò òa b= =

The Peierls formula for the Poisson bracket of observables of the form given in equation (25)
was considered explicitly in [23 section 4.4] (see also [13] and [18 Ex. 3.8]) and is given by
the formula

A B G A B x E x y y, , 1 , 1 , 26G G G M M
G G G{ }{ }[ ] ˙ ˙ ˙ [ ]( ) · ( ) · ˙ [ ]( ) ( )* *ò a b= =

´

where E x y E x y E x y, , ,G G G( ) ( ) ( )= -+ - , with E x y,G ( ) being the integral kernels of the
retarded and advanced Green functions of the so-called Lichnerowicz operator (which is a
hyperbolic differential operator obtained from a de Donder gauge fixing of the linearized
Einstein equations) of the background metric G.

The result is gauge invariant, that is, A B G A B G, ,{ }[ ] { }[ ]*c = for a diffeomorphism
M M:*c  , essentially by construction. More explicitly, since each of the elements in the

formula is invariantly constructed from the metric G, the following identities hold:

G G˙ ˙* * **a c a=c , G G
˙ ˙* * **b c b=c and E x y E x y, , ,G G( ) ( ) ( )** c c=c , where

M M M M, :( )*c c ´  ´ is defined in the obvious way. Combining these identities
with formula (26) explicitly shows that A B,{ } is a gauge invariant (though now distributional
bilocal, instead of local) observable.

It is also worth examining whether the linearized observable A HG
˙ [ ] fits the criteria of

being a gauge invariant observable for linearized gravity on the background G. The answer is
of course yes, as follows from the identity G Gv v[ ] ˙ [ ] a a= , where v is the Lie derivative
with respect to a vector field v, which is the linearized version of the invariance property

G G[ ] [ ]* *c a a c= , and the Cartan magic formula G Gdv v[ ] ( [ ]) a i a= for top-degree
forms. For convenience, let us also define the differential operator K v GG v[ ] = , which we
will call the Killing operator. The gauge invariance condition for A HG

˙ [ ] in linearized gravity
consists in the requirement that A K v 0G G

˙ [ [ ]] = for any vector field v. This follows from the
preceding identities:

A K v G G Gd 0, 27G G
M

G v
M

v
M

v[ ] [ ] ( )˙ [ ] ˙ [ ] [ ] ( ) ò ò òa a i a= = = =

where the last equality follows from the fact that Gv [ ]i a has compact support by the locality
hypothesis. Thus, A HG

˙ [ ] is a linear, local and gauge invariant observable in linearized
gravity.

Let us recall the notion of linear, local and gauge invariant observable from [13] (also [23
section 4.4], [18 Ex. 3.8]), which is an observable of the form
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C H H, 28
M

[ ] · ( )ò g=

with a compactly supported section M F: ˜*g  that satisfies the condition K 0G [ ]* g = ,
where KG* is the formal adjoint of the Killing operator KG. More explicitly, there exists a
form-valued bidifferential operator WK such that K v K v W vd ,G G K· [ ] [ ] · [ ]*g g g- = for
any vector field v and any section M F: ˜*g  ; KG* is equivalent to the divergence of a
symmetric 2-tensor.

Proposition 5.1. Given the linearized observable A HG
˙ [ ], as discussed above, there always

exists a local observable C H[ ] in linearized gravity of the form (28) such that
A H C HG
˙ [ ] [ ]= .

Proof. For this result to hold, it is clearly sufficient that there exists a compactly supported
section M F: ˜*g  , satisfying K 0G [ ]* g = , and a form-valued linear differential operator

H[ ]m , with compact support for arbitrary argument H M F:  , such that
H H HdG˙ [ ] · [ ]a g m= + . We shall construct such γ and H[ ]m explicitly.
Recall the identity H H W H1 d 1,G G˙ [ ] ˙ [ ] · [ ]*a a= + a . We set H W H1,[ ] [ ]m = a and

1G˙ [ ]*g a= . It remains to show that K 1 0G G[ ˙ [ ]]* *a = . Note that, from the gauge invariance of
A HG
˙ [ ] discussed earlier, we already know that

K v K v W K v

G W K v

1 d 1,

d 1, 29

G G G G G

v G( )
[ ] [ ]

[ ]
˙ [ ] · [ ] ˙ [ ] [ ]

[ ] [ ] ( )

*a a

i a

= +

= +

a

a

for an arbitrary vector field v. On the other hand, we also have the equality

K v K v W v1 1 d 1 , . 30G G G G K G˙ [ ] · [ ] ˙ [ ] · ˙ [ ] ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦* * * *a a a= +

The final tool that we need to invoke is the well-known fact [28 theorem 4.7] that, for any top-
degree form valued linear differential operator v[ ]y , in any decomposition of the form

v v vd[ ] · [ ]y f x= + the coefficients f and the term vd [ ]x are unique (in particular
vEL [ [ ]]f d y= is the Euler–Lagrange derivative of v[ ]y ). Thus, comparing equations (29)

and (30), we find that K 1 0G G[ ˙ [ ]]* *a = , as was desired. ,

6. Discussion

In this note, we have discussed the notion of local observables in field theory, advocating that
the standard notion of locality (section 2) should be relaxed in a well-defined way (section 3).
We have argued that the two motivating properties of local observables, diffusion of UV
singularities and IR regularization, still hold for generalized local observables in the sense
defined in section 3.

A small price to pay is that a generalized local observable may be naturally defined as
functions only on an open subset9 of the full phase space of the field theory. Classically, it is

9 A related mathematical phenomenon occurs in complex and algebraic geometry. Certain complex and algebraic
varieties have very few globally defined functions. By restricting to open subsets, many more functions can be
considered, that otherwise developed singularities if extended to the entire space. Such partially defined functions are
studied in the theory of sheaves. We have not developed this analogy in detail because there is not yet a clear
application of sheaf theory in this context, other than as a concise terminology.
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not a problem to restrict one’s attention to an open subset of the full phase space. If needed,
such an observable may be extended to the full phase space by appealing to basic results in
differential topology. We have shown that linearization about a specific point of the con-
figuration space gives a gauge invariant observable for linearized gravity on the corre-
sponding background, irrespective of how large is the neighborhood of the linearization point
on which the observable can be defined. That is of course the expected result for the line-
arization of an observable invariant under full nonlinear gauge transformations. We expect the
same behavior at any order of perturbation theory; the truncated expansion of the observable
should be invariant under perturbative gauge transformations truncated at the same order,
which is sufficient for the purposes of perturbative quantization.

It is well-known that gravitational theories do not admit any non-trivial local observables
that are also gauge-invariant. Hence, it is a significant advantage of the new definition that the
class of generalized local observables in gravitational theories does admit a large number of
observables that are gauge invariant (section 4). We have given a typical example of one such
observable, motivated by an old proposal of Komar and Bergmann [2, 3]. In fact, such gauge
invariant observables are sufficient to separate the gauge orbits on a large open subset of the
phase space (theorems 4.2 and 4.3). The main technical tool in the construction of these gauge
invariant observables is the theory of differential invariants, which in the literature on GR are
also known as curvature scalars or curvature invariants.

Unfortunately, the large open subset of the phase space mentioned above specifically
excludes solutions that have a high degree of symmetry. Some of these symmetric solutions
can be of great physical importance, at least in GR, with examples like Minkowski or
Schwarzschild or de Sitter spacetimes. The reason for the exclusion is that observables based
on curvature scalars are incapable of separating certain inequivalent gauge equivalence
classes of solutions. At the geometric level, the same phenomenon manifests itself in the fact
that the moduli space of Lorentzian metrics (the quotient of jets of Lorentzian metrics by the
action of diffeomorphisms) is not Hausdorff [17]. A well-known example is that all curvature
scalars vanish both on flat Minkowski spacetime as well on non-flat null pp-wave spacetimes
(nonlinear wave gravitational wave solutions) [10, 11, 19]. This is problematic if one would
like to connect perturbative theory about Minkowski space with nonlinear local observables
of the kind discussed above. In principle, it is known that there exist non-scalar differential
invariants that are capable of locally distinguishing non-isometric Lorentzian metrics (see the
Cartan–Karlhede algorithm discussed in [33 chapter 9] and references therein). At this point it
remains an open problem to be investigated whether these more refined differential invariants
could be used to construct local (or perhaps multilocal) observables that are capable of
separating all gauge orbits on the phase space of GR and other gravitational theories.

In section 5, we showed that generalized local and gauge invariant observables have
gauge invariant Poisson brackets using the Peierls formula. However, Poisson brackets of
local observables are in general no longer local. At best they could be described as multilocal
with distributional smearings. Such observables have been previously discussed in the lit-
erature [6, 8], with careful attention paid to the class of distributions that can be consistently
allowed to construct an algebra of multilocal observables closed under Poisson brackets. The
added complication in gravitational theories, as is evident from the Peierls formula, is that in
order to preserve gauge invariance we must allow distributional smearings themselves to
depend on the metric and possibly other dynamical fields. Thus, another important avenue for
investigation is the generalization of multilocal observables to allow for field-dependent
distributional smearings.

It might be argued that the local and gauge invariant observables that we have introduced
in this note are of a relational kind (see [34] and references therein). However, they do not
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automatically come with a phenomenological interpretation. That is, given a particular
observable of this kind, it may not be immediately clear what kind of experimental protocol
would be modeled by it (this issue is discussed clearly in [22]). On the other hand, there is
some existing literature that has considered relational observables in linearized and pertur-
bative gravity with clearer phenomenological interpretations, but ran into UV divergences in
explicit computations [4, 5, 14, 22, 27, 35, 36, 38, 39]. Perhaps replacing the overly singular
proposed observables in these references with regularized versions written as local and gauge
invariant observables would yield a double benefit: provide certain local observables with
phenomenological interpretations, diffuse UV singularities in explicit computations. As a
further step, it would be most interesting to identify local gauge invariant observables that
would model some aspects of the data collected by cosmological observations, such as the
cosmic microwave background temperature fluctuations and its polarization.

It should also be mentioned that another attempt [16] to write down relational obser-
vables (though without clear phenomenological interpretations) using curvature scalars ran
into IR divergences in explicit computations. On the other hand, our local observables are
designed to be IR regularizing and might give better results in similar computations.
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a b s t r a c t

It has recently been noticed that the degeneracies of the Poisson bracket of linearized grav-
ity on constant curvature Lorentzian manifold can be described in terms of the cohomolo-
gies of a certain complex of differential operators. This complex was first introduced by
Calabi and its cohomology is known to be isomorphic to that of the (locally constant) sheaf
of Killing vectors. We review the structure of the Calabi complex in a novel way, with ex-
plicit calculations based on representation theory of GL(n), and also some tools for studying
its cohomology in terms of locally constant sheaves. We also conjecture how these tools
would adapt to linearized gravity on other backgrounds and to other gauge theories. The
presentation includes explicit formulas for the differential operators in the Calabi complex,
arguments for its local exactness, discussion of generalized Poincaré duality, methods of
computing the cohomology of locally constant sheaves, and example calculations of Killing
sheaf cohomologies of some black hole and cosmological Lorentzian manifolds.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Calabi complex is a differential complex thatwas introduced in by E. Calabi in 1961 [1]. It has an extended pre-history,
though. Oneway to characterize it is as a canonical formal compatibility complex (the second Spencer sequence) of the Killing
equation on (pseudo-)Riemannian manifolds of constant curvature. The solutions of the Killing equation are (possibly only
locally defined) infinitesimal isometries. In the special context of classical linear elasticity theory, the same operator also
maps between the displacement and strain fields [2–4]. It is well known that for flat spaces (zero curvature) a complete
set of formal compatibility conditions for the Killing equation is given by the linearized Riemann curvature operator, also
known as the Saint-Venant compatibility operator in the context of elasticity [2–4]. Subsequent compatibility conditions are
furnished by the Bianchi identities. Thus, it would also be reasonable to refer to it as the Killing–Riemann–Bianchi complex.

Calabi’s interest in the eponymous complex stemmed from the isomorphism between the cohomology of its global sec-
tions and the cohomology of the sheaf of Killing vectors. Given a fine resolution of a sheaf, like one provided by a locally exact
sequence of differential operators on sections of vector bundles, the general machinery of homological algebra implies that
the sheaf cohomology is in fact isomorphic to the cohomology of the complex of global sections of its local resolution, with
the resolution of the sheaf of locally constant functions by the de Rham complex of differential forms on a manifold being
the canonical example. The bulk of Calabi’s original article was in fact spent proving that the hypotheses needed for applying
this general result actually hold, thus providing a way to represent the cohomology of the Killing sheaf. It is the latter object
that was of intrinsic interest, as it was in subsequent works by others [5–7], motivated by the well known interpretations of
its lowest cohomology groups: in degree-0 as the Lie algebra of global isometries and in degree-1 as the space of non-trivial
infinitesimal deformations of themetric under the constant curvature restriction. Later, the Calabi complex was also seen as
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a non-trivial example of a formally exact compatibility complex [8–11,3] constructed for the Killing operator by themethods
of the formal theory of partial differential equations developed by the school of D.C. Spencer [12–16].

More recently, the Calabi complex resurfaced in mathematical physics, in the context of the (pre-)symplectic and
Poisson structure of relativistic classical field theories. In [17,18], the author has shown that the degeneracy subspaces
of the naturally defined pre-symplectic 2-form and Poisson bivector on the infinite dimensional phase space of relativistic
classical field theories with possible constraints and gauge invariance are controlled by the cohomology of some differential
complexes. In the case ofMaxwell-like theories [18, Sec. 4.2], this role is played by the de Rham complex, while in the case of
linearized gravity [18, Sec. 4.4], this role is played by the formal compatibility complex of the Killing operator. In otherwords,
for linearization backgrounds of constant curvature (important examples includeMinkowski and de Sitter spaces, as well as
quotients thereof), this is precisely the Calabi complex. When the linearization background is merely locally symmetric,
rather than of constant curvature, the right complex to use is a slightly different one that was constructed by Gasqui
and Goldschmidt [9,10]. However, a discussion of the latter is beyond the scope of this work. The construction of similar
complexes adapted to other background geometries appears to be an open problem. The degeneracy subspace of the Poisson
bivector of a classical field theory is of importance because it translates almost directly into violations of a (strict) notion of
locality of the corresponding quantum field theory, a subject that has recently been under intense investigation [19–26].

The goal of this paper is to exploit the connection between the Calabi complex and Killing sheaf cohomologies, in
a direction opposite the original one of Calabi, for the purpose of obtaining results relevant to the above mentioned
applications in mathematical physics. More precisely, we consider the computation of certain sheaf cohomologies much
simpler than constructing quotient spaces of kernels of complicated differential operators. Thus, the ability to equate the
Calabi cohomology groups, which for us are of primary interest, with Killing sheaf cohomology groups is a significant
technical simplification. Along the way, we collect some relevant facts about the Calabi complex that are either difficult or
impossible to find in the existing literature, alongwith other little known tools from the theory of differential complexes [27]
needed to prove the desired equivalence and to introduce cohomologies with compact supports. It is our hope that this
treatment of the Calabi complex could serve as a model for the treatment of other differential complexes that are of
importance in mathematical physics.

In Section 2, we discuss the explicit form of the Calabi complex on any constant curvature pseudo-Riemannian
manifold. The tensor bundles and differential operators between them are defined using notation and identities from the
representation theory of the general linear group, which are reviewed in Appendix A.1. The differential cochain homotopy
operators defined in Section 2.2 and Appendix A.5, and the relation of the formal adjoint Calabi complex to the Killing–Yano
operator presented in Section 2.3 are likely new. Then, Section 3 recalls some general notions from sheaf cohomology, with
emphasis on locally constant sheaves. It also covers the relation between the Calabi cohomology, with various supports,
and the cohomologies of the sheaf of Killing vectors and the sheaf of Killing–Yano tensors. In Section 4 we discuss several
methods for effectively computing the cohomologies of the Killing sheaf, also outside the constant curvature context. An
important application of the above results is described in Section 5, which uses the Calabi cohomology to determine the
degeneracy subspaces of presymplectic and Poisson structures of linearized gravity on constant curvature backgrounds.
This application, and its generalizations, constitute the main motivation for this work. Finally, Section 6 concludes with a
discussion of the presented results and of how they could be generalized to other differential complexes of interest in the
mathematical theory of classical and quantum gauge field theories in physics.

It should be emphasized that the Killing sheaf cohomology can be identified with the cohomology of the Calabi complex
only on pseudo-Riemannian spaces of constant curvature, where the latter complex is actually defined. The Killing sheaf
itself has a wider domain of definition. In terms of applications to linearized gravity, the differential complexes that are to
replace the Calabi complex on other background geometries are still expected to have isomorphic cohomology to that of
the Killing sheaf. So, from that perspective, the Calabi complex is a particular case study and the Killing sheaf is an object of
more permanent value.

2. The Calabi complex

In Sections 2.1 and 2.2, we shall explicitly describe the Calabi complex as a complex of differential operators between
tensor bundles on a pseudo-Riemannian manifold (M, g). Furthermore, we will explicitly list a corresponding sequence
of differential operators that constitute a cochain homotopy from the Calabi complex to itself. The cochain maps induced
by the homotopy operators will have the same principal symbol as the tensor Laplacian ∇a∇

a induced by the Levi-Civita
connection of the metric tensor g , though will differ from it by lower order terms. This geometric structure is very similar to
that of the Hodge theory of the de Rham complex on a Riemannian manifold. This structure is used in the later Section 3.2
to show the complex’s local exactness. Finally, in Section 2.3, we will describe the formal adjoint Calabi complex, with
the formal adjoint cochain maps and homotopies playing roles analogous to the original ones. It turns out that, just as the
Calabi complex resolves the sheaf of Killing vectors on (M, g), its formal adjoint complex resolves the sheaf of rank-(n− 2)
Killing–Yano tensors.

A non-negligible amount of work [5,9,8,10,3,11], though certainly not a large one, has been done on this differential
complex since the original work [1] of Calabi in 1961. Its original presentation was in terms of Cartan’s moving frame
formalism and much of the subsequent work did not put a strong emphasis on explicit formulas. Thus, it is a little difficult
to find its presentation in terms of standard covariant derivatives on tensor bundles in the existing literature. We give such
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Table 1
The table below lists the tensor bundles of the Calabi complex, the corresponding irreducible GL(n)
representations (labeled by Young diagrams), and their fiber ranks, for dimM = n. The rank is given by
the famous hook formula, which is discussed in Appendix A.1.

Bundle Young diagram Fiber rank

C0M ∼= T ∗M n

C1M ∼= S2M n(n+1)
2

C2M ∼= RM n2(n2−1)
12

C3M ∼= BM n2(n2−1)(n−2)
24

ClM n2(n2−1)(n−2)···(n−l+1)
2(l+1)l(l−2)!

formulas below, together with a complete sequence of cochain homotopy operators from the complex to itself and their
corresponding cochain maps. These formulas are apparently new, as their role was played by amore generic, but somewhat
less natural, construction applicable to general elliptic complexes in [1,5,9,8]. The advantage of our version is the connection
of the homotopy and cochainmaps with the equations of linearized gravity and coincidence, in low degrees, with other well
known related operators, which include the Killing, linearized Riemann, Bianchi, de Donder and Ricci trace operators. One
could also argue that our resulting homotopy and cochain maps are simpler, because they never exceed second differential
order (in contrast to fourth differential order). Furthermore, we find that the tensor bundles that constitute the nodes of
the complex are best described as having fibers that carry irreducible representations of GL(n), where n is the dimension
of the base manifold; moreover, the principal symbols of the differential operators in the complex are GL(n) equivariant
maps. Hence they are independent of the backgroundmetric, which is no longer true for subleading terms. This observation
appears to have escaped the attention of earlier works, thus requiring some seemingly ad-hoc constructions [1]. A notable
exception is Eastwood [3], who also identified the principal symbol complex as an instance of the general notion of BGG
resolutions [28] in representation theory. Taking advantage of this connection with representation theory, we explicitly
describe the tensor bundles of the complex and the equivariant principal symbol maps between them in terms of Young
diagrams.

2.1. Tensor bundles and Young symmetrizers

Aswasmentioned in the Introduction, it is convenient to describe various tensor bundles involved in the Calabi complex,
as well as various maps between them, in terms of irreducible representations (irreps) of group GL(n), where n = dimM
is the dimension of the base manifold M . Irreps of GL(n) are concisely presented using Young diagrams and corresponding
Young tensor symmetrizers. An excellent reference on this topic is the book [29], where we refer the reader for complete
details. For an uninitiated reader, we have briefly summarized the relevant concepts and formulas in Appendix A.1. For the
expert reader, it is recommended to skim the same appendix for the particulars of our notation.

Given a basemanifoldM of dimension n = dimM , we can construct tensor bundles overM whose fibers carry irreducible
representations of GL(n). Indeed, we will consider Young symmetrized sub-bundles YdT ∗M of the bundle of covariant
k-tensors (T ∗)⊗kM , where d is a Young diagram type with k cells.

The Calabi complex, to be introduced in the next section, is a complex of differential operators between certain tensor
bundles overM . Let us denote the corresponding sequence of vector bundles by ClM . More precisely,

C0 = T ∗, C1 = Y(2)T ∗, C2 = Y(2,2)T ∗, Cl = Y(2,2,1
l−2)T ∗ (l > 2). (1)

Note that the bundle C1M corresponds to symmetric 2-tensors, which we will also denote S2M . Also, as mentioned in the
preceding section, since the bundle C2M corresponds to 4-tensors with the algebraic symmetries of the Riemann tensor, we
will also denote it RM . And the bundle C3M , also denoted BM , corresponds to 5-tensors with symmetries of the image of the
Bianchi operator applied to a section or RM . The index l essentially counts the number of rows in the corresponding Young
diagram. So, for l > n, the number of rows exceeds the base dimension and the ClM bundles become trivial. These tensor
bundles, the corresponding Young diagrams and their fiber ranks are illustrated in Table 1.
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2.2. Differential operators

Below, given any n-dimensional pseudo-Riemannian manifold (M, g) of constant curvature k (normalized so that the
Ricci scalar curvature1 is equal to k), we give explicit formulas for the differential operators, constituting the Calabi
complex, as well as formulas for the differential operators that constitute a cochain homotopy from the complex to itself
and the corresponding induced cochain maps. In Calabi’s original work [1], the corresponding differential operators were
constructed using an orthogonal coframe formalism. Thus, it has been difficult to find explicit formulas for these operators in
the tensor formalism that is more prevalent in the physics literature on relativity. The cochain homotopy operators and the
induced cochain maps coincide, in low degrees, with differential operators well known in the relativity literature. However,
their explicit form in all degrees appears to be new. Furthermore, we explicitly demonstrate all the identities between these
differential operators that lead to their homological algebra interpretations. We use a mixture of elementary arguments, as
well as equivariance and standard GL(n)-representation theoretic identities, unlike Calabi’s original proofs [1] that relied on
a somewhat ad hoc algebraic constructions, and unlike the derivation of Gasqui and Goldschmidt [9,10] that relied on the
sophisticated theory of Spencer sequences.

First, we define a number of differential operators that will be convenient for our purposes. For homogeneous differential
operators with constant coefficients, the operator is completely determined by the principal symbol. In general that is not
the case, yet the presence of a preferred connection on tensor bundles (the g-compatible Levi-Civita connection) still allows
us to specify operators by their principal symbols: the covariant derivative is applied to a tensor k-times, the derivative
indices are full symmetrized, and the principal symbol is applied to the result.

The principal symbol of a kth order differential operator between twoYoung symmetrized bundles YT ∗ andY′T ∗ is a linear
map between them that depends polynomially on a covector p ∈ T ∗. If the operator (or just its principal symbol) is GL(n)-
equivariant, then the principal symbol actually corresponds to an intertwiner between the Y(k) ⊗ Y and Y′ representations.
Such an intertwiner is non-zero only if Y′ appears in the irrep decomposition of the tensor product. Moreover if Y′ appears
with singlemultiplicity, the intertwiner (and hence the principal) symbol is determined uniquely up to a scalar factor. It is an
old result due to Pieri [29] that, in fact, the decomposition of the product of Y(k)⊗Y into irreps has only single multiplicities.
Not all principal symbols of importance to us are equivariant. The main source of the lack of equivariance is the dependence
on the metric g . However, if the metric itself is also allowed to transform, the principal symbol becomes equivariant again.
For instance, if the operator is equivariant in this way and depends linearly on themetric in covariant form, it corresponds to
an intertwiner between the representations Y(2)⊗Y(k)⊗Y and Y′. Because of the presence of a double tensor product, Pieri’s
rule does not always apply, so sometimes more information is necessary to specify the desired intertwiner unambiguously.
As a rule, these ambiguities will be resolved by giving explicit formulas.

Observe that the all tensor fields defined in Section 2.1 correspond to Young diagrams with at most two columns. We
shall refer to the columns as left and right. Let dL and dR, the left and right exterior differentials, be differential operators that
increase by one the number of boxes in the, respectively, left or right column. They have equivariant principal symbols.
We also define several operators whose principal symbols involve the metric. Two operators of order 0 are the trace tr and
the metric exterior product (g ⊙ −), respectively, decreasing (contracting indices between the two columns) or increasing
(multiplying by g and symmetrizing) by one the number of boxes in each column. Two operators of order 1 are left and
right codifferentials δL and δR, which decrease (taking a covariant divergence and resymmetrizing, if necessary) by one the
number of boxes in, respectively, the left or right column. Finally, we have the tensor Laplacian �, a differential operator of
order 2 that does not alter the Young symmetry. Explicit formulas for these operators, along with proofs that they respect
the corresponding Young symmetries, are given in Appendices A.2, A.4 and A.5.

The differential operators constituting the Calabi complex, as well as cochain self-homotopy and the induced cochain
self-maps fit into the following diagram:

0 C0 C1 C2 C3 · · · Cn 0

0 C0 C1 C2 C3 · · · Cn 0

B1

P0

B2

P1
E1

B3

P2
E2

Bn

P3
E3 Pn

En

B1 B2 B3 Bn

, (2)

where for simplicity we have used the symbol Cl to stand for the space of sections Γ (ClM). The operators Bl constitute a
complex, because Bl+1 ◦ Bl = 0. The solid arrows in the diagram commute, Pl+1 ◦ Bl+1 = Bl ◦ Pl, so that the Pl are cochain
maps from the complex to itself. These cochain maps, Pl = El+1 ◦ Bl+1 + Bl ◦ El, are induced by the homotopy operators En,
which appear as dashed arrows. Below, we give explicit formulas for each of these operators, discuss these identities, and
relate them to well known differential operators from the literature on relativity. We follow the notational conventions of
Appendices A.1 and A.2. In particular, we use : to separate fully antisymmetric tensor index groups belonging to different
columns of the Young diagram, which characterizes the symmetry type of a given tensor. However, for simplicity, we also

1 We follow [30] for conventions regarding the definitions of curvature tensors and scalars.
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write gab = ga:b and hab = ha:b.

B1[v]a:b = K [v]a:b = ∇avb +∇bva, (3)

B2[h]ab:cd = −2R̃[h]ab:cd

=

∇(a∇c)hbd −∇(b∇c)had −∇(a∇d)hbc +∇(b∇d)hac


+

k
n(n− 1)

(g ⊙ h)ab:cd, (4)

B3[r]abc:de = B̄[r]abc:de = dL[r]abc:de = 3∇[arbc]:de
= ∇arbc:de +∇brca:de +∇crab:de, (5)

B4[b]abcd:ef = dL[b]abcd:ef = 4∇[abbcd]:ef
= ∇abbcd:ef −∇bbcda:ef −∇cbdab:ef −∇dbabc:ef , (6)

Bl[b]a1···al:bc = dL[b]a1···al:bc = l∇[a1ba2···al]:bc (l ≥ 3). (7)

Note that we have introduced some suggestive alternative notations for operators Bl of low rank. In particular, B1 = K is
the Killing operator. Then, B2 = −2R̃ is the linearized corrected Riemann curvature operator,2 where R[g+λh]− R̄[g+λh] =
λR̃[h]+O(λ2), with R̄[g]ab:cd = k

n(n−1) (gacgbd− gbcgad), cf. Eq. (124) in Appendix A.4. The precise relation with the linearized
Riemann tensor operator is

Ṙ[h] = −
1
2
B2[h] + k

2
n(n− 1)

(g ⊙ h). (8)

Note that the identity R[g] − R̄[g] = 0 holds precisely when the metric g has constant curvature k. Finally, B3 = B̄ is
the background Bianchi operator, which also happens to coincide with the left exterior differential dL. It satisfies the well
known Bianchi identity B̄[R[g]] = 0. The operators Bl for l > 3, which we may call higher Bianchi operators, do not appear
to have been studied in the literature on relativity. So, as mentioned in the Introduction, the Calabi complex might also be
legitimately referred to as the Killing–Riemann–Bianchi complex.

Now we give mostly elementary arguments for the composition identities Bl+1 ◦ Bl = 0. Recall that if v is a vector field
(identified with a section of C0M ∼= T ∗M using the metric), then the Lie derivative of the metric along v is given by the
Killing operator, Lvg = K [v]. Now, suppose that T [g] is any tensor field covariantly constructed out of the metric and its
derivatives. Consider its linearization T [g+λh] = T [g]+λṪ [h]+O(λ2). The linearization Ṫ annihilates the Killing operator
if T [g] = 0 [32]. This fact follows from the fact that T [g] is itself a tensor field, so that

LvT [g] = Ṫ [Lvg] = Ṫ ◦ K [v]. (9)

Letting T [g]ab:cd = R[g]ab:cd − R̄[g]ab:cd we obtain the identity B2 ◦ B1 = −2R̃ ◦ K = 0, since T [g] = 0 by reason of g being
of constant curvature equal to k. Further, note that, since the metric is covariantly constant, ∇g = 0, it is trivial to check
that B̄[R̄[g]] = 0, for any g . Combining this observation with the Bianchi identity, we find that B̄[R[g] − R̄[g]] = 0, for any
g . Making the dependence of B̄ = B̄g on g explicit, the linearization of this identity gives

B̄g+λh[R[g + λh] − R̄[g + λh]] = B̄g [R[g] − R̄[g]] + λ(B̄[R̃[h]] + Ḃ[h, R[g] − R̄[g]])+ O(λ2) = 0, (10)

where B̄g+λh[T ] = B̄[T ] + λḂ[h, T ] + O(λ2). At first order in λ, we obtain the desired identity B3 ◦ B2 = −2B̄ ◦ R̃ = 0. The
remaining identities, Bl+1 ◦ Bl = d2

L = 0 for l > 2, follow from abstract representation theoretic reasons, described in more
detail in Appendices A.4 and A.5.

E1[h]a = D[h]a = ∇bhab −
1
2
∇ah, (11)

E2[r]a:b = tr[r]a:b = rac:bc, (12)

E3[b]ab:cd = ∇ebeab:cd +
1
2
∇

e(bcab:de − bdab:ce)−
1
2
(∇cbabe:de −∇dbabe:c e)−

1
2
(∇abcbe:de −∇abdbe:c e

+ ∇bbace:de −∇bbade:c e), (13)

E4[b]abc:de = ∇ f bfabc:de +
1
3
∇

f (bdabc:ef − beabc:df )+
1
3
(∇dbabcf :ef −∇ebabcf :df )

+
1
6
(∇abdbcf :ef −∇abebcf :df +∇bbadcf :ef −∇bbaecf :df +∇cbabdf :ef −∇cbabef :df ), (14)

2 The same corrected curvature tensor can be obtained by linearizing the mixed form R[g]abcd of the Riemann tensor and then lowering all indices with
the background metric. This linearized mixed Riemann tensor was previously used to isolate the gauge invariant metric perturbations on de Sitter space
in [31]. That the linearized corrected Riemann tensor annihilates the Killing operator also follows from the classical analysis in [32], which noted that the
linearization of any tensor built only out of the metric and vanishing on the background spacetime is invariant under linearized diffeomorphisms.
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E5[b]abcd:ef = ∇ ibiabcd:ef +
1
4
∇

i(beabcd:fi − bfabcd:ei)−
1
4
(∇ebabcdi:f i −∇f babcdi:ei)

−
1
12
(∇{e}b{abcd}i:f i −∇{f }b{abcd}i:ei), (15)

El+1[b]a1···al:bc = (δL[b] − (−1)
ll−1dR ◦ tr[b])a1···al:bc (l ≥ 2). (16)

The notation used in the formula for E5 is defined in Appendix A.1. Note that E1 = D is the de Donder operator, used as
a linearized gauge fixing condition in the literature on relativity. Also, if R[g] is the Riemann tensor of the metric g , then
E2[R[g]] = tr[R[g]] is the corresponding Ricci tensor. The higher homotopy operators El for l > 2 do not seem to have
previously appeared in the literature on relativity.

P0[v]a = �va + k
1
n
va, (17)

P1[h]ab = �hab − k
2

n(n− 1)
hab + 2k

gab tr[h]
n(n− 1)

, (18)

P2[r]ab:cd = �rab:cd − k
2
n
rab:cd + 2k

(g ⊙ tr[r])ab:cd
n(n− 1)

, (19)

P3[b]abc:de = �babc:de − k
(3n− 7)
n(n− 1)

babc:de − 2k
(g ⊙ tr[b])abc:de

n(n− 1)
, (20)

P4[b]abcd:ef = �babcd:ef − k
(4n− 14)
n(n− 1)

babcd:ef + 2k
(g ⊙ tr[b])abcd:ef

n(n− 1)
, (21)

Pl[b]a1···al:bc = �ba1···al:bc − k
(ln− l2 + 2)
n(n− 1)

ba1···al:bc + (−)
l2k
(g ⊙ tr[b])a1···al:bc

n(n− 1)
(l ≥ 3). (22)

Note our notation � = ∇a
∇a for the tensor Laplacian, which is also known as the d’Alembertian in Lorentzian signature.

The operator P0 = D ◦ K gives the wave-like residual gauge condition such that the perturbation h = K [v] satisfies the
de Donder gauge condition D[h] = 0 in linearized gravity. The operator P1 = tr ◦(−2R̃)+ K ◦D is the wave-like operator of
the linearized Einstein equations for gravitational perturbations h in deDonder gaugeD[h] = 0. These twooperators arewell
known and can be found (or their close analogs can) for instance in [30, Sec. 7.5] and more they appeared in [22,25,33]. The
higher cochain maps and the corresponding identities appear to be new. Though, the identity P2 = E3 ◦ B̄−2R̃◦E2 is related
to the non-linear wave equations satisfied by the Riemann andWeyl tensors on any vacuum background, sometimes known
as the Penrose wave equation. For linearized fields, a related equation is sometimes known as the Lichnerowicz Laplacian. For
more details, see references [34], [35, Sec. 1.3], [36, Sec. 7.1], [37, Exr. 15.2], [38, Eq. 35].

Remark 1. It is worth noting that we refer to the operators Pl as wave-like because the principal symbol of Pl has the
same principal symbol as the tensor Laplacian � = ∇a

∇a, on Lorentzian manifolds also known as the d’Alembertian or
wave operator, which is a hyperbolic differential operator. Note that the principal symbol of Pl is determined only by the
principal symbols of the Bl and El. The principal symbols of Bl are metric independent, while those of El depend on the
metric g of the background pseudo-Riemannian manifold (M, g). However, we are actually free to choose any metric, say
g ′ that is different from g , to construct the cochain homotopy operators, say E ′l . The principal symbol induced cochain maps
P ′l = E ′l+1 ◦ Bl+1 + Bl ◦ E ′l will then still only depend on one metric, g ′, and be equal to the principal symbol of the tensor
Laplacian �′ defined with respect to g ′. Thus, if we choose g ′ to be Riemannian, we can induce cochain homotopies P ′l that
are elliptic. The operators P ′l will of course differ from the Pl by terms of lower differential order that would depend on both
g and g ′. This remark will be very useful in Proposition 9 in the discussion of the local exactness of the Calabi complex.

2.3. Formal adjoint complex

Given a linear differential operator f : Γ (E)→ Γ (F), between vector bundles E → M and F → M , its formal adjoint is
a linear differential operator f ∗ : Γ (F̃∗) → Γ (Ẽ∗), where we have used the notation for the bundle Ṽ ∗ ∼= V ∗⊗M Λ

nM of
dual densities of a vector bundle V → M , defined as the tensor product of the its linear dual bundle V ∗ → M with that of
densitiesΛnM → M on the base manifold if dimension dimM = n. The formal adjoint operator is defined to be the unique
differential operator such that a Green formula holds,

ψ · f [ξ ] − f ∗[ψ] · ξ = dG[ψ, ξ ], (23)

for any ψ ∈ Γ (F̃∗), ξ ∈ Γ (E), and some bilinear bidifferential operator

G : Γ (F̃∗×M E)→ Γ (Λn−1M). (24)

A formal adjoint operator always exists and is unique [39,40,27].
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In the presence of background pseudo-Riemannian metric g on M , we can canonically identify the trivial bundle R×M
withΛnM , via multiplication by the canonical volume form εa1···an with respect to g (ε ∈ Ωn(M)), and also V ∼= V ∗ for any
tensor bundle V → M , by lowering and raising indices with g , thus also canonically identifying V ∼= Ṽ ∗. Below, wewill take
formal adjoints with respect to this identification. Recall the identity [41]

εaa2···anεba2···an = (−1)
s(n− 1)!δab (25)

(where s counts the number of minuses in the signature of the metric g , with s = 1 for Lorentzian metrics with mostly-plus
convention) and define

Ga
=

(−1)s

(n− 1)!
εaa2···anGa2···an (26)

so that Ga2···an = εaa2···anG
a. The right hand side of the formal adjoint Eq. (23) can then be rewritten as

(dG)a1···an =
(−1)s

n!
εa1···anε

ab2···bnn∇aGb2···bn = εa1···an∇aGa, (27)

with the whole equation becoming

ψ · f [ξ ] − f ∗[ψ] · ξ = ∇aGa
[ψ, ξ ], (28)

where the dot indicates contraction of indices using the metric g between two tensors of the same index structure.
With this notation, the formal adjoint Calabi complex (C•, B∗•) fits into the following diagram:

0 C0 C1 C2 C3 · · · Cn 0

0 C0 C1 C2 C3 · · · Cn 0

B∗1

P∗0

B∗2

P∗1
E∗1

B∗3

P∗2
E∗2

B∗n

P∗3
E∗3 P∗n

E∗n

B∗1 B∗2 B∗3 B∗n

, (29)

where we have identified C̃∗i ∼= Ci using the background metric. Note that all the analogous identities are satisfied, the
solid arrows in the diagram commute and the dashed arrows are homotopy operators inducing the vertical cochain maps,
P∗i = B∗i+1◦E

∗

i+1+E∗i ◦B
∗

i . Themain difference is that the B∗
•
nowdecrease the degree index by one instead of decreasing it. The

usual numbering convention canbe achievedby relabeling, butwe shall not do sohere, expecting that no confusionwill arise.
Recall that the final differential operator Bn of the Calabi complex is

Bn[b]a1···an:bc = dL[b]a1···an:bc = n∇[a1ba2···an]:bc, (30)

where b ∈ Γ (Cn−1M). To compute its formal adjoint, let c ∈ Γ (CnM) and consider first the identity, derived in Appendix A.6,

∇a(caa2···an:bcba2···an:bc) =
1
n
caa2···an:bcdL[b]aa2···an:bc + δL[c]

a2···an:bcba2···an:bc . (31)

Note that the operators dL and δL specifically produce tensors of the appropriate Young type. Therefore, the formal adjoint
operator B∗n is given by the formula

B∗n[c]a2···an:bc = −
1
n
δL[c]a2···an:bc (32)

= −
1
n
∇

acaa2···an:bc −
2

n(n− 1)
∇

ac[b|a2···an:|c]a, (33)

with the Green form represented by Ga
[c, b] = 1

n c
aa2···an:bcba2···an:bc .

While this operator B∗n may look unfamiliar, after a further local invertible transformation the equation B∗n[c] = 0
becomes equivalent to the well known rank-(n − 2) Killing–Yano equation. Let us define a rank-(n − 2) anti-symmetric
tensor yc3···cn such that

ca1···an:bc = εa1···any
c3···cnεbcc3···cn , (34)

yc3···cn =
1

2(n− 2)!(n− 1)!
εa1···an ca1···an:bc ε

bcc3···cn . (35)

It is straightforward to check using the hook formula (Appendix A) that the tensor c of Young type (2, 2, 1n−2) has the same
number of independent components as the tensor y of Young type (1n−2). To transform the equation satisfied by c into the
Killing–Yano equation satisfied by y, we will need the following identities, which follow from the general properties of the
ε tensor [41]:

εaa2···anca′a2···an:bcε
bcc3···cn = 2(n− 2)!(n− 1)!δaa′y

c3···cn , (36)

εaa2···ancba2···an:a′cε
bcc3···cn = (n− 1)!2yb3···bnδ[aa′ δ

c3
b3
· · · δ

cn]
bn . (37)
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Contracting one ε tensor with each index group of the equation B∗n[c] = 0 we get

0 = εaa2···anB∗n[c]a2···an:bcε
bcc3···cn (38)

= −
1
n
∇

a′εaa2···anca′a2···an:bcε
bcc3···cn −

2
n(n− 1)

∇
a′εaa2···ancba2···an:ca′ε

bcc3···cn (39)

= −
2
n
(n− 1)!(n− 2)!


∇

ayc3···cn −∇ [ayc3···cn]

. (40)

Note that the derivative ∇ayc3···cn takes values in the tensor bundle of Young type (1) ⊗ (1n−2). Using the well-known
Littlewood–Richardson rules [29,42] this representation decomposes into the direct sum (1)n−1 ⊕ (2, 1n−3). Note that the
antisymmetrization of the above equation gives zero. Thus, the independent components of the equation satisfied by y take
values in a tensor bundle of Young type (2, 1n−3), which has two columns, of lengths n−2 (filledwith indices belonging to y)
and 1 (filled with index belonging to ∇). It is also well-known that this representation can be isolated by antisymmetrizing
along the columns and symmetrizing any two indices between the columns. In our case, the antisymmetrization has no
effect (y is already antisymmetric) and the symmetrization, after lowering all indices, gives the equation

KY [y]ac3···cn = ∇(ayc3)···cn = 0, (41)

which is none other than the rank-(n − 2) Killing–Young equation, whose solutions are called rank-(n − 2) Killing–Young
tensors or Killing (n − 2)-forms [43]. We refer to the differential operator KY as the Killing–Young operator. So, in the
same sense that the Calabi complex constitutes the compatibility complex of the Killing equation on a constant curvature
background, sowould the formal adjoint Calabi complex for the rank-(n−2)Killing–Yano equation on the same background,
provided that the formal adjoint complex is formally exact. In general, taking formal adjoints does not preserve exactness [44,
p. 449]. However, aswe shall see later, the Calabi complex is formally homotopy equivalent (Section 3.2) to a twisteddeRham
complex (Section 2.4, Corollary 10), whose formal adjoint is another twisted de Rham complex. Since taking formal adjoints
does preserve formal homotopy equivalence and twisted de Rham complexes are always formally exact (Proposition 2), this
argument shows that the formal adjoint Calabi complex is in fact formally exact.

2.4. Equations of finite type, twisted de Rham complex

The Killing and Killing–Yano equations, which lie at the base of the Calabi and its formal adjoint differential complexes,
are well known examples of partial differential equations of finite type [16,14,11]. That is, in any neighborhood of a point
x ∈ M they admit only a finite dimensional space of solutions. Each solution is fully determined by its value and finitely
many derivatives at x. For the Killing and Killing–Yano equations only the first derivatives are required. This is a strong
kind of unique continuation. Such equations are called regular if the dimension of the solution space in a sufficiently small
neighborhood of a point x ∈ M is independent of x. That number may, however, differ from the dimension of the global
solution space, which can be strictly smaller in the presence of topological or geometric obstructions to continuing local
solutions to global ones.

Regular equations of finite type have a very simple existence theory. Let F → M and E → M be two vector bundles,
together with a differential operator e : Γ (F) → Γ (E) of order l such that the equation e[ψ] = 0, for ψ ∈ Γ (F), is finite
type and regular. This means that there exists an integer k such that the knowledge of jkψ(x) for any x ∈ M is sufficient to
determine the components of all higher jets ofψ at x. Prolongation of the equation to order k (Appendix C) gives the bundle
map pk−le : JkF → Jk−lE. By the regularity hypothesis, the map is of constant rank, so its kernel V = ker pk−le ⊆ JkF is
a vector bundle over M . Since all higher derivatives of a solution ψ at x are uniquely determined by jkψ(x) and jkψ only
takes values in V , there is a unique n-dimensional hyperplane in Tx,vV that is tangent to the graph of a solution ψ such
that jkψ(x) = (x, v). These hyperplanes define an n-dimensional distribution on the total space of the bundle V and it is
straightforward to check that this distribution is involutive (Lie brackets of vector fields valued in the distribution remain
valued in the distribution). Thus, by the theorem of Frobenius [45], V is foliated by n-dimensional leaves tangent to the given
hyperplane distribution. Locally, these leaves are precisely the graphs of solutions to the equation e[ψ] = 0. Thus the rank
rk V is precisely the dimension of the local solution space on any sufficiently small, connected open set inM .

Aswe have alreadymentioned, both the Killing and Killing–Yano operators, K : Γ (T ∗M)→ Γ (S2M) and KY : Γ (Λn−2M)
→ Γ (Y(2,1

n−1)T ∗M), define finite type equations. By the virtue of their covariance, they are also regular on any pseudo-
Riemannian symmetric space, which includes constant curvature backgrounds. Furthermore, on constant curvature spaces,
the dimensions of their local solution spaces are rk VK = rk VKY = n(n+ 1)/2 [43].

The n-dimensional hyperplane distribution on V and the resulting foliation described above can also be described in
another way, namely as a flat linear connection on V ⊆ JkF [46, Sec. 2.1.3]. The connection is linear because the original
equation e[ψ] = 0 is itself linear. A linear connection on V → M can alternatively be described by a first order differential
operator D : Γ (V )→ Γ (T ∗M ⊗ V ) defined by the property

D[ωjkψ] = dω ⊗ jkψ, (42)

for any ω ∈ C∞(M) and solution ψ ∈ Γ (F) of e[ψ], where its k-jet is treated as a section jkψ : M → V . That is, a section
φ ∈ Γ (V ) ⊆ Γ (JkF) is constant on an open set U ⊆ M iff it coincides with the k-jet of a solution of e[ψ] = 0 on U . So, it
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is clear that the equations e[ψ] = 0 and D[φ] = 0 are equivalent (their spaces of local solutions are locally isomorphic).
As discussed in Appendix C this means that there exist differential operators f , f ′, g , g ′, p and q, which fit into the following
diagram (again, for brevity we use the bundle symbols to stand in for their spaces of sections)

F E

V T ∗M ⊗ V

e

f f ′

p

D

g g ′

q

(43)

and satisfy the following identities:

D ◦ f = f ′ ◦ e, g ◦ f = id+ p ◦ e, (44)

e ◦ g = g ′ ◦ D, f ◦ g = id+ q ◦ D. (45)

We have already seen that on solutions, the map f simply agrees with the k-jet extension operator jk. Thus, as a differential
operator of order k, it can be chosen to be anyprojection of JkF to its subspaceV . The choice of this projection thendetermines
the differential operator f ′. The differential operators g and g ′ are constructed in similar ways, making sure that f and g are
mutual inverses on solutions. The freedom in the choice of f , f ′, g and g ′ also determine the operators p and q.

When it comes to a specific case, say the Killing or Killing–Yano equation, its equivalence to a local constancy condition
with respect to a connection can be made explicit only once the solutions are themselves explicitly known. Thus this
equivalence is mostly of theoretical, though non-negligible, interest.

Having defined the flat vector bundle (V ,D) corresponding to a regular equation of finite type, there is a standard
procedure to construct a differential complex associated to it. It is called the twisted de Rham complex associated to (V ,D),

0 V Λ1M ⊗ V Λ2M ⊗ V · · · ΛnM ⊗ V 0,D D D (46)

where D has been extended to a twisted de Rham differential, defined on sections ofΛkM ⊗ V by the condition

D[ω ⊗ ψ] = dω ⊗ ψ + (−1)kω ∧ Dψ, (47)

for any ω ∈ Γ (ΛkM) and ψ ∈ Γ (V ), where we recall that Dψ is a section of T ∗M ⊗ V = Λ1M ⊗ V and apply the wedge
product of forms in the obvious way.

Remark 2. Locally (on sufficiently small contractible open sets), this twisted de Rham complex consists rk V copies of the
ordinary de Rhamcomplex. Globally, of course, if the basemanifoldM is not simply connected, the twisted de Rhamcomplex
(Λ•M ⊗ V ,D) will differ from rk V copies of the ordinary de Rham complex (Λ•M, d) because of the possible non-trivial
bundle structure of V → M or the non-trivial monodromy D (parallel transport with respect to D along closed loops). The
importance of the twisted de Rham complex will become clear in Section 3 where we discuss the connection between the
cohomology of differential complexes and sheaf cohomology.

For later convenience, we shall denote the twisted de Rham complexes associated to the Killing and Killing–Yano
equations, respectively, by (Λ•M ⊗ VK ,DK ) and (Λ•M ⊗ VKY ,DKY ).

3. Cohomology of locally constant sheaves

The main reasons for introducing some of the general sheaf and sheaf cohomology machinery below are two fold. First,
we havemade a connection between the abstract notion of sheaf cohomology and the cohomology of a differential complex.
A priori, computing the cohomology of differential complex is a very hard problem, because it involves solving partial
differential equations. On the other hand, because of the flexibility of the general machinery of sheaf cohomology, it may be
computable in some effectiveway, for instance, by reducing it to a problem in finite dimensional linear algebra. The canonical
example of where this connection can be leveraged is the computation of de Rham cohomology groups of a manifold M
using the equivalent (through sheaf theoretic machinery) computation of the simplicial (or cellular) cohomology of a finite
triangulation (or cell decomposition) ofM . The second reason is that the ideas that have been introduced give us some tools
to explicitly show that the cohomologies of two different differential complexes are isomorphic as long as both complexes
are formally exact, locally exact and resolve the same sheaf in degree-0 (this terminology is introduced below).

3.1. Locally constant sheaves

Recall from Section 2.4 that a regular linear differential equation of finite type has only a finite dimensional space of local
solutions, with this dimension being constant over the base manifold. It so happens that, from an abstract point of view,
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it is convenient to view these local solutions as a locally constant sheaf of vector spaces. A sheaf F of vector spaces on a
topological spaceM [47,48] is an assignment U → F (U) of a vector space (of local sections over U , F (∅) = 0) to each open
U ⊆ M satisfying the following axioms: (restriction) for any inclusion of opens U ⊆ V there exist linear restriction maps
F (V )→ F (U), also written f → f |U , such that U ⊆ U induces the identity map and U ⊆ V ⊆ W induces F (W )→ F (U)
in agreement with the composition F (W ) → F (V ) → F (U); (descent) any pair of opens U and V induces an exact
sequence 0 → F (U ∪ V ) → F (U) × F (V ) → F (U ∩ V ) → 0, where the first map is f → (f |U , f |V ) and the second
one is (f , g) → f |U∩V − g|U∩V . We write Γ (F ) = Γ (M,F ) = F (M) for the vector space of global sections of the sheaf
F . A sheaf is called locally constant when the number dimFx = maxU∋x dimF (U), where U ranges over connected open
neighborhoods of x ∈ M , is finite and does not depend on x, so we can write dimF = dimFx. Since dimF (U) can only
decrease for larger connected U , for any x ∈ M there exists a connected neighborhood U of x such the vector spaces of local
sections over smaller connected neighborhoods stabilize (the restriction map becomes an isomorphism), so that we can
write F (U) ∼= F̄ for some fixed vector space F̄ that we call the stalk of F . Clearly, dim F̄ = dimF . Also, F is called constant
when it is locally constant and Γ (F ) ∼= F̄ .

Given a vector bundle F → M , the assignment F (U) = Γ (F ,U) of local sections of F over each open U ⊆ M defines a
sheaf F on M , called the sheaf of (germs of) sections of F → M . Similarly, it is straightforward to check that, given another
vector bundle E → M and a linear differential operator e : Γ (F)→ Γ (E), the sets Se(U) = {ψ ∈ Γ (F ,U) | e[ψ] = 0} of
solutions of the partial differential equation e[ψ] = 0 also define a sheaf Se on M , called the solution sheaf of e : Γ (F) →
Γ (E). Following the preceding discussion of equations of finite type, it should be clear that solution sheaves K = SK (the
Killing sheaf ) andKY = SKY (the Killing–Yano sheaf ) of the Killing and Killing–Yano equations are locally constant, provided
the background pseudo-Riemannian manifold is chosen such that these equations are regular. Another important example
is the constant sheaf RM = Sd of locally constant functions, which solve the equation df = 0, f ∈ C∞(M) and d the de Rham
differential.

Sheaves are important because every sheaf F (of vector spaces) on M automatically comes with an abstract notion of
sheaf cohomology (vector spaces) Hp(M,F ), called the pth or degree-p cohomology of F , or of M with coefficients in F .
Moreover, all classical cohomology theories from algebraic topology can be identified with the cohomologies of certain
sheaves. Further, some superficially different looking cohomologies theories may be connected through the fact that they
are both equivalent to the sheaf cohomology of the same sheaf. In particular, the classical simplicial, cellular, singular, Čech
and de Rham cohomologies of a manifold M all coincide [49,47,48] because they are each equivalent to the cohomology of
M with coefficients in the sheaf RM of locally constant functions.

The intrinsic definition of sheaf cohomology is somewhat involved and not entirely intuitive (unless one is already
intimately familiar with Čech cohomology and the notion of local coefficients). Fortunately, the intrinsic definition can be
relegated to standard references [47,48] in favor of an equivalent but more practical definition using acyclic resolutions. To
explain further, we need to introduce some terminology. A complex of sheaves of vector spaces

· · · Fi Fi+1 · · · (48)

consists of an assignment of linear maps Fi(U)→ Fi+1(U) to each open U ⊆ M , in a way consistent with restriction maps,
such that we have a complex of vector spaces of local sections (two successive maps compose to zero)

· · · Fi(U) Fi+1(U) · · · (49)

for each open U ⊆ M . A local section in Fi(U) that is in the kernel of the corresponding map is called a cocycle and a
local section in Fi(U) that is in image of the corresponding map is called a coboundary. A sheaf complex is exact when,
for each x ∈ M , open neighborhood U ⊆ M of x and local section α ∈ Fi(U), there exists a possibly smaller and α-
dependent open neighborhood U ′ ⊆ U of x such that α|U ′ is a coboundary. For a complex of sheaves, like (48), we could
define its cohomology sheaves H i(F•) (distinct from sheaf cohomology, to be defined later), by starting with the assignment
H i(F•)(U) = ker(Fi(U) → Fi+1(U))/ im(Fi−1(U) → Fi(U)), which may not produce a sheaf but only a presheaf, and
applying the sheafification construction to it. We will not go into the details of how sheafification turns presheaves into
sheaves here, but they can be found in standard references [47,48]. It suffices to point out that given a sheaf complex in
non-negative degrees, 0→ F0 → Fi → · · · , the vector space H0(F•)(U) ⊆ F0(U) consists of all cocycle local sections. In
the sequel, we shall only need to refer to such cohomology sheaves in degree-0. Given a sheaf F , if Fi → Fi+1 is a complex
of sheaves such that Fi = 0 for i < 0, H0(F•) = F , and H i(F•) = 0 for i > 0, we call it a resolution of the sheaf F .

In the sequel, we shall only consider sheaves of sections of vector bundles or of solution of some linear PDE and only
complexes of sheaves where maps between the vector spaces of local sections are induced by restrictions of differential
operators, for which the compatibility with restrictions is automatically satisfied.

3.2. Acyclic resolution by a differential complex

The de Rham complex [49] is the canonical example of a complex of sheaves of sections of vector bundles (differential
forms on M), with maps induced by differential operators (de Rham differentials). The Poincaré lemma then demonstrates
that this complex of sheaves is exact. For simplicity, we shall call a differential complex (F•, f•) a sequence of vector bundles
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Fi → M and differential operators fi : Γ (Fi−1) → Γ (Fi) satisfying fi ◦ fi−1 = 0, while implicitly setting F−1 = 0 and
f0 = 0. Given a differential complex, it is natural to define its cohomology vector spaces to be the cohomology of the
cochain complex of global sections, H i(F•, f•) = H i(Γ (F•), f•), which we also refer to as the cohomology with unrestricted
supports. Since differential operators do not increase supports, we can equally consider the cohomology of the differential
complex with compact supports, defined as H i

c(F•, f•) = H i(Γc(F•), f•). A differential complex naturally defines a complex
0→ F0 → F1 → · · · of sheaves of sections of these bundles, Fi(U) = Γ (Fi,U). A differential complex is said to be locally
exact if it defines an exact complex of sheaves. Local exactness is a very strong property that is crucial in the relation of the
cohomology of a differential complex to sheaf cohomology, which we discuss next.

In general, given a complex of sheaves Fi → Fi+1, we call it an injective resolution of a sheaf F if it is a resolution of F
(namely, Fi = 0 for i < 0, it is exact except for H0(F•) = F ), and each Fi is injective. The injectivity condition is somewhat
technical. The same can be said for the fact that every sheaf has an injective resolution. So we will not go into them here
and defer to standard references instead [47,48]. We will need these notions only for the following definition. The degree-i
sheaf cohomology vector spaces H i(F ) = H i(M,F ), also called the degree-i cohomology of M with coefficients in F , as the
cohomology vector space of the complex of global sections of any injective resolutionFi → Fi+1 ofF ,H i(F ) = H i(Γ (F•)).
It is important to note that sheaf cohomology is well defined. It does not depend on the chosen injective resolution, because
the injectivity condition implies the existence of a homotopy equivalence between the complexes of global sections of any
two such resolutions, thus forcing their cohomologies to be isomorphic. This is another technical fact that we shall not go
into here.

Instead, we make note of yet another technical fact that provides a practical way to compute sheaf cohomology. For
that, we need two more definitions. A sheaf F is called acyclic if H i(F ) = 0 for all i > 0, though as usual the degree-0
cohomology H0(F ) ∼= Γ (F ) is isomorphic to the vector space of global sections of F . A sheaf F on M is called soft if for
any closed A ⊆ M the restriction maps F (M)→ F (A) are surjective, where F (A) =


U⊆A F (U) with U ranging over all

open sets that contain the closed set A. In other words, given an open U ⊆ M and a closed subset A ⊆ U , a local section
on U can always be extended to a global one onM without modification on A, but possibly modified on U\A. What is really
important for us is the following.

Proposition 1. (i) If F is a sheaf on M, and Fi → Fi+1 is a resolution of F by acyclic sheaves (acyclic resolution), then
H i(M,F ) ∼= H i(Γ (M,F•)). (ii) Any soft sheaf on M is acyclic. (iii) Given a vector bundle F → M, the sheaf F of sections of F
is soft.

Proof. Any standard discussion of sheaf cohomology establishes (i) and (ii) [47,48]. On the other hand, (iii) is simply a
restatement of the well knownWhitney extension theorem for smooth functions [50, Thm. 2.3.6]. �

Note that the complex of sheaves corresponding to a differential complex then automatically consists of acyclic sheaves.
The above proposition essentially tells us that, given a resolution of some sheaf F on a manifold M by a locally exact
differential complex (F•, f•), the sheaf cohomology of F and the cohomology of the differential complex will coincide,
H i(F ) ∼= H i(F•, f•). This observation will be particularly important later in Corollary 12.

Next, we discuss some conditions ensuring that the cohomologies of two given differential complexes are isomorphic. As
we have now seen, local exactness is a very strong and useful property, unfortunately it can be difficult to check in practice.
Two weaker notions of exactness exist that are easier to check in practice. To formulate them, we refer to the notions of
jets and jet bundles, together with associated constructions like prolongations and principal symbols, all briefly recalled in
Appendix C. Given a sequence of vector bundles Fi and a complex of linear differential operators fi : Fi−1 → Fi, each of order
ki, their prolongations define a complex of vector bundle morphisms,

· · · J lFi−1 J liFi J li+1Fi+1 · · · ,
pli fi pli+1 fi+1 (50)

with li = l − ki and li+1 = l − ki − ki+1, for each sufficiently large l. The differential complex is said to be formally exact
if the above compositions are exact, as linear bundle maps over M , for any values of l and i for which they are defined. On
the other hand, given (x, p) ∈ T ∗M , the principal symbols of the differential operators fi define a complex of linear maps
between the fibers of Fi at x,

· · · Fi−1,x Fi,x Fi+1,x · · · .
σx,pfi σx,pfi+1 (51)

The differential complex is said to be elliptic if the above complex is exact for every (x, p) ∈ T ∗M , p ≠ 0. These two
weaker notions are distinct [51]. Formal exactness is a good hypothesis for showing that differential operators factor in
certain ways. On the other hand, ellipticity is a condition that can be used to prove local exactness, via the method of
parametrices and fundamental solutions. However, the general question of determining necessary and sufficient conditions
for local exactness for differential complexes is a difficult and still open problem. The main conjecture is sometimes known
as Spencer’s conjecture: a formally exact, elliptic complex is locally exact [14,51,52]. On the other hand, some supplementary
sufficient conditions are known for an elliptic complex to be locally exact. A prominent condition of this kind is known as
the δ-estimate [27, Sec. 1.3.13], which first appeared in the works of Singer, Sweeney and MacKichan [14].
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Proposition 2. The twisted de Rham complex associated to the flat bundle (V ,D) defined by a regular differential equation of
finite type, defined in Eq. (46), is formally exact, elliptic and locally exact.

Proof. As noted in Remark 2, the twisted de Rham complex is locally (on sufficiently small contractible open sets) equivalent
to rk V copies of the ordinary de Rham complex. To see the equivalence, it suffices to locally choose a D-flat basis frame for
V . Since all of the desired properties, formal exactness, ellipticity and local exactness are purely local, it suffices to check
them for the ordinary de Rham complex. It is well known that each of these properties does hold for the de Rham complex,
having served as a model example for each. Formal exactness and ellipticity are discussed, for instance, in [14,11,27] and
[53, §XIX.4]. On the other hand, local exactness is essentially the content of the Poincaré lemma [49].

There is another way to establish local exactness that bypasses the Poincaré lemma and does not require an explicit
local choice of a D-flat basis frame for V . In particular, as discussed for instance in the given references, local exactness and
ellipticity are independent of such a choice. Then, local exactness follows provided the initial operator of the complex, the
connection operator D : Γ (V ) → Γ (T ∗M ⊗ V ), satisfies the δ-estimate. According to Example 1.3.58 of [27], any linear
connection operator satisfies the δ-estimate. Hence, by Theorem 1.3.61 of [27], the twisted de Rham complex is locally
exact. �

As is well known in homological algebra, cochain maps and homotopies between them are important concepts, the
first because they descend to cohomology, the second because equivalence up to homotopy descends to isomorphism on
cohomology. When dealing with differential complexes, it becomes important to distinguish the case where the cochain
maps and homotopies are defined by differential operators. The most important notion we will need is that of a formal
homotopy equivalence. Let (F•, f•) and (G•, g•) be twodifferential complexes. They are said to be formally homotopy equivalent
provided there exist differential operators ei, hi, ui and vi fitting into the diagram (we use the bundles to stand in for their
spaces of sections)

· · · Fi−1 Fi Fi+1 · · ·

· · · Gi−1 Gi Gi+1 · · ·

fi

ui−1vi−1

fi+1

uivi

ei

ui+1vi+1

ei+1

gi gi+1

hi hi+1

, (52)

where the squares composed of solid arrows commute (cochain map condition on ui and vi) and the dashed arrows
are homotopy operators with respect to which ui and vi are quasi-inverses, vi ◦ ui − id = ei+1 ◦ fi+1 + fi ◦ ei and
ui ◦ vi − id = hi+1 ◦ gi+1 + gi ◦ hi.

Lemma 3. Consider two differential complexes (F•, f•) and (G•, g•) that start in degree 0, also denote the corresponding
complexes of sheaves of sections as Fi → Fi+1 and Gi → Gi+1. Suppose that both differential complexes are formally exact,
except in degree 0. Further, suppose that the equations f1[φ] = 0 and g1[γ ] = 0, with φ ∈ Γ (F0) and γ ∈ Γ (G0), are
equivalent, or in other words the degree-0 cohomology sheaves are isomorphic to some given sheaf F ∼= H0(F•) ∼= H0(G•).
(i) Then there exists a formal homotopy equivalence between these differential complexes and their cohomologies are

isomorphic, both with unrestricted and compact supports (or any other kind of restriction on supports):

H i(F•, f•) ∼= H i(G•, g•) and H i
c(F•, f•) ∼= H i

c(G•, g•). (53)

(ii) If one of the differential complexes is locally exact, then both are locally exact and their cohomologies both compute the
sheaf cohomology of F :

H i(M,F ) ∼= H i(F•, f•) ∼= H i(G•, g•). (54)

Proof. (i) Equivalence of the equations f1[φ] = 0 and g1[γ ] = 0 means (Appendix C) that there exist differential operators,
say u0 : Γ (F0)→ Γ (G0) and v0 : Γ (G0)→ Γ (F0), such that v0◦u0[φ] = 0whenever f1[φ] = 0 and such that u0◦v0[γ ] = 0
whenever g1[φ] = 0. In other words, there exist differential operators e1 : Γ (F1)→ Γ (F0) and h1 : Γ (G1)→ Γ (G0) such
that v0 ◦ u0 = e1 ◦ f1 and u0 ◦ v0 = h1 ◦ g1. These differential operators are the initial step in establishing the desired formal
homotopy equivalence.

We proceed by a standard induction argument from homological algebra (in fact, a version of this argument proves the
independence of sheaf cohomology from the injective resolution used to compute it). Assume that all the desired differential
operators have been defined up to ei, hi, ui−1 and vi−1, which also satisfy the desired identities. We can easily verify the
identities

(gi ◦ ui−1) ◦ fi−1 = (gi ◦ gi−1) ◦ ui−2 = 0, (55)
(fi ◦ vi−1) ◦ gi−1 = (fi ◦ fi−1) ◦ vi−2 = 0, (56)
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which together with the formal exactness of the compositions fi ◦ fi−1 = 0 and gi ◦ gi−1 = 0 imply the factorizations
gi ◦ ui−1 = ui ◦ fi and fi ◦ vi−1 = vi ◦ gi, for some differential operators ui : Γ (Fi) → Γ (Gi) and vi : Γ (Gi) → Γ (Fi) (see
Appendix C). Further, we can also verify the identities

(vi ◦ ui − id− fi ◦ ei) ◦ fi = (vi ◦ gi) ◦ ui−1 − fi − fi ◦ ei ◦ fi (57)
= fi ◦ (vi−1 ◦ ui−1)− fi − fi ◦ ei ◦ fi = 0, (58)

(ui ◦ vi − id− gi ◦ hi) ◦ gi = (ui ◦ fi) ◦ vi−1 − gi − gi ◦ hi ◦ gi (59)
= gi ◦ (ui−1 ◦ vi−1)− gi − gi ◦ hi ◦ gi = 0, (60)

which again together with formal exactness imply the factorizations vi ◦ui− id− fi ◦ei = ei+1 ◦ fi+1 and ui ◦vi− id−gi ◦hi =

hi+1 ◦gi+1, for some differential operators ei+1 : Γ (Fi+1)→ Γ (Fi) and hi+1 : Γ (Gi+1)→ Γ (Gi). This concludes the inductive
step.

Now, let us consider the cohomology of these complexes,H i(F•, f•) = H i(Γ (F•), f•) andH i(G•, g•) = H i(Γ (G•), g•). As is
well known from homological algebra, a homotopy equivalence (of which a formal homotopy equivalence is a special kind)
induces an isomorphism in cohomology: H i(F•, f•) ∼= H i(G•, g•). However, if the operators implementing the homotopy
equivalence are differential operators, as in this case, we can replace unrestricted sections Γ (−) by sections with compact
supports Γc(−), so that H i

c(F•, f•) = H i(Γc(F•), f•) and H i
c(G•, g•) = H i(Γc(G•), g•). The homotopy equivalence of the

resulting complexes still holds because differential operators do not increase supports, and so we still have an isomorphism
in cohomology: H i

c(F•, f•) ∼= H i
c(G•, g•). Incidentally, instead of compact supports, any other family of supports would do as

well.
(ii) By the local exactness hypothesis, both differential complexes provide resolutions of the sheaf F (which happens

to be isomorphic to the solution sheaves Sf1 = H0(F•) and Sg1 = H0(G•)). Then, by Proposition 1, these resolutions are
acyclic and hence the corresponding cohomologies with unrestricted supports compute the sheaf cohomology of F . This
concludes the proof. �

3.3. Generalized Poincaré duality

In Section 3.2, we discussed how the cohomology H i(F•, f•) of a differential complex can, under optimal conditions,
be equated with the cohomology H i(F ) of the sheaf resolved by (F•, f•). However, even under optimal conditions, this
connection breaks down if we consider cohomology H i

c(F•, f•) with compact (or some other family of) supports instead of
unrestricted ones. What we discuss below is a way to relate cohomology with compact supports to that with unrestricted
supports, a kind of Poincaré duality.

For the de Rham complex on amanifoldM , dimM = n, a well known formulation of Poincaré duality is the isomorphism
Hp(M) ∼= Hn−p

c (M)∗ [49, Rmk. 5.7] between the linear dual of cohomology in degree-p and compactly supported cohomology
in degree-(n− p). This isomorphism is induced by the existence of a non-degenerate natural pairing between p-forms and
(n − p)-forms on M and its non-degenerate descent to cohomology. The goal of this section is to leverage the properties
of the Calabi complex and its formal adjoint complex that were discussed in the preceding section to demonstrate a
generalized version of Poincaré duality, which effectively computes the cohomology with compact supports in terms of
sheaf cohomology.

There are two ways to establish generalized Poincaré duality for a differential complex (F•, f•) that would be applicable
to the case of the Calabi complex and its formal adjoint. One of them, discussed in Section 3.3.1, relies on the fact that the
corresponding complex of sheaves resolves the sheaf of solutions of a regular differential equation of finite type (a locally
constant sheaf). This method is somewhat more elementary. The other, discussed in Section 3.3.2, works for any elliptic
complex, but requires some results from functional analysis and distribution theory. Either of these results, as will be shown
in Section 3.4, can be applied to prove generalized Poincaré duality for the Calabi complex and its formal adjoint complex.

3.3.1. Twisted de Rham complex
First, we will discuss the twisted de Rham complex, as introduced in Section 2.4. The results will then apply to the Calabi

complex and its formal adjoint by virtue of Lemma 3. The strategy is straightforward and reproduces the logic of the proofs
of the ordinary Poincaré duality, cf. [49, §5], [54, Ch. 11], or [55, Sec. V.4]. First, generalized Poincaré duality is shown to hold
on contractible open patches. Then, given a ‘‘good cover’’ of the manifold consisting of such patches, we use a version of the
Mayer–Vietoris exact sequence as an inductive step to conclude that generalized Poincaré duality also holds on the entire
manifold.

First, recall that we denote the fiber of the vector bundle V → M by V̄ . Then, V̄ ∗ is the fiber of the dual vector bundle
V ∗ → M . We are interested in the relation between the cohomology of the twisted de Rham complex H i(Λ•M ⊗ V ,D)
and the compactly supported cohomology of the formal adjoint complex, which happens to be (Λ•M ⊗ V ∗,D), where the
connection D has been extended to V ∗ → M by the rule d(ξ · ψ) = (Dξ) · ψ + ξ · (Dψ), with ξ ∈ Γ (V ∗) and ψ ∈ Γ (V ).
Presuming that M is oriented, which is a prerequisite for integrating top-degree forms, there is a duality pairing between
elements of Γ (ΛpM ⊗ V ) and Γc(Λ

n−pM ⊗ V ∗) given by the formula

⟨ξ, ψ⟩ =


M
⟨ξ ∧ ψ⟩, (61)
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where ⟨(α⊗ξ)∧(β⊗ψ)⟩ = (α∧β)⊗(ξ ·ψ). The formal adjoint relation is established (up to signs) for ξ ∈ Γ (Λn−p−1M⊗V ∗)
and ψ ∈ Γ (ΛpM ⊗ V ) by the identity

d⟨ξ ∧ ψ⟩ = ⟨(Dξ) ∧ ψ⟩ − (−1)n−p⟨ξ ∧ (Dψ)⟩. (62)

Lemma 4. Let U ⊆ M be an oriented contractible open set. Then, generalized Poincaré duality holds, Hp(Λ•M ⊗ V |U ,D) ∼=
Hn−p

c (Λ•M⊗V ∗|U ,D)∗, because all of the cohomology spaces vanish except H0(Λ•M⊗V ,D) ∼= V̄ and Hn
c (Λ

•M⊗V ∗,D) ∼= V̄ ∗.

Proof. As we have already noted in the proof of Proposition 2, a choice of a locally D-flat basis frame for V over U ⊆ M
identifies the twisted de Rham complex with rk V copies of the usual de Rham complex. Since U is contractible, such a
choice is always possible. Moreover, the pairing (61) reduces to the usual pairing between forms and compactly supported
forms of complementary degrees on an oriented manifold. Thus, we can easily conclude that

Hp(Λ•M ⊗ V |U ,D) = Hp(U)⊗ V̄ , (63)

Hn−p
c (Λ•M ⊗ V ∗|U ,D) = Hn−p

c (U)⊗ V̄ ∗. (64)

Recalling that, for contractible U , Hp(U) = 0 except for H0(U) = R and Hn−p
c (U) = 0 except for Hn

c (U) = R, concludes the
proof. �

Lemma 5 (Mayer–Vietoris). Consider two open subsets U,W ⊆ M. We have the following long exact sequences in cohomology
with unrestricted and compact supports, which we shall for brevity denote as H i(−) = H i(Λ•M ⊗ V |−,D) and H i

c(−) =

H i
c(Λ
•M ⊗ V ∗|−,D):

0 H0(U ∪W ) H0(U)⊕ H0(W ) H0(U ∩W )

H1(U ∪W ) H1(U)⊕ H1(W ) H1(U ∩W ) · · ·

(65)

0 H0
c (U ∩W ) H0

c (U)⊕ H0
c (W ) H0

c (U ∪W )

H1
c (U ∩W ) H1

c (U)⊕ H1
c (W ) H1

c (U ∪W ) · · · .

(66)

Proof. Both long exact sequences in cohomology follow from short exact sequences of cochain complexes. These short exact
sequences, where for brevity we write Γ i(−) = Γ (ΛiM ⊗ V |−) and Γ i

c = Γ (Λ
iM ⊗ V ∗|−) are

0 Γ i(U ∪W ) Γ i(U)⊕ Γ i(W ) Γ i(U ∩W ) 0, (67)

0 Γ i
c (U ∩W ) Γ i

c (U)⊕ Γ
i
c (W ) Γ i

c (U ∪W ) 0. (68)

In the first sequence, the maps are restrictions, α → (α|U , α|W ) and (α, β) → (α|U∩W − β|U∩W ). The exactness follows
from the usual ability to restrict and glue together smooth sections over open regions, also known as their sheaf property. In
the second sequence, the maps are extensions by zero, α → (αU

0 , α
W
0 ) and (α, β) → αU∪W

0 − βU∪W
0 . The exactness follows

from the existence of a smooth partition of unity adapted to the cover of U ∪W by U andW .
These maps are clearly compatible with the connection differential operator D and so are cochain maps. The general

connection between short exact sequences of cochain complexes and long exact sequences in cohomology (Appendix B)
gives the desired long exact sequences and concludes the proof. �

Proposition 6. Given a flat vector bundle (V ,D) on an oriented n-dimensional orientable manifold M, the unrestricted
cohomology Hp

= Hp(Λ•M ⊗ V ,D) of the associated twisted de Rham complex and the compactly supported cohomology
Hn−p

c = Hn−p
c (Λ•M ⊗ V ∗,D) of its formal adjoint complex satisfy generalized Poincaré duality:

Hp ∼= (Hn−p
c )∗. (69)

Note the asymmetry of the isomorphism. The reverse identity (Hp)∗ ∼= Hn−p
c also holds when the cohomology vector

spaces are finite dimensional, but in general may not when they are infinite dimensional.
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Proof. In this proof, we shall use induction over a special kind of open cover of M . An open cover (Uk) of M is called good
if it is locally finite, every nonempty finite intersection Uk0 ∩ · · · ∩ Ukm is diffeomorphic to Rn, and it is closed under finite
intersections. In particular, each of the Uk is itself diffeomorphic to Rn and thus contractible. Good covers are known to exist
for any manifold [49, Thm.5.1]. Inducing an orientation on each element of the cover from the orientation on M , Lemma 4
establishes the desired duality relation for any Uk and thus the initial step of the inductive argument.

Next, we show, provided the desired duality relation holds on any finite unionUk0∪· · ·∪Ukm−1 ofm sets, that it also holds
on any finite union Uk0 ∪· · ·∪Ukm ofm+1 sets as well. Of course, we take all such unions to be oriented in away compatible
with the global orientation onM . Let U = Ukm ,W = Uk0 ∪ · · · ∪ Ukm−1 and notice that bothW andW ∩ U are finite unions
of m sets from the cover (recall that the cover is closed under intersections). The fact that the pairing (61), well defined on
a given oriented, open U ⊆ M , descends to cohomology means that we always have a mapping Hp(U)→ Hn−p

c (U)∗, which
may ormay not be an isomorphism. It is in fact an isomorphism onU and, by the inductive hypothesis, also onW andW ∩U .
Combining the long exact sequences of Lemma 5 for W and U together with these maps and isomorphisms, we obtain the
following diagram (notice the arrow reversal by linear duality in the second row):

Hp(W ∪ U) Hp(W )⊕ Hp(U) Hp(W ∩ U) Hp+1(W ∪ U) Hp+1(W )⊕ Hp+1(U)

Hn−p
c (W ∪ U)∗ Hn−p

c (W )∗ ⊕ Hn−p
c (U)∗ Hn−p

c (W ∩ U)∗ Hn−p−1
c (W ∪ U)∗ Hn−p−1

c (W )∗ ⊕ Hn−p−1
c (U)∗

Thus, by the 5-lemma (Appendix B), the map in the center of the diagram is also an isomorphism and the inductive step is
established.

The only problem remaining is that a good cover is not always finite (though it can be chosen to be finite for compact
manifolds). There is a way around that, however. Using a similar argument, one can show that the desired duality holds also
on disjoint countable unions of finite unions of covering sets. It is at this stage that the asymmetry between the cohomologies
with unrestricted and compact supports appears. Then, provided the manifold is second countable, one can choose a much
coarser, yet finite, cover (U ′k). The key property of this cover is that each of the non-empty finite intersections U ′k0 ∩· · ·∩U

′

km
is itself either a finite union of sets from (Uk) or a disjoint countable union of those. The same 5-lemma argument then shows
that the desired generalized Poincaré duality relation Hp ∼= (Hn−p

c )∗ holds on all ofM . The technical details of this argument
can be found in [55, Sec. V.4]. �

3.3.2. Elliptic complexes and Serre duality
Nowwewill discuss generic elliptic complexes, of which both the Calabi and the twisted de Rham complexes are special

cases. The result is essentially the same, though clearlymore general. The arguments are somewhat less elementary and rely
on some background in functional analysis and a result originally due to Serre [56]. The Serre dualitymethod also gives some
more information. Namely, that the cohomology does not change if we replace smooth functions by distributions with the
same supports. Serre’s original work was in the context of the Dolbeault complex in the theory of several complex variables.
A good exposition of this result in the setting of general elliptic complexes can be found in [27].

At this point it is convenient to recall some basic facts of distribution theory [57–59]. Recall that, for any vector bundle
F → M , we can interpret Γ (F) and Γc(F) as locally convex topological vector spaces, with the Whitney weak Fréchet
topology for the former and an inductive limit over supports of similar Fréchet topologies for the latter, with the limit
topology still locally convex but no longer Fréchet (metrizable). These are the usual topologies used in the theory of
distributions. The spaces of distributional sectionsΓ ′(F) andΓ ′c (F) of F , with respectively compact and unrestricted supports,
are defined as topological duals endowed with the strong topology (the usual distributional topology), Γ ′(F) = Γ (F̃∗)∗ and
Γ ′c (F) = Γc(F̃∗)∗. Recall that F̃∗ = ΛnM ⊗ F∗ is the densitized dual bundle; the densitized dual of the densitized dual is
the original bundle. It so happens that, if we stick with the strong topology for dual spaces, the topological dual of Γ ′(F) is
again Γ (F̃∗) and that of Γ ′c (F) is Γc(F̃∗). So the spaces of smooth and distributional sections are reflexive (with respect to the
strong topology). Using the natural pairing

⟨ψ, α⟩ =


M
ψ · α (70)

betweenψ ∈ Γ (F) and α ∈ Γc(F̃∗), well-defined providedM is oriented, we have the natural inclusions Γ (F) ⊂ Γ ′c (F) and
Γc(F) ⊂ Γ ′(F). By the Schwartz kernel theorem, the continuousmapsG : Γc(F1)→ Γ ′c (F) are in bijectionwith bidistributions,
elements G ∈ Γ ′c (F2 � F̃∗2 ), where F2 � F̃∗2 → M ×M is the bundle with total space F2 × F̃∗1 and the obvious projection onto
its base, by the formula

(Gψ)(x) =

M
G(x, y) · ψ(y). (71)

Let π1(x, y) = y and π2(x, y) = x denote the two projections M × M → M . We say that a bidistribution G ∈ Γ ′c (F2 � F̃∗1 )
is properly supported if π1 : suppG→ M is a proper map (the preimage of a compact set is compact). Differential operators
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define properly supported bidistributions, because their support lies on the diagonal ofM ×M by the crucial property that
differential operators preserve supports. On the other hand, properly supported bidistributions need not preserve supports,
though they stillmap compactly supported sections to compactly supported distributions. The amount bywhich the support
of the image grows depends on the size of the support of the bidistribution inM ×M .

Once we have introduced distributional sections, we can extend to them many operators that were previously defined
only on smooth functions. For instance, any linear differential operator f : Γ (F)→ Γ (E) between vector bundles F → M
and E → M can be extended to act on distributions, f : Γ ′(F) → Γ ′(E) or even f : Γ ′c (F) → Γ ′c (E), according to the
following formula:

⟨f [α], ψ⟩ = −⟨α, f ∗[ψ]⟩, (72)

for any ψ ∈ Γc(F̃∗) and α ∈ Γ ′c (F), where f ∗ is the formal adjoint of f and ⟨−,−⟩ is the natural dual pairing between
sections and distributions. Since this natural pairing is non-degenerate, it suffices to define f on the larger domain. Any other
operator defined on smooth sections forwhich the above formula applies can also be extended to distributions, possiblywith
a restriction on their supports.

In particular, the operators of a differential complex (F•, f•) can be extended to distributional sections. Then we can
consider the cohomology of the complex in distributional sections, H i(Γ ′c (F•), f•), which may a priori be different from its
cohomology in smooth sections H i(F•, f•) = H i(Γ (F•), f•), and similarly with compact supports. Below we shall see some
sufficient conditions for the cohomologies in smooth and distributional sections to coincide.

A crucial concept in the general theory of differential complexes is that of a parametrix [27, Ch. 2]. Let the vector bundles
Fi with differential operators fi : Γ (Fi−1) → Γ (Fi) constitute a differential complex (F•, f•) on M . Then, a parametrix is a
sequence of bidistributions Gi ∈ Γ

′
c (Fi−1 � F̃∗i ) such that

idi − Qi = Gi+1 ◦ fi+1 + fi ◦ Gi, (73)

where idi : Γc(Fi)→ Γc(Fi) is the identity map and Qi ∈ Γ (Fi+1 � F̃∗i ) ⊂ Γ
′
c (Fi+1 � F̃∗i ) is a smooth bidistribution. We say

that the parametrix is properly supported if each Gi is a properly supported bidistribution. Obviously, if each Gi is properly
supported, then so is each Qi.

Proposition 7. Let (F•, f•) be an elliptic complex on an oriented manifold M. (i) Then, for any open neighborhood U ⊆ M×M of
the diagonal M ⊂ M ×M, there exists a properly supported parametrix Gi ∈ Γ

′
c (Fi−1 � F̃∗i )with support suppGi ⊆ U. (ii) Then

also, the cohomologies of smooth and distributional sections are isomorphic:

H i(Γ ′c (F•), f•) ∼= H i(F•, f•) and H i(Γ ′(F•), f•) ∼= H i
c(F•, f•). (74)

Proof. (i) The existence of a parametrix for any elliptic complex follows from Corollary 2.1.11 and Theorem 2.1.12 of [27].
The support of an existing parametrix canbe restricted arbitrarily close to the diagonal sinceGχi , definedbyGχi [ψ] = χGi[ψ],
is a parametrix as long as Gi is a parametrix and χ ∈ C∞(M × M) is properly supported with χ ≡ 1 on a neighborhood of
the diagonal.

(ii) By the defining Eq. (73), they are cochain homotopic to the identity operator, with respect to the cochain homotopyGi.
Further, being by hypothesis smooth and by (i) properly supported, they define smoothing operators, Qi : Γ

′(Fi)→ Γc(Fi)
and Qi : Γ

′
c (Fi)→ Γ (Fi), when extended to distributions. It is then straightforward to see that the Qi and the inclusions of

smooth sections in distributional ones (well defined because M is oriented) constitute a homotopy equivalence between
the complexes of smooth (Γ (F•), f•) and distributional (Γ ′c (F•), f•) sections, and similarly for compact supports. Thus, as
desired, these complexes have isomorphic cohomologies. �

Proposition 8 (Serre, Tarkhanov). Given a differential complex (F•, f•), that is not necessarily elliptic, on an oriented manifold M
that is countable at infinity (there exists an exhaustion by a countable sequence of compact sets), let (F̃∗

•
, f ∗
•
) be its formal adjoint

complex. The following are algebraic (the topologies may not agree) isomorphisms of vector spaces

H i(F•, f•)∗ ∼= H i(Γ ′(F̃∗
•
), f ∗
•
), H i(F•, f•) ∼= H i(Γ ′(F̃∗

•
), f ∗
•
)∗, (75)

H i
c(F•, f•)

∗ ∼= H i(Γ ′c (F̃
∗

•
), f ∗
•
), H i

c(F•, f•) ∼= H i(Γ ′c (F̃
∗

•
), f ∗
•
)∗, (76)

where the cohomology vector spaces are endowed with the natural Hausdorff locally convex topology of a quotient of a subspace
of the corresponding space of sections (be it smooth or distributional) and the topological duals are taken with the strong topology.

Proof. The original result of Serre [56] appeared in the context of the Dolbeault differential complex in the theory of several
complex variables. A detailed discussion and proof of the result for general differential complexes can be found in Sections
5.1.1 and 5.1.2 of [27]. In particular, the desired conclusion can be found in Remark 5.1.9 thereof. Further conditions under
which some of the duality isomorphisms are also continuous, and not merely algebraic, can be found there as well. �

Combining the two preceding propositions, it is easy to see that for any elliptic complex (subject to a countability
condition onM) we have the Poincaré-Serre duality relation H i(F•, f•) = H i

c(F̃
∗
•
, f ∗
•
)∗.
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3.4. The Calabi cohomology and homology

Below, we finally make use of the background information summarized in Sections 3.1–3.3 and its consequences for
the Calabi and its formal adjoint complexes, (C•, B•) and (C•, B∗•), which were introduced in 2. Namely, we make precise
the identification between their cohomologies and the sheaf cohomologies of the Killing and Killing–Yano sheaves, K and
KY, introduced in Section 3.1. The hope created by this identification is that the difficult problem of solving systems of
differential equations, which appear in these complexes, can be replaced by the equivalent and potentially easier problem of
computing sheaf cohomologies. The latter problem is potentially easier because of themany availablemethods of computing
sheaf cohomology. Some of which will be discussed in Section 4.

First, we introduce the basic definitions of Calabi cohomology and homology. Let us denote the cohomology of the Calabi
complex (Calabi cohomology) on a pseudo-Riemannian manifold (M, g) of constant curvature as

HC i(M, g) = H i(C•, B•) = H i(Γ (C•), B•). (77)

Let us also denote the cohomology of the formal adjoint Calabi complex with compact supports (Calabi homology)

HCi(M, g) = H i
c(C•, B

∗

•
) = H i(Γc(C•), B∗•). (78)

The naming convention will be justified later by the generalized Poincaré duality relation in Corollary 11. Similarly, we
define the cohomology of the Calabi complex with compact supports (Calabi cohomology with compact supports) as

HC i
c(M, g) = H i

c(C•, B•) = H i(Γc(C•), B•) (79)

and the cohomology of the formal adjoint Calabi complex (locally finite Calabi homology) as

HC lf
i (M, g) = H i(C•, B∗•) = H i(Γ (C•), B∗•). (80)

The following proposition is the main technical tool that we use to establish all other results in this section.

Proposition 9. Consider a pseudo-Riemannianmanifold (M, g) of constant curvature and dimension n. The corresponding Calabi
complex (C•, B•) is elliptic, formally exact and locally exact (except in degree 0). The same is true for its formal adjoint complex
(C•, B∗•) (except in degree n).

Proof. In principle, we would need quite a bit of machinery for a full proof. Instead, we give a sketch of the main ideas
and refer to the literature for technical details. The Calabi complex is actually an instance of a second Spencer sequence
construction [15,16,14,11] applied to the Killing operator B1 = K . This fact is demonstrated in the papers [9,10,8]. These
papers make use of the general construction and properties of the differential complex constituting a second Spencer
sequence demonstrated in [15,16]. In fact, the resulting differential complex gives a formally exact compatibility complex
for the Killing operator, which is also an elliptic complex. This holds since the Killing operator K is itself elliptic (has injective
symbol, which follows from the property of being of finite type, cf. Section 2.4) and formally integrable (contains all of its
integrability conditions) on a constant curvature background.

Amore elementary argument for ellipticity can bemade on representation theoretic grounds (Appendix A.1). The fibers of
the tensor bundles CiM carry irreducible representations of GL(n). Further, as mentioned in Remark 1, the principal symbols
of the differential operators Bi are all GL(n)-equivariant maps σBi : Y(ki)T ∗ ⊗ Ci−1 → Ci or equivalently σpBi : Ci−1 → Ci,
for p ∈ T ∗. By Schur’s lemma, the symbol map σBi is then an isomorphism when restricted to an irreducible summand
of the tensor product representation. The well-known Littlewood–Richardson rules [29,42] for tensor products of GL(n)
representations then show that the Ci irreps have been chosen precisely such that the symbol sequence σpBi is exact for
p ≠ 0. This representation-theoretic line of argument is a special case of the construction of what are known as BGG
resolutions [28].

Finally, local exactness (except in degree 0) can be established by checking, for the Killing operator, a sufficient condition
known as the δ-estimate [27, Sec. 1.3.13]. Equivalently, we can simply invoke Proposition 2, since, being of finite type, the
Killing operator is equivalent to a flat covariant operator (Section 2.4).

Amore elementary proof of local exactnesswas given in the original article by Calabi [1]. He relied on thewell known local
exactness of the de Rham complex and its relation to the simplified form of the complex in the flat (zero curvature) case. The
non-zero curvature casewas handled by embedding it in a flat space and then restricting and extending the relevant sheaves
with respect to this embedding. Unfortunately, unlike the more sophisticated argument above, this simpler argument is
unlikely to generalize, when the Calabi complex is replaced by a more general one.

To finish the proof, we note that the properties of formal exactness and ellipticity are obviously preserved by taking
formal adjoints, so that they apply equally well to the formal adjoint Calabi complex (C•, B∗•). The formal adjoint complex
then serves as the formally exact compatibility complex for the Killing–Yano operator B∗n = KY , which is also regular and
of finite type on constant curvature backgrounds, as discussed in Section 2.4. Thus, repeating the same arguments as above
establishes local exactness (except this time in degree n) for the adjoint complex as well. �
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Corollary 10. There is a formal homotopy equivalence between the Calabi complex (C•, B•) and the twisted de Rham complex
(Λ•M⊗VK ,DK ) resolving the Killing sheaf, H0(C•, B•) = K . The same is true (up to a trivial renumbering) of the formal adjoint
complex and the twisted de Rham complex (Λ•M ⊗ VKY ,DKY ) resolving the Killing–Yano sheaf, Hn(C•, B∗•) = KY.

Proof. We already know that both the Calabi and twisted de Rham complex associated to the Killing operator are formally
exact, locally exact (Propositions 2 and 9) and both resolve the Killing sheaf, since the operators K and DK are equivalent
(Section 2.4). Thus, by Lemma 3, there exists a formal homotopy equivalence (realized by differential operators) between
the two complexes. Noting that the exact same argument (with trivial changes) applies to the formal adjoint Calabi complex
and the Killing–Yano sheaf concludes the proof. �

Corollary 11. Provided the manifold M is countable at infinity (there is an exhaustion by a countable sequence of compact sets)
or is of finite type (has a finite ‘‘good cover’’), we have the following generalized Poincaré duality isomorphisms

HC i(M, g) ∼= HCi(M, g)∗, HC i
c(M, g)

∗ ∼= HC lf
i (M, g), (81)

HC i(M, g)∗ ∼= HCi(M, g), HC i
c(M, g) ∼= HC lf

i (M, g)
∗, (82)

where isomorphisms are taken in the algebraic sense and duality is meant in the topological sense, as described in Proposition 8.

Note that in the case when all cohomology vector spaces are finite dimensional, the distinction between algebraic or
topological isomorphisms and duals is irrelevant.

Proof. There are two ways to establish the desired duality isomorphisms, each relying on slightly different conditions on
M , reflected in the hypotheses. We should note that both require an orientation on M . The existence off a non-degenerate
metric onM implies that it is orientable. We then simply fix an orientation arbitrarily.

The Mayer–Vietoris argument (Proposition 6) establishes the duality isomorphisms

H i(Λ•M ⊗ VK ,DK ) ∼= H i
c(Λ
•M ⊗ V ∗K ,DK )

∗ (83)

and H i(Λ•M ⊗ VKY ,DKY ) ∼= H i
c(Λ
•M ⊗ V ∗KY ,DKY )

∗. (84)

Under the finite type condition on M , an easy modification to the Mayer–Vietoris argument (Propositions 5.3.1 and 5.3.2
of [49]) also shows that each of these cohomology groups is finite dimensional, so the reverse duality isomorphisms hold
as well. Finally, the formal homotopy equivalence of Corollary 10 translates these isomorphisms into the desired duality
relations for Calabi cohomology and homology.

The Poincaré-Serre argument, applies by virtue of the ellipticity of the Calabi and its formal adjoint complexes
(Proposition 9) and the hypothesis of countability at infinity. Combining the results of Propositions 7 and 8, easily establishes
the desired duality isomorphisms directly. �

Corollary 12. Assume the same hypotheses on M as in Corollary 11. The Calabi cohomology and homology, assuming they are
finite dimensional, the following identities hold (with respect to algebraic duals):

HC i(M, g) ∼= H i(K), HC i
c(M, g) ∼= Hn−i(KY)∗, (85)

HCi(M, g) ∼= H i(K)∗ HC lf
i (M, g) ∼= Hn−i(KY). (86)

Note that we do expect the relevant cohomology and homology spaces to be finite dimensional in most applications. If
the cohomology vector spaces happen to be infinite dimensional, then the correct (topological and algebraic) isomorphisms
can be deduced from Corollary 11 and Proposition 8.

Proof. By Proposition 9 and Corollary 10 we already know that the Calabi and its formal adjoint complexes are locally
exact differential complexes that respectively resolve the Killing and Killing–Yano sheaves, K and KY. Then, Lemma 3
establishes the isomorphisms HC i(M, g) ∼= H i(K) and HC lf

i (M, g) ∼= Hn−i(KY). Finally, the duality isomorphisms of
Corollary 11 establish the rest of the desired identities. Note that we have added the finite dimensionality hypothesis only to
avoid explicitly specifying a topology on the relevant cohomology vector spaces, so that the topological and algebraic duals
coincide. �

4. The Killing sheaf and its cohomology

In this section we concentrate on possible effective ways of computing the Killing sheaf cohomology (or rather the
cohomology of any locally constant sheaf) of a pseudo-Riemannian manifold (M, g) of constant curvature. For us, effective
is used somewhat loosely and we take it to mean roughly to either consist of finitely many steps involving only finite-
dimensional linear algebra or to reduce to calculation that has already been done in the literature. In particular, any such
method would be more effective than the brute force approach of trying to solve the systems of differential equations
appearing in the Calabi complex. Since the interest in the cohomology of the Killing sheaf may extend beyond the constant
curvature context, we always discuss themore general situation, specializing to the constant curvature casewhen necessary.
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There are two main possibilities, either the manifold M is simply connected or it is not. They are discussed respectively
in Sections 4.1 and 4.2. In the simply connected case, the sheaf cohomology can be expressed completely in terms of the
de Rham cohomology. The non-simply connected case is more complicated, where several complementary but potentially
overlapping methods may be used. None of them, unfortunately, gives a complete solution.

Crucial to the discussion that follows (see Appendix D for relevant notation and concepts related to G-bundles) is the
notion of the monodromy representation of the fundamental group π = π1(M) of a manifold with respect to a flat
connection D on a vector bundle V → M (cf. Section 2.4). Let us identify π1(M) = π1(M, x) for some x ∈ M . The connection
D gives rise to a notion of parallel transport on V . Since the connection is flat, the parallel transport along a curve connecting
x, y ∈ M depends only on the homotopy class of the path with its endpoints fixed. Therefore, since parallel transport acts
linearly, parallel transport along loops based at x ∈ M induces a representation ρV : π → GL(V̄ ), where V̄ ∼= Vx is the typical
fiber of V → M , called the monodromy representation. Another common term is the holonomy representation. However,
we reserve the term holonomy for the same concept associated specifically to the g-compatible Levi-Civita connection on
M . If V → M is a vector G-bundle, then there necessarily is an associated representation of the structure group on V̄ ,
σV : G→ GL(V̄ ). When the connectionD preserves the G-bundle structure, parallel transport and hencemonodromy factors
through the associated representation. Hence ρV = σV ◦ ρ, where ρ : π → G is the monodromy representation of π in the
structure group.

Recall also that for any manifoldM there exists a unique (up to diffeomorphism) connected, simply connected universal
cover M̃ → M , where the projection map is a surjective local diffeomorphism. In fact, M̃ → M is a π-principal bundle
over M . The principal bundle action of π on M̃ by is called action by deck transformations. Note that M ∼= M̃/π . Deck
transformations, being diffeomorphisms, commutewith the de Rham differential. Hence the action by deck transformations
descends to de Rham cohomology. We call it the deck representation ∆i

: π → GL(H i(M)). The projection to M pulls the
bundle V → M back to Ṽ → M̃ and the connection D to D̃. Since the universal cover is simply connected, the pulled back
bundle trivializes, Ṽ ∼= V̄ × M̃ . Therefore, we have the isomorphism H i(Λ•M̃ ⊗ Ṽ ,D) ∼= H i(M̃) ⊗ V̄ . It is not hard to see
that the two sides are isomorphic not only as vector spaces but also as representations of the fundamental group π , with
the right side transforming as the tensor product of the deck and monodromy representations∆i

⊗ ρV .
Let us fix the assumptions that (M, g) is connected and that its Killing sheaf Kg is locally constant, then concretize the

above ideas to this case. Recall from Section 2.4 that Kg is then resolved by the twisted de Rham complex associated to the
flat vector bundle (VK ,DK ). The typical fiber V̄K of VK → M consists of the germs of local Killing vector fields. Each local
Killing vector field extends to a global one, and hence to an infinitesimal isometry, on the universal cover (M̃, g̃). Thus, we
can identify V̄ with the Lie algebra g of the Lie group G = Isom(M̃, g̃) of isometries of (M̃, g̃).

Infinitesimal isometries act on each other by the formula Luv = [u, v], which corresponds to the infinitesimal adjoint
representation ad : g → End(g). This representation integrates to the adjoint representation Ad : G → GL(g), which is
how finite isometries act on Killing vector fields. Also, it is clear by construction that deck transformations act on (M̃, g̃)
by isometries. Let us denote this representation of the fundamental group π = π1(M) by isometries as ρ : π → G. As
described in Appendix D.3, this information is equivalent to specifying a flat principal G-bundle P → M with monodromy
representation ρ of π in G. Further, it is clear that VK ∼= gP is the vector G-bundle overM associated to P with respect to the
adjoint action Ad of G on g and that DK is the connection associated to the flat principal connection on P . The monodromy
representation of π on V̄K is then the composite adjoint monodromy representation ρV = Adρ = Ad ◦ ρ.

4.1. Simply connected case

The simplest case is when the manifold M is simply connected, that is, its fundamental group π = π1(M) is trivial. Let
the locally constant sheaf F have stalk F̄ so that it defines a flat vector bundle (F ,D), with F̄ the typical fiber of F → M
(Sections 3.1 and 2.4). We know that the twisted de Rham differential complex (Λ•M ⊗ F ,D) is an acyclic resolution of F .
Hence their cohomologies agree. On the other hand, sinceM is simply connected, we can choose a global D-flat basis frame
for F and identify the twisted de Rham complex with rk F = dim F̄ copies of the standard de Rham complex. This argument
proves

Theorem 13. Let (M, g) be a connected, simply connected pseudo-Riemannian manifold with locally constant Killing sheaf Kg ,
resolved by the twisted de Rham complex (Λ•M ⊗ VK ,DK ). Let g ∼= V̄K be the Lie algebra of isometries of (M, g). Then the
following isomorphisms hold:

H i(Kg) ∼= H i(Λ•M ⊗ VK ,DK ) ∼= H i(M)⊗ g. (87)

In particular H0(Kg) ∼= g and H1(Kg) = 0.

4.2. Non-simply connected case

The non-simply connected case is of coursemore complicated andwe can offer only partial results, whichwe summarize
in this paragraph. The simplest sub-case is when the fundamental group π = π1(M) of the pseudo-Riemannian manifold
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(M, g) is finite (Section 4.2.1). The Killing sheaf cohomology is then the π-invariant subspace of the de Rham cohomology
of the universal covering space. If the fundamental group is not necessarily finite, we still have the following general result
for the degree-1 cohomology of constant curvature spaces. We can equate dimH1(Kg) to the dimension of the space of
possible infinitesimal deformations of the metric that preserve the constant curvature condition as well as the value of the
scalar curvature itself. That observationwas alreadymade in the original work of Calabi [1] and in fact prompted his interest
in a resolution of the Killing sheaf Kg . This space of infinitesimal deformations can also be computed as the degree-1 group
cohomology of π with coefficients in a certain representation on the Lie algebra of isometries of the universal cover of M
(Section 4.2.2). Another result helps compute higher degree cohomology groups. The Killing sheaf, being locally constant,
defines a local system or a system of local coefficients onM , a concept well known in algebraic topology. A general result from
the theory of local systems is that the aforementioned group cohomology computes higher Killing sheaf cohomology groups
up to the degree of asphericity of M (Section 4.2.3). Finally, there is a general method for completely computing the Killing
sheaf cohomology based on a presentation of the manifoldM as a finite simplicial set (Section 4.2.4).

4.2.1. Finite fundamental group
The basic idea here is to take advantage of the complete decomposability of representations of a finite group and then

apply Schur’s lemma. As will be clear from the proof, it is the complete decomposability that is important not the finiteness
of π . So the same result actually holds under suitably weaker hypotheses.

Theorem 14. Let (M, g) be a connected pseudo-Riemannian manifold with fundamental group π = π1(M) and Killing sheaf
Kg , resolved by the twisted de Rham complex (Λ•M ⊗ VK ,DK ). Let g ∼= V̄K be the Lie algebra of isometries of the universal cover
(M̃, g̃). If π is finite, we have the following isomorphisms:

H i(Kg) ∼= (H i(M̃)⊗ g)π , (88)

where the superscript π denotes the π-invariant subspace with respect to the representation∆i
⊗ Adρ , the tensor product of the

deck and composite adjoint monodromy representations. In particular H0(Kg) ∼= gπ .

Proof. Consider the spaces of sectionsΩi = Γ (Λ
iM̃ ⊗ ṼK ), where ṼK → M̃ is the pullback of VK → M along the universal

covering projection M̃ → M . Let D̃K denote the pullback of the DK . As we have already discussed at the top of Section 4,
this pulled back bundle is trivial, ṼK ∼= g × M . Moreover, by simple connectedness of M̃ and Theorem 13, we have the
isomorphism H i

= H i(Ωi, D̃K ) ∼= H i(M̃)⊗ g.
As also discussed at the top of Section 4, the spaces Ωi carry representations of the fundamental group π , which

also descends to the cohomologies H i. Since π is finite, it is well known that any representation thereof is completely
decomposable [60], that is, any subrepresentation has a direct sum complement subrepresentation. So, the subspace
Ωπ

i ⊂ Ωi invariant under the action π (every element of π acts as the identity operator) has a direct sum complement
Ω π̂

i , so thatΩi ∼= Ω
π
i ⊕Ω

π̂
i . This direct sum induces the short exact sequence

0 Ωπ
i Ωi Ω π̂

i 0. (89)

It is straightforward to note that, by construction of the universal cover M̃ → M , the π-invariant subcomplex (Ωπ
i , D̃K ) on

M̃ is in fact cochain isomorphic to the complex (Γ (Λ•M ⊗ VK ),DK ) on M . Therefore the desired cohomology groups are
H i(Λ•M ⊗ VK ,DK ) ∼= H i(Ωπ

•
, D̃K ).

The complementΩ π̂
i naturally does not contain any non-zero vectors invariant under the action of π . In representation

theoretic terminology, these two complementary subspaces are disjoint. By Schur’s lemma [61], the only equivariant map
(intertwiner) between any two disjoint representations is the zero map. Note that the differentials D̃K and the maps in the
short exact sequence (89) are in fact π-equivariant. By the general machinery of homological algebra (Appendix B) the short
exact sequence (89) induces the long exact sequence

0 H0
π H0 H0

π̂

H1
π H1 H1

π̂
· · ·

(90)

where H i
π = H i(Ωπ

•
, D̃K ), H i

π̂
= H i(Ω π̂

•
, D̃K ) and all the maps are also π-equivariant. It is clear that the representations

carried by H i
π and H i

π̂
are also disjoint. Therefore, the maps connecting the rows of diagram (90) are all zero. In other words,

each of the rows becomes a short exact sequence on its own. Invoking again complete decomposability of representations
of π , we can write H i ∼= H i

π ⊕ H i
π̂
and hence identify H i

π
∼= (H i)π with the subspace of H i on which π acts trivially.
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Collecting the above arguments together, while recalling the sheaf cohomology identity H i(Kg) ∼= H i(Λ•M ⊗ VK ,DK ),
we obtain the isomorphismH i(Kg) ∼= (H i(M̃)⊗g)π . Noting the special casesH0(M̃) = R andH1(M̃) = 0, as in Theorem 13,
concludes the proof. �

4.2.2. Degree-1 cohomology
Consider a 1-parameter family of n-dimensional pseudo-Riemannian manifolds (M, g(t)) where each g(t), for t in

some neighborhood of zero, has constant curvature, with scalar curvature independent of t: Riemann tensor equal to
k

n(n−1)g(t) ⊙ g(t). Let g(0) = g and ġ(0) = h. Then the linearization of the identity R[g(t)] − k
n(n−1)g(t) ⊙ g(t) = 0

at t = 0 will give (cf. Section 2.2)

Ṙ[h] − k
2

n(n− 1)
(g ⊙ h) = −

1
2
C2[h] = 0. (91)

In other words, h is a Calabi 1-cocycle. It is possible that not every Calabi 1-cocycle gives rise to an actual 1-parameter family
of deformations, since there may be algebraic obstructions3 to solving for higher order terms in the expansion parameter
t . However, at the infinitesimal level, there are no other conditions and we can identify infinitesimal deformations with
Calabi 1-cocycles. If the deformation family g(t) is trivial, induced by a 1-parameter family of diffeomorphisms of the
manifold M , then it is well known that h = K [v] for some 1-form v (vector field generating the diffeomorphism family,
with index lowered by the metric g), in other words a Calabi 1-coboundary. It is easy to see that Calabi 1-coboundaries can
be identified with infinitesimal trivial deformations. Therefore, the Calabi cohomology vector space HC1(M, g), and hence
the Killing cohomology vector space H1(Kg) isomorphic to it, is in bijective correspondence with the space of infinitesimal
deformations of the metric g within the space of constant curvature metrics of scalar curvature k, modulo infinitesimal
diffeomorphisms.

There is another way to look at this infinitesimal deformation space. It is well known that the only geodesically complete,
simply connected, constant curvature spaces are the pseudo-Euclidean (k = 0), pseudo-spherical (k > 0) and pseudo-
hyperbolic (k < 0) spaces [63, Sec. 2.4]. In Riemannian signature, these are respectively the ordinary Euclidean, spherical
and hyperbolic spaces. In Lorentzian signature, these are respectively the Minkowski, de Sitter and anti-de Sitter spaces.
Thus, the elements of a family (M, g(t)) of geodesically complete, constant curvature, pseudo-Riemannian manifolds of
fixed scalar curvature k all have isometric universal covers (M̃, g̃). Moreover, since the action of the fundamental group
π = π1(M) on its universal cover via deck transformations is by isometries, there is an injective group homomorphism
π → G = Isom(M̃, g̃), so that we have a subgroup ρ(π) ⊆ G that acts on M̃ properly and discontinuously [63, Sec. 1.8].
Conversely, for any subgroup of π ′ ⊆ G that acts on M̃ properly and discontinuously the quotient (M ′, g ′) = (M̃, g̃)/π ′ will
be amanifold of the same constant curvature, but with fundamental groupπ ′ = π1(M ′). So, we have already noticed that all
(M, g)with constant curvature arise in this way. Of course, any two subgroups π ′, π ′′ ⊆ G that are conjugate, π ′′ = aπ ′a−1
for some a ∈ G, give rise to isometric quotients. In fact, we have just argued that the infinitesimal deformations of the
representation ρ : π → G, up to conjugation by G, are in bijection with infinitesimal constant curvature deformations of
the metric (M, g). It is well known that the deformations of the representation ρ are in bijection with certain degree-1
group cohomology of the fundamental group π . On the other hand, we have already seen that deformations of the constant
curvature spaces are parametrized by the Killing sheaf cohomology H1(Kg). Thus, computing the group cohomology may
be an effective way of computing the Killing sheaf cohomology, at least in degree-1. The details of the definition of the
representation ρ are described at the top of Section 4 and are also subsumed by the more general discussion below.

This connection between the degree-1 Killing sheaf cohomology, deformations of the geometry and group cohomology
of the fundamental group π extends far beyond the case of manifolds of constant curvature. We base what follows on the
remark at the top of Section 4 and the contents of Appendix D. If (M̃, g̃) is the universal cover of (M, g) and G = Isom(M̃, g̃)
with Lie algebra g, then there is a naturally defined flat principal G-bundle P → M . Then, the infinitesimal deformations
of this flat principal G-bundle are in bijections with H1(Kg), the degree-1 Killing sheaf cohomology group. That is because
the flat vector bundle (VK ,DK ), whose twisted de Rham complex resolves the Killing sheaf, is isomorphic to the associated
bundle gP → M with connection D induced by the flat principal connection on P . Recall that the fibers of gP transform
under the adjoint representation Ad : G→ GL(g) and that parallel transport with respect to the flat connection on P defines
a representation ρ : π → G of the fundamental groupπ = π1(M). Their composition Adρ = Ad◦ρ, as alreadymentioned at
the top of Section 4, is known as the composite adjoint monodromy representation. In the case of spaces of constant curvature,
the infinitesimal deformations of the flat principal bundle P → M are the same thing as the infinitesimal deformations of
the given constant curvature metric, fixing the value of the curvature.

Theorem 15. Given the notations and hypotheses of the above paragraph, the following isomorphisms between the Killing sheaf
cohomology and group cohomology of π with coefficients in Adρ hold:

H0(Kg) ∼= H0(π,Adρ) ∼= gπ , H1(Kg) ∼= H1(π,Adρ). (92)

3 The study of these obstructions follows the general ideas outlined by Kodaira and Spencer [12,13]. See also the related phenomenon of linearization
instabilities [62].
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This result is a direct consequence of Proposition 17 of Appendix D. Unfortunately, we cannot use the same methods
to establish isomorphisms between the group and sheaf cohomologies in higher degrees. See, however, Section 4.2.3.
The connection between group cohomology of π and deformations of a flat principal bundle is well known, cf. [64]. The
connection between, specifically, the cohomology of the Killing sheaf, infinitesimal deformations of the corresponding
principal bundle, and group cohomology seems to be less well known, but is mentioned explicitly in [65, App. A.2].

4.2.3. Cohomology with local coefficients
We have just noted, in Section 4.2.2, a geometric relation between degree-1 locally constant sheaf cohomology and

cohomology of the fundamental group. A more general connection between the cohomology of a locally constant sheaf, or
equivalently cohomology with coefficients in a local system [66, Ch. VI], and group cohomology of the fundamental group
has also been noticed in pure algebraic topology. In fact, that is how the notion of group cohomology first arose.

The original goal was to calculate the cohomology of a space (with or without coefficients in a non-trivial local system)
in terms of data specifying its homotopy type. Following some early work by Hurewicz, Hopf and Eilenberg, Eilenberg and
MacLane [67] introduced what are now known as K(1, π) spaces (topological spaces with π1 = π and πi = 0 for all
i > 0) and computed all of their cohomology groups by introducing an algebraic construction based on the knowledge of
the group π . We now call this construction group cohomology [68]. They further showed that the same construction works
also for any topological space M , not just a K(1, π), for the cohomologies in degree-i, with 0 < i ≤ p, as long as the space
M is p-aspherical, πi = 0 for 0 < i ≤ p. This result, applied to the Killing sheaf gives the following

Proposition 16. Let (M, g) be a connected pseudo-Riemannian manifold with locally constant Killing sheaf Kg and universal
cover (M̃, g̃). Denote G = Isom(M̃, g̃) the group of isometries of the universal cover and let g be its Lie algebra. The fundamental
group π = π1(M) acts on g via the composite adjoint monodromy representation Adρ : π → GL(g). If the manifold M is
p-aspherical, meaning πi(M) = 0 for 0 < i ≤ p, then we have the following isomorphisms:

H i(Kg) = H i(π,Adρ) for 0 ≤ i ≤ p. (93)

For higher degree cohomology there are other contributions to the homology groups. There is still a homomorphism
H i(π,Adρ)→ H i(Kg), but it need no longer be an isomorphism [46, Sec. 1.4.2].

Later, Postnikov [69,70] proposed a full solution for algebraically determining all the cohomology groups of a space based
on its homotopy type. Postnikov’s method encodes the full homotopy type of a space in terms of their homotopy groups
and certain additional algebraic data known as a Postnikov system or tower. This construction is currently more commonly
known in its topological form [66, Ch. IX]. For p-aspherical spaces and cohomology in degree i, with 0 < i ≤ p, Postnikov’s
construction coincideswith group cohomology. In general, the two constructions do differ in degrees higher than the degree
of asphericity.

Unfortunately, both Postnikov’s encoding of the homotopy type and his algebraic reconstruction of the cohomology are
rather complicated and do not appear to have gained much popularity. They seem to be fully described only in his original
monograph [70] or its translation [71], both being rather obscure references. At the moment, it is not clear to us what is the
modern state of the art in terms of reconstructing the cohomology of a space with coefficients in a local system in terms of
the space’s homotopy type.

4.2.4. Simplicial set cohomology
The last mathematical tool, which we will discuss, that can aid in the computation of the cohomologies of a locally

constant sheaf is simplicial cohomology with local coefficients. The idea is to substitute the underlying manifold M with
a combinatorial structure like a simplicial complex or a simplicial set. Then, provided the combinatorial model is finite, the
corresponding cohomology theory reduces to the computation of the cohomology of a finite dimensional cochain complex,
and thus to finite dimensional linear algebra. We defer to the discussion in [72, Sec. I.4.7–10] for technical details.

A disadvantage of thismethod is that finite combinatorialmodels only cover the case of compactmanifolds. Non-compact
manifolds require either an infinite combinatorialmodel or a non-trivial extension of the formalism. Another inconvenience,
besides the need for an explicit decomposition of M into simplices, is the need to define a discrete analog of parallel
transport on the simplicial model to reproduce the composite adjoint monodromy representation Adρ . That is usually done
by associating a copy of g to each vertex of the simplicial model for M and explicitly assigning a coherent set of linear
isomorphisms between these copies to the edges connecting them, such that the composition of the isomorphisms of the
edges along a closed loop is equal to the Adρ action of the corresponding element of π . These choices may be simplified if
all vertices could be collapsed into a single one, which is allowed for simplicial sets. Such a construction is always possible
whenM is compact and results in a so-called reduced simplicial set [73].

5. Application to linearized gravity

Recently, the symplectic and Poisson structure of linear classical field theories has been studied by the author within
a very general framework [18,17] (see also [74–76] for related work), which admits in particular any linear field theory
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whose gauge fixed equations ofmotion can be formulated as a hyperbolic PDE systemwith possible constraints and residual
gauge freedom. Certain sufficient geometric conditions need to be satisfied for a field theory to fit into that framework. The
framework can then precisely characterize the degeneracies of the presymplectic and Poisson tensors on the solution space
of the theory. These sufficient conditions require the gauge generator and the constraint operator to fit into differential
complexes and the degeneracies of the presymplectic and Poisson tensors are then characterized using the cohomology of
these complexes. Once known, these presymplectic and Poisson degeneracies are known to be of importance in classifying
the charges, locality, superselection sectors and quantization of the corresponding classical theory.

The well known examples of Maxwell electromagnetism and Maxwell p-forms [20,21,24] fit into this framework
[18, Sec. 4.2], invoking thewell knowndeRhamcomplex. Linearized gravity on a constant curvature Lorentzianmanifold also
fits into this framework, with the role of the de Rham complex replaced by the Calabi complex or, as appropriate, the formal
adjoint Calabi complex. For linearized gravity on an arbitrary background,wewouldneed tomakeuse of different differential
complexes. The Calabi complexwould be replaced by complexes defined by the property that they (at least formally) resolve
the sheaf of Killing vectors on the given background (cf. Section 3.2). The corresponding formal adjoint complexes would
play a role as well. This connection to the Killing sheaf, even without explicitly knowing the needed differential complexes,
shows that the Killing sheaf cohomology plays a similar role both in the constant curvature context andmore generally. Thus
the ability to compute the Killing sheaf cohomology in as many circumstances as possible (as discussed in Section 4) should
take us a large part of the way towards understanding the presymplectic and Poisson degeneracies of linearized gravity on
general backgrounds. Unfortunately, about half the desired information would still be missing, since it is not clear which
sheaf cohomology theory would control the cohomology of the formal adjoint differential complex. In the case of constant
curvature, we were able to identify it as the cohomology of the sheaf of rank-(n−2) Killing–Yano tensors, which is resolved
by the formal adjoint Calabi complex (Section 2.3). It is currently not clear how to identify its analog in the case of a general
background, without knowing the full differential complex that (formally) resolves the sheaf of Killing vectors.

Now, specialized to the case of linearized gravity on a constant curvature background (M, g), the analysis of [18,17]
concludes that the presymplectic and Poisson tensors are actually non-degenerate (with spacelike compact support for
solutions and compact support for smeared observables) if and only if the following two conditions are satisfied: (global
recognizability) a certain bilinear pairing between degree-1 Calabi cohomologywith spacelike compact supports and degree-
1 Calabi homology, (global parametrizability) a certain bilinear pairing between on-shell degree-1 Calabi cohomology with
spacelike compact supports and on-shell degree-1 timelike finite Calabi homology.

The descriptions of off-shell or on-shell Calabi cohomologies with spacelike compact supports, HC i
sc or HC

i
�,sc , and of off-

shell or on-shell timelike finite Calabi homology, HC tf
i or HC�,tf

i go beyond the scope of the current work. However, they
are defined and studied in detail in [77] (similar ideas appear also in [24]). In fact, the results of [77] show how to express
these non-standard cohomologies in terms of the standard ones with unrestricted or compact supports, and similarly for
homology. Recall also (Section 3.4) that the latter are isomorphic to appropriate cohomologies (or their linear duals) of
the Killing or Killing–Yano sheaves, Kg or KYg . Using all of these results we are able to translate the non-degeneracy
requirements as follows: (global recognizability) a certain bilinear pairing between

HC1
sc(M, g) ∼= Hn−2(M,KYg)

∗ (94)

and HC1(M, g) ∼= H1(M,Kg)
∗ (95)

is non-degenerate, (global parametrizability) a certain bilinear pairing between

HC1
�,sc(M, g) ∼= Hn−1(M,KYg)

∗
⊕ Hn−2(M,KYg)

∗

and HC�,tf
1 (M, g) ∼= H1(M,Kg)

∗
⊕ H0(M,Kg)

∗

is non-degenerate. Notice thatwe have succeeded in expressing the vector spaces onwhich these pairings are defined purely
in terms of Killing and Killing–Yano sheaf cohomologies.

Checking non-degeneracy of course requires an explicit expression for the required bilinear pairings. Such expressions
can be obtained from the general framework of [18,17]. However, there are two cases were we do not need such detailed
information, and these are the ones we shall content ourselves with here. For instance, if all the relevant cohomology vector
spaces are trivial, then the only possible, trivial bilinear pairing is automatically non-degenerate. On the other hand, if the
paired vector spaces have different dimensions, then every possible pairing between them must be degenerate.

We conclude this section by listing several well known Lorentzian backgrounds for which themethods of Section 4 allow
us to determine all or a few of the cohomologies of the Killing sheaf. For the reasons discussed above, we make note of the
Killing–Yano sheaf cohomologies only for constant curvature backgrounds.

The easiest case is that of simply connected spacetimes. Then, the Killing sheaf cohomology is just the de Rham cohomol-
ogy tensored with the Lie algebra of global isometries (Section 4.1), with an analogous result for any other locally constant
sheaf. Many of the well known exact solutions are in fact defined on simply connected underlying manifolds, including
Minkowski space, black hole solutions and cosmological solutions. A few explicit examples are listed in Table 2. Note that
only the Minkowski and de Sitter spaces are of constant curvature, so that the Calabi complex could be defined on them. For
these backgrounds, it makes sense to also compute the Killing–Yano sheaf cohomologies H i(KY). However, since we know
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Table 2
A list of some well known, simply connected solutions of (cosmological) vacuum Einstein equations, together with their
topology and non-vanishing dimensions of Killing or Killing–Yano sheaf cohomologies. Note that b0 always counts the
number of independent global Killing vectors, and similarly for c0 . The Tangherlini solutions generalize the Schwarzschild
one to higher dimensions and the Myers–Perry solutions do the same for Kerr [78]. For the latter, N counts the number
of rotational symmetries, which varies depending on the variant of the solution. We only consider the exterior regions for
black hole solutions.

Spacetime Topology bi = dimH i(K) c i = dimH i(KY)

Minkowski Rn b0 = n(n+1)
2 c0 = n(n+1)

2

Open FLRW Rn b0 = (n−1)n
2

de Sitter R× Sn−1 b0 = bn−1 = n(n+1)
2 c0 = cn−1 = n(n+1)

2

Closed FLRW R× Sn−1 b0 = bn−1 = (n−1)n
2

Schwarzschild R2
× S2 b0 = b2 = 4

Tangherlini R2
× Sn−2 b0 = bn−2 = (n−2)(n−1)

2

Kerr R2
× S2 b0 = b2 = 2

Myers–Perry R2
× Sn−2 b0 = bn−2 = 1+ N

Table 3
Knownvalues of bi = dimH i(Kg ) for a generic spatially homogeneous spacetime (M, g)with given topology
and symmetry properties. See text for more details.

M π1(M) Bianchi sym. Additional sym. b0 b1

R× T 3 Z3 R3 1 3 6
R× T 3 Z3 VII(0) 1 2 4
R× T 3 Z3 R3 SO(2) 3 6
R× T 3 Z3 R3 SO(3) 3 5

that the number of linearly independent rank-(n − 2) Killing–Yano tensors on these spaces is the same as the number of
linearly independent Killing vectors (Section 2.3), the cohomology vector spaces are isomorphic, H i(KY) ∼= H i(K).

In the non-simply connected case, we can rely on the results of Sections 4.2.1–4.2.3, according towhichwe can equate the
Killing sheaf cohomologies with the group cohomology of the fundamental group with coefficients in the composite adjoint
monodromy representation, at least up to the degree of asphericity of the underlying spacetime manifold. Unfortunately,
there does not seem to exist a comprehensive list of exact solutions of Einstein’s equations indexed by spacetime topology.
So it takes some effort to find explicit examples of exact solutions on non-simply connected spacetimes. A rich source of
examples comes from quotients of simply connected spacetimes (such as those mentioned in the preceding paragraph) by
a discrete, freely acting subgroup π of the isometry group. The quotient is a manifold because the action of π is free and
the metric descends to the quotient because the action of π on the original spacetime is by isometries. The group π then
becomes the fundamental group of the quotient.

A nearly exhaustive study of possible quotients of 4-dimensional cosmological solutions (meaning spatially
homogeneous ones) has been carried out in [79–81]. A complete presentation of the results is rather complicated and
is relegated to the original references. A particular cosmological solution (M, g) is identified by (a) the topology of the
spacetimeM , (b) the topology and isometry groupof the universal cover (M̃, g̃), (c) a number of continuousmetric parameters
specifying g̃ , and (d) a number of continuous moduli (or Teichmüller parameters) specifying the quotient class. There may
also be additional discrete parameters, but we ignore them here, since they do not affect the number of continuous
parameters. According to the discussion of Section 4.2.2, the number of moduli (denoted by Nm in [81]) is in fact equal4 to
b1 = dimH1(Kg). We shall not specify any metric parameters, since, as long as they take generic values they do not affect
the number of moduli. For simplicity, we only consider the examples with toroidal spatial topology M = R × T 3, where
T 3
= S1 × S1 × S1. Hence, the fundamental group is π1(M) = Z3 and the universal cover is R4. The (identity component)

of the isometry group of (M̃, g̃) is then a semidirect product of a 3-dimensional transitive Bianchi group and an additional
connected Lie group. Let us concentrate on the cases of either Bianchi type I ∼= R3 or VII(0). Under these conditions, we
can read off all the remaining possibilities and information form Table IV of [81]. They are summarized in Table 3. Note that
b0 = dimH0(Kg) counts the number of independent global Killing vectors on (M, g). The number of independent Killing
vectors on (M̃, g̃) counts the dimension of the Bianchi group (always 3) and the dimension of the additional symmetry
group. The number of independent Killing vectors not broken by compactification to T 3 can be deduced from the explicit

4 The space of moduli may not always be a smooth manifold, but may have algebraic singularities. Still, the number of moduli is the dimension of the
generic subset of the moduli space, which is a smooth manifold. This dimension is also equal to b1 = dimH1(K). At singular points of the moduli space,
b1 may actually exceed the number of moduli, so at those points a more careful analysis is needed.
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presentation of the isometry groups Isom(M̃, g̃) and the discrete subgroups effecting the compactification, which for the
examples given in Table 3 in [81, Sec. 3]. Many more examples can be read off from Tables IV, VII and Section 5.3 of [81].

It appears difficult to locate literature on explicit calculations that are equivalent to computing higher Killing sheaf
cohomologies for other non-simply connected spacetimes.

6. Discussion and generalizations

We have reviewed in detail the algebraic, geometric and analytical properties of the Calabi differential complex [1].
In Section 2 we have defined the nodes of the complex in terms of Young symmetrized tensor bundles and given explicit

formulas for the differential operators between them, verifying through explicit calculations that they in fact constitute
a complex (Appendix A). Such explicit formulas are otherwise difficult to extract from the existing literature, especially in
terms of tensor variables, as opposed tomoving coframe variables used in Calabi’s original work. Further, our formulas work
for pseudo-Riemannian backgrounds of any signature, generalizing from the standard purely Riemannian context. We have
also identified a differential operator cochain homotopy (Eqs. (2), (11)–(16)) that generates a cochainmap from the complex
to itself with a Laplacian-like principal symbol. This cochain homotopy map may be new. However, its lower order terms
coincide with well known geometric operators known from the theory of linearized gravity (General Relativity). Another
interesting and likely novel observation involved the formal adjoint complex (Section 2.3), whose initial differential operator
turned out to be equivalent to the rank-(n − 2) Killing–Yano operator, in analogy with the Killing operator in the original
complex.

In Sections 3 and 4 we showed that the Calabi complex is elliptic and locally exact. Hence, it resolves the sheaf of Killing
vectors on the given constant curvature pseudo-Riemannian manifold. The same is true for the formal adjoint complex and
the sheaf of rank-(n− 2) Killing–Yano tensors. Thus the cohomology of the Calabi complex could be expressed in terms of
the Killing sheaf cohomology, while that of its formal adjoint in terms of the Killing–Yano sheaf cohomology. When a sheaf
is locally constant (covering the relevant cases on constant curvature pseudo-Riemannian manifolds), its cohomology can
be effectively computed in many circumstances using tools from algebraic topology, thus enabling effective computation of
the Calabi cohomology. These methods were reviewed in Section 4, specialized to the Killing sheaf.

Finally, in Section 5, we discussed a physical application that motivated this work. Jointly, the results collected in this
work, together with those of [77,18,17] imply that knowledge of Killing and Killing–Yano sheaf cohomologies allows some
degree of control over the degeneracy subspaces of the presymplectic and Poisson structureswithin the classical field theory
of linearized gravity on constant curvature backgrounds.

Unfortunately, the above results do not apply directly to linearized gravity on arbitrary Lorentzian manifolds, only those
that have constant curvature and where the Calabi complex is defined. However, the Calabi complex serves as a case study
for themore general situation and the same results partially generalize to general backgrounds. In particular, we can already
make the following conclusions. In general, the Calabi complex will have to be replaced by a different differential complex,
which will likely depend on some of the algebraic characteristics of the Lorentzian manifold (such as its isometries and the
algebraic type of the curvature tensor and its derivatives). This complex would be identified, as was the Calabi complex
[9,10], by the property of being a formally exact compatibility complex of the Killing operator. Such a complex is known to
exist under general conditions and also have the property of being elliptic, since the Killing operator is itself elliptic [15,16].
Further, under a generic condition, it can be shown to be locally exact (Section 3.2). The local exactness property connects the
cohomology of this complex to that of the Killing sheaf, which can be effectively computed, at least in many circumstances,
when the sheaf is locally constant. Unfortunately, one piece of the puzzle remains incomplete. The connection between
the cohomology of the formal adjoint complex and sheaf cohomology depends on the knowledge of the initial operator in
that differential complex, which is the adjoint of the final operator of the differential complex resolving the Killing sheaf. In
the Calabi case it is equivalent to the Killing–Yano operator. However, since the differential complex is expected to change
depending on the Lorentzian manifold, so is this initial operator. Thus, it is not clear which sheaf cohomology will replace
the Killing–Yano sheaf in the general case.

Hence, in future work, it would be very interesting to investigate these differential complex resolutions of the Killing
sheaf, especially computing their differential operators explicitly. Besides the general existence results [15,16], such a
complex has already been constructed for locally symmetric spaces (∇aRbcde = 0) [9,10]. Also, heuristic arguments suggest
that they could be partially constructed by linearizing the so-called ‘ideal’ characterizations of certain exact families of
solutions of Einstein’s equations. These include Schwarzschild [82], Kerr [83] and some perfect fluid [84] solutions. An ‘ideal’
characterization consists of a number of tensor fields, locally and covariantly defined using the metric and its derivatives,
which vanish iff the given metric is locally isometric to a particular geometry from the desired family. For instance, the
vanishing of the Riemann tensor R is an ideal characterization of the flat geometry, while the vanishing of the corrected
Riemann tensor R− R̄ (Section 2.2) does the same for a constant curvature geometry. It should be clear from these examples,
that the linearization of the tensors that constitute such an ideal characterization gives an operator whose compositionwith
the Killing operator is formally exact. At the moment it is not completely clear what geometric interpretation can be given
to subsequent differential operators in the desired formally exact differential complex.

Finally, one can easily imagine situations where the number of independent solutions to the Killing equations changes
over the background pseudo-Riemannian manifold. The Killing sheaf is then no longer locally constant and many of the
techniques described in this work are no longer applicable. In those cases, perhaps some insight can be gained from the
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theory of constructible sheaves [85, Ch. 4], [48, Ch. VIII], which are allowed to deviate from being locally constant in a
controlled way.
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Appendix A. Young tableaux and irreducible GL(n) representations

A.1. Basic background

AYoungdiagramof type (r1, r2, . . .)with k cells consists of a number of rows of cells of non-increasing lengths ri, ri+1 ≤ ri,
such that


i ri = k. Example:

type (3, 3, 1) or (32, 1), diagram .

Given a Young diagramwith k cells, an instance of the corresponding GL(n) irrep can be realized as the image of the space of
covariant k-tensors after two projections: assign an independent tensor index to each cell of the diagram, symmetrize over
each row, anti-symmetrize over each column. The composition of these operations is called a Young symmetrizer, which we
will denote by Yd, where d = (r1, r2, . . .) is the type of the Young diagram. It will be convenient for us to group the indices
of a symmetrized tensor by the columns of the corresponding diagram, separating them by a colon. For instance, we write
babc:de corresponding to the filling

a d
b e
c

.

Here’s an example of a simple Young symmetrizer:

Y(2,1)[t]ab:c =
1
4
(tabc + tcba − tbac − tabc). (96)

Different permutations of tensor indices filling a Young diagram create distinct Young symmetrizers, unless the
permutation preserves the columns. The images of the Young symmetrizer for given diagram type with k-cells are all
isomorphic as GL(n) representations, but are not necessarily all identical as subspaces of the space of covariant k-tensors.
The reason for this observation is that the space of covariant k-tensors is a reducible GL(n) representation that decomposes
into a sum of irreps corresponding to all possible diagram types with k-cells, but with, in general, non-trivial multiplicities.
Both the dimension and themultiplicity of each occurring irrep can be computed with the so-called hook formulas. The hook
length for a given cell is the number of cells constituting a hook with vertex at the given cell, extending to the right and
down.Multiplicity: k! divided by the product of the hook lengths for each cell. Dimension: the product of shifted dimensions
for each cell, divided by the product of hook lengths for each cell; the shifted dimensions of the cells are obtained by placing
n in the top left cell, then always increasing by 1 to the right and decreasing by 1 down. Example:

hook lengths 5 3 2
4 2 1
1

, shifted dimensions (n = 4) 4 5 6
3 4 5
2

,

multiplicity:
7!

(5 · 3 · 2)(4 · 2 · 1)(1)
= 21, dimension:

(4 · 5 · 6)(3 · 4 · 5)(2)
(5 · 3 · 2)(4 · 2 · 1)(1)

= 60.

Note that when the number of rows exceeds n, the corresponding representation becomes zero-dimensional. This clearly
follows from the dimension formula and from the more elementary observation that there do not exist non-trivial fully
antisymmetric tensors of rank greater than n, the dimension of the fundamental representation of GL(n).

By construction, it is clear that every Young symmetrized subspace of covariant k-tensors is fully antisymmetric in the
indices corresponding to each column of its Young diagram. However, this subspace will actually be even smaller and thus
satisfymore identities. A complete set of identities selecting an irreducibleGL(n) sub-representation of the space of covariant
k-tensors identified by a diagramof type (r1, . . . , rl) filledwith indices aik (k being the rownumber and i the columnnumber)
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consists of (i) intracolumn exchange identities and (ii) intercolumn exchange identities. The exchange of any two indices
within a column changes the tensor by a sign. All such exchanges constitute the intracolumn identities. Let us define a two-
column exchange as follows. Fix two columns i < j and select the top k indices of column j. A two column-exchange consists
of a swap between a set of k indices from column i and the top k indices of column j, without altering the internal order
the substituted set of indices. For a fixed choice of such i, j, k an intercolumn identity consists of the equality of the tensor
with unpermuted indices with the sum over all corresponding two-column exchanges. All such exchange identities with
consistent choices of i, j, k constitute the intercolumn identities.

There already exists a special notation for antisymmetrization of a group of indices: inclusion in square brackets,
[ai1a

i
2 · · · ]. Let us introduce a special notation for the sum over all two column exchanges: fixing integers i < j and k, we

shall enclose the indices of column i in curly braces, {ai1a
i
2 · · · }, as well as the top k indices of column j, {aj1 · · · a

j
k}a

j
k+1 · · · .

We give explicit examples of intracolumn and intercolumn identities for Young diagrams of type (2, 2) and (2, 2, 1):

rab:cd = r[ab]:cd =
1
2
(rab:cd − rba:cd), (97)

rab:cd = rab:[cd] =
1
2
(rab:cd − rab:dc), (98)

rab:cd = r{ab}:{c}d = rcb:ad + rac:bd, (99)

rab:cd = r{ab}:{cd} = rcd:ab, (100)

babc:de = b[abc]:de =
1
3
(ba[bc]:de + bb[ca]:de + bc[ab]:de), (101)

babc:de = babc:[de], (102)

babc:de = b{abc}:{d}e = bdbc:ae + badc:be + babd:ce, (103)

babc:de = b{abc}:{de} = bdec:ab + bdbe:ac + bade:bc . (104)

It is remarkable, upon noticing the identity rab:cd − r{ab}:{c}d = 3r[ab:c]d, that according to Eqs. (97)–(100) a tensor rab:cd with
Young symmetry type (2, 2) has the same algebraic symmetries as a Riemann curvature tensor (antisymmetry in ab and
cd, interchange of ab with cd, and the algebraic Bianchi identity). This fact is well-known [86], but not often mentioned in
textbooks on relativity.

A.2. Special algebraic and differential operators

Now, suppose that we are working on an n-dimensional pseudo-Riemannian manifold (M, g), with Levi-Civita connec-
tion ∇ . As in Section 2.1, the Young symmetrizes introduced above define vector bundles of Young symmetrized covariant
tensors YdT ∗M → M , where d stands for a Young diagram. We define special linear algebraic and differential operators,
already briefly discussed in Section 2.2, between these Young symmetrized tensor bundles occurring in the Calabi com-
plex. Each of the corresponding Young diagrams has at most two columns, where the first column usually has at most n
cells and the second column has at most two cells. The operator trace (tr) removes one row of cells, metric exterior product
(g ⊙ −) adds one row of cells, left or right exterior derivative (dL and dR) adds one cell to the left or right column respec-
tively, and left or right divergence (δL and δR) removes one cell from the left or right column respectively. The name of each
of these operators should be suggestive of their form, with the main complication being to maintain appropriate Young
symmetry.

In principle, the Littlewood–Richardson decomposition rules uniquely fix the principal symbols of each of these operators
up to a scalar multiple, with the Levi-Civita operator canonically converting a first order principal symbol into a first
order operator. In practice, it takes a bit of work to find explicit formulas for them, given that a naive application a
Young symmetrizer produces unmanageably large expressions.Moreover, the existence of the intracolumn and intercolumn
symmetrization identities introduces non-uniqueness into possible explicit expressions. Below,we give explicit formulas for
these operators. In case of ambiguity, the choice was dictated by practical convenience. Then, in Appendices A.3 and A.4 we
show by explicit calculation that they satisfy the required symmetrization identities and thus carry the correct Young type.

tr[b]a1···al:b = ba1···alc:b
c, (105)

(g ⊙ t)a1···al:bc = l(gb[a1 ta2···al]:c − gc[a1 ta2···al]:b), (106)

dL[b]a1···al:bc = l∇[a1ba2···al]:bc, (107)

δL[b]a1···al:bc = ∇
abaa1···al:bc + 2l−1∇ab[b|a1···al:|c]a, (108)

dR[t]a1···al:bc = 2∇[bt|a1···al:|c] + 2(l− 1)−1∇[{b}|t{a1···al}:|c], (109)

δR[b]a1···al:b = ∇
cba1···al:bc . (110)
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Let us give an explicit example of (106) for l = 2, which appears in the formulas for the constant curvature Riemann ten-
sor (124) and for the linearized Riemann curvature operator (8):

(g ⊙ h)a1a2:bc = ga1bha2c − ga2bha1c − ga1cha2b + ga2cga1b, (111)
(g ⊙ g)a1a2:bc = 2(ga1bga2c − ga2bga1c), (112)

(∇∇ ⊙ h)a1a2:bc = ∇∇a1bha2c −∇∇a2bha1c −∇∇a1cha2b +∇∇a2cha1b,

where ∇∇ab = ∇(a∇b) =
1
2
(∇a∇b +∇b∇a). (113)

In the last equation we used the ⊙ operation to define another differential operator of definite Young type. This property
follows directly from that of (106).

A.3. Preservation of Young type

Each of the operators (105)–(110) maps tensors of one Young type into another one, as is indicated by the index notation
described in Appendix A.1. Below we explicitly demonstrate that, by showing that the result of applying one of these
operators to a tensor of a given Young type always satisfies the required intracolumn and intercolumn identities.

First, we list some key identities satisfied by the idempotent antisymmetrization and column exchange operations. They
follow from straightforward, though possibly lengthy, application of their definitions. Here, a tensor ta1···al is assumed to
be fully antisymmetric. Also, to simplify the notation for nested operations, we use the notation {· · · }kl , where the braces
necessarily enclose the indices ak, ak+1, . . . , al, though perhaps also others, to mean that we apply the appropriate column
exchange operation to these ai indices as if they appeared in the order {ak · · · al}.

(l+ 1)p[ata1···al] = pata1···al − p{a}t{a1···al}, (114)
p{b}t{a1···al} = pa1 tba2···al + p{b}ta1{a2···al}, (115)
p{a}tb{a1···al} = −p{b}ta{a1···al}, (116)

p{bqc}t{a1···al} = pa1q{c}tb{a2···al} + p{bqc}ta1{a2···al}, (117)
pb′ t{a1···al}:c′ − pc′ t{a1···al}:b′


δb
′

{bδ
c′
c} = p{b}t{a1···al}:c − p{c}t{a1···al}:b, (118)

tb′{a1···al}:c′a − tb′{a1···al}:c′a

δb
′

{bδ
c′
c} = −2(l− 1)t[b|a1···al:|c], (119)

p{{b}}t{{a1···al}} = lpbta1···al − (l− 1)p{b}t{a1···al}, (120)
p{b}q{{c}t{a1···al}}1l = p{c}qbt{a1···al} + (p{bqc} − q{bpc})t{a1···al}, (121)

p{{b′}t{a1···al}}1l :c′ − p{{c′}t{a1···al}}1l :b′

δb
′

{bδ
c′
c} = 2(l− 1)p[b|ta1···al:|c] − 2(l− 2)p[{b}|t{a1···al}:|c], (122)

p{{a}t{a1···al}}1l :{bc} = p{a}t{a1···al}:bc + 2p[{b}|t{a1···al}:|c]a − 2p[b|ta1···al:|c]a. (123)

Next, we show how the above key identities can be used to explicitly demonstrate that the required symmetrization
identities are satisfied. We try to indicate which of the key identities are used and where, while also silently making use of
the symmetrization properties of the Young type tensors on which the operations are being performed.

For the trace (105), the intracolumn identities are obvious, so there is only one intercolumn identity to check:

tr[b]{a1···al}:{b} = b{a1···al}c:{b}
c (115)

= b{a1···alc}:{b}
c
− b{a1···alb}:c

c
= ba1···alc:b

c

= tr[b]a1···al:b.

For the metric exterior product (106), the intracolumn identities are obvious, so there are two intercolumn identities to
check:

(g ⊙ t){a1···al}:{b}c = l(g{b}{[a1 ta2···al]}:c − gc{[a1 ta2···al]}:{b}) (114)
= −l(l+ 1)(g[b[a1 ta2···al]]:c − gc[[a1 ta2···al]:b])+ l(gb[a1 ta2···al]:c − gc[a1 ta2···al]:b)
= (g ⊙ t)a1···al:bc,

(g ⊙ t){a1···al}:{bc} = l(gb′{[a1 ta2···al]}:c′ − gc′{[a1 ta2···al]}:b′)δ
b′
{bδ

c′
c} (118)

= l(g{b}{[a1 ta2···al]}:c − g{c}{[a1 ta2···al]}:b) (114)
= −l(l+ 1)(g[b[a1 ta2···al]]:c − g[c[a1 ta2···al]]:b)+ l(gb[a1 ta2···al]:c − gc[a1 ta2···al]:b)
= (g ⊙ t)a1···al:bc .

The double anti-symmetrizations vanished because of the identities g[ab] = 0 and t[a2···al:a1] = 0, with the latter following
from a combination of (114) and an intercolumn identity. Also, we have used the fact that p[a1 ta2···al]:b is a tensor of the
corresponding Young type, which follows from the identities in the paragraph below.
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For the left exterior derivative (107), the intracolumn identities are obvious, so there are two intercolumn identities to
check:

dL[b]{a1···al}:{b}c = l∇{[a1ba2···al]}:{b}c (114)
= −l(l+ 1)∇[[a1ba2···al]:b]c + l∇[a1ba2···al]:bc = dL[b]a1···al:bc,

dL[b]{a1···al}:{bc} = l∇{[a1ba2···al]}:{bc} (114)
= ∇{a1ba2···al}:{bc} −∇{{a1}b{a2···al}}1l :{bc} (117)

= ∇a1b{a2···al}:{bc} +∇bb{a2···al}:a1{c} −∇{{a1}b{a2···al}}2l :{bc} −∇{{b}b{a2···al}}2l :a1{c} (123), (121)

= ∇a1ba2···al:bc +∇bba2···al:a1c −∇cb{a2···al}:a1{b} −∇{a1}b{a2···al}:bc
− 2∇[{b}|b{a2···al}:|c]a1 + 2∇[b|ba2···al:|c]a1
− (∇b′b{a2···al}:a1c′ −∇c′b{a2···al}:a1b′)δ

c′
{cδ

b′
b} (118)

= l∇[a1ba2···al]:bc − 2∇[{b}|b{a2···al}:|c]a1 + 2∇[{c}|b{a2···al}:a1|b]
= l∇[a1ba2···al]:bc = dL[b]a1···al:bc .

For the left divergence (108), the intracolumn identities are obvious. It remains to check the two intercolumn identities:

δL[b]{a1···al}:{b}c = ∇
a(ba{a1···al}:{b}c + l−1b{b}{a1···al}:ca − l−1bc{a1···al}:{b}a)

= ∇
a(b{aa1···al}:{b}c + bba1···al:ca (115)

− l−1(l+ 1)b[ba1···al]:ca + l−1bba1···al:ca (114)

− l−1b{ca1···al}:{b}a + l−1bba1···al:ca) (115)

= ∇
a(baa1···al:bc + 2l−1b[b|a1···al:|c]a) = δL[b]a1···al:bc,

δL[b]{a1···al}:{bc} = ∇
a(ba{a1···al}:{bc} (117)

+ l−1(bb′{a1···al}:c′a − bc′{a1···al}:b′a)δ
b′
{bδ

c′
c}) (119)

= ∇
a(b{aa1···al}:{bc} + bb{a1···al}:{c}a (115)

− l−1(l− 1)(bba1···al:ca − bca1···al:ba))

= ∇
a(baa1···al:bc + b{ba1···al}:{c}a − bca1···al:ba − (1− l−1)(bba1···al:ca − bca1···al:ba))

= ∇
a(baa1···al:bc + l−1bba1···al:ca − l−1bca1···al:ba)

= δL[b]a1···al:bc .

For the right exterior derivative (109), the following rewriting makes the intracolumn identities obvious:

dR[b]a1···al:bc = ∇bba1···al:c −∇cba1···al:b + (l− 1)−1

∇{b}b{a1···al}:c −∇{c}b{a1···al}:b


(114)

= ∇bba1···al:c −∇cba1···al:b − (l− 1)−1(l+ 1)(∇[bba1···al]:c −∇[cba1···al]:b)

+ (l− 1)−1(∇bba1···al:c −∇cba1···al:b).

There are also two intercolumn identities to check:

dR[b]{a1···al}:{b}c = ∇{b}b{a1···al}:c −∇cb{a1···al}:{b} + (l− 1)−1(∇{{b}}b{{a1···al}}:c −∇{{c}b{a1···al}}1l :{b})

= ∇{b}b{a1···al}:c −∇cba1···al:b + (l− 1)−1l∇bba1···al:c −∇{b}b{a1···al}:c (120)

− (l− 1)−1∇bb{b1···al}:{c} (121)

− (l− 1)−1(∇c′ba1···al:b′ −∇b′ba1···al:c′)δ
b′
{bδ

c′
c} (118)

= ∇bba1···al:c −∇cba1···al:b + (l− 1)−1(∇{b}b{a1···al}:c −∇{c}b{a1···al}:b)
= dR[b]a1···al:bc,

dR[b]{a1···al}:{bc} = (∇b′b{a1···al}:c′ −∇c′b{a1···al}:b′)δ
b′
{bδ

c′
c} (118), (122)

+ (l− 1)−1(∇{{b′}b{a1···al}}al :c′ −∇{{c′}b{a1···al}}al :b′)δ
b′
{bδ

c′
c}

= ∇{b}b{a1···al}:c −∇{c}b{a1···al}:b + (∇bba1···al:c −∇cba1···al:b)

− (l− 1)−1(l− 2)(∇{b}b{a1···al}:c −∇{c}b{a1···al}:b)

= ∇bba1···al:c −∇cba1···al:b + (l− 1)−1(∇{b}b{a1···al}:c −∇{c}b{a1···al}:b)
= dR[b]a1···al:bc .
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For the right divergence (110), the intracolumn identities are obvious, so there is only one intercolumn identity to check:

δR[b]{a1···al}:{b} = ∇
cb{a1···al}:{b}c = ∇

cba1···al:bc = δR[b]a1···al:b.

A.4. Composition identities

Below, we list identities between some possible compositions of the operators (105)–(110). These will be instrumental
in the following Appendix A.5, where they will be used to explicitly define the operators involved in the Calabi complex (2)
and the necessary identities between them. We do not show the necessary explicit calculations, as they are lengthy but
straightforward. It suffices to make use of the key identities (114)–(123), as explicitly illustrated in Appendix A.3.

Recall that∇ denotes the Levi-Civita connection on a pseudo-Riemannian space of constant curvature with metric g and
dimension n. The Riemann tensor on this space is defined by the convention 2∇[a∇b]ωc = R̄ab:c

dωd and is explicitly equal to

R̄ab:cd =
λ

2
(g ⊙ g)ab:cd = λ(gacgbd − gadgbc), with λ =

k
n(n− 1)

, (124)

such that k = gac R̄ab:c
b is the curvature constant.

The simplest composition identity is of two left exterior derivatives (l ≥ 4):

dL ◦ dL[b]a1···al:bc = 0. (125)

The principal symbols of these operators augment the left index column of the argument and antisymmetrize over it, thus
composing to zero, as in the case of the de Rham differential. This means that, at worst, the result of the composition of the
operators is of order zero and proportional to the background curvature R̄ given in (124). Now, note that the background
curvature is GL(n)-equivariantly composed only out of the metric and the composition dL ◦ dL is also an equivariant
operator (taking into account the transformation properties of the covariant derivative and the metric). Then the result of
the composition (Young type (2, 2, 1l−2)) must be equivariantly composed only out of themetric g (Young type (2)) and the
argument b (Young type (2, 2, 1l−4)). However, according the Littlewood–Richardson rules [29,42], there is no non-trivial
combination of that kind. Therefore, the composition of these operator must vanish.

Next, we show the relation between the compositions δL ◦ dL and dL ◦ δL, along with some auxiliary identities involving
the curvature. These formulas hold when the length of the left index column of the output is l > 2.

2∇[a∇b]ba1···al:cd = (R̄ · b)ab a1···al:cd, (126)

(R̄ · b)ab a1···al:cd = R̄ab:{e}
eb{a1···al}:cd + R̄ab:c

eba1···al:ed + R̄ab:d
eba1···al:ce

= λ(ga{b} − gb{a})b{a1···al}:cd + λ(gacba1···al:bd − gbcba1···al:ad)
− λ(gadba1···al:bc − gbdba1···al:ac); (127)

(l+ 1)(R̄ · b)a[b a1···al]:cd = −l(l+ 1)λga[bba1···al]:cd
− (l+ 1)λ(gc[bba1···al]:ad − gd[bba1···al]:ac),

(l+ 1)(R̄ · b)a[a a1···al]:bc = −(l(n− l)+ 2)λba1···al:bc + (−)
lλ(g ⊙ tr[b])a1···al:bc,

(l+ 1)(R̄ · b)a[b a1···al]:ca − (l+ 1)(R̄ · b)a[c a1···al]:ba = 0;

δL ◦ dL[b]a1···al:bc = �ba1···al:bc − dL ◦ δL[b]a1···al:bc + l−1dR ◦ δR[b]a1···al:bc
− (l(n− l)+ 2)λba1···al:bc + (−)

lλ(g ⊙ tr[b])a1···al:bc . (128)

The main identity that will be useful in Appendix A.5 is the following:

(δL ◦ dL + dL ◦ δL)[b]a1···al:bc = �ba1···al:bc + l−1dR ◦ δR[b]a1···al:bc

− (l(n− l)+ 2)λba1···al:bc + (−)
lλ(g ⊙ tr[b])a1···al:bc . (129)

The composition δL ◦ dL has a special form when the length of the left index column of the output is l = 2:

∇{a}r{a1a2}:bc = −(∇{c}r{a1a2}:ba +∇{b}r{a1a2}:ca); (130)

(R̄ · r)ab a1a2:ca = −(n− 1)λra1a2:bc + λ(gba1 tr[r]a2:c − gba2 tr[r]a1:c),

(R̄ · r)ab a1a2:ca − (R̄ · r)
a
c a1a2:ba = −2(n− 1)λra1a2:bc + λ(g ⊙ tr[r])a1a2:bc,

(R̄ · r)a[b a1a2]:ca − (R̄ · r)
a
[c a1a2]:ba = 0;

δL ◦ dL[r]a1a2:bc = �ra1a2:bc +
1
2
dR ◦ δR[r]a1a2:bc − 2(n− 1)λra1a2:bc + λ(g ⊙ tr[r])a1a2:bc . (131)

Next, we show the relation between the compositions tr ◦dL and dL ◦ tr:

tr ◦dL[b]a1···al:b = dL ◦ tr[b]a1···al:b + (−)
lδR[b]a1···al:b. (132)
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Next, we show the relations between the compositions dL ◦ dR, dR ◦ dL and the operator (∇∇ ⊙ −), along with some
auxiliary identities involving the curvature. Note that below wemake use of the notation [· · · ]1l which denotes idempotent
antisymmetrization of the indices a1 · · · al, as if they were given in that position and ignoring any other indices appearing
within the same brackets.

2∇[a∇b]ba1···al:c = (R̄ · b)ab a1···al:c, (133)

(R̄ · b)ab a1···al:c = R̄ab:{d}
db{a1···al}:c + R̄ab:c

dba1···al:d
= λ(ga{b} − gb{a})b{a1···al}:c + λ(gacba1···al:b − gbcba1···al:a); (134)

l(R̄ · b)b[a1 a2···al]:c = −l
2λgb[a1ba2···al]:c + λ(g ⊙ b)a1···al:bc,

2l(R̄ · b)[b|[a1 a2···al]:|c] = −(l− 2)λ(g ⊙ b)a1···al:bc,

l(R̄ · b){b}{[a1 a2···al]}:c = −l
2λgb[a1ba2···al]:c + λ(g ⊙ b)a1···al:bc,

2l(R̄ · b)[{b}|{[a1 a2···al]}:|c] = −(l− 2)λ(g ⊙ b)a1···al:bc,

Qba1 a2···al:c = (R̄ · b)a1{b} {a2···al}:c = −(R̄ · b)ba1 a2···al:c + l2λga1[bba2···al]:c − λ(g ⊙ b)ba2···al:a1c,

l(R̄ · b)
[a1{b} {a2···al}]1l :c

− l(R̄ · b)
[a1{c} {a2···al}]1l :b

= lQb[a1 a2···al]:c − lQc[a1 a2···al]:b

= 2(l− 2)λ(g ⊙ b)a1···al:bc;

dR ◦ dL[b]a1···al:bc = (l− 1)−1l(∇∇ ⊙ b)a1···al:bc −
l(l− 2)
2(l− 1)

λ(g ⊙ b)a1···al:bc, (135)

dL ◦ dR[b]a1···al:bc = (∇∇ ⊙ b)a1···al:bc +
l
2
λ(g ⊙ b)a1···al:bc . (136)

The main identity that will be useful in Appendix A.5 is the following:

l−1dR ◦ dL − (l− 1)−1dL ◦ dR = −λ(g ⊙ b)a1···al:bc . (137)

A.5. Calabi complex and its homotopy formulas

Below, we use the special differential operators introduced earlier in Appendix A.2 to explicitly define the differential
operators Bl, El and Pl thatmake up the Calabi complex and its homotopy formulas, as discussed inmore detail in Section 2.2:

B1[v]a:b = ∇avb +∇bva,

B2[h]a1a2:bc = (∇∇ ⊙ h)a1a2:bc + λ(g ⊙ h)a1a2:bc,
Bl[b]a1···al:bc = dL[b]a1···al:bc (l ≥ 3),

E1[h]a = ∇bha:b −
1
2
∇a tr[h],

E2[b]a:b = tr[b]a:b,

El+1[b]a1···al:bc =

δL − (−)

ll−1dR ◦ tr

[b]a1···al:bc (l ≥ 2).

Explicit formulas for Bl and El with low l have been given in Section 2.2.
Further, we make use of the identities given in Appendix A.4 to show that these operators satisfy the required identities,

namely Bl+1 ◦ Bl = 0. The identities B2 ◦ B1 = 0 and B3 ◦ B2 = 0 have already been shown to follow in Section 2.2 from the
usual transformation properties of the Riemann curvature tensor under diffeomorphisms and from its Bianchi identities.
The identities Bl+1 ◦ Bl = 0 for l > 2 then follow directly from the composition identity dL ◦ dL = 0 in Eq. (125).

Again, appealing to the identities of Appendix A.4, we give the homotopy formulas Pl = El+1 ◦ Bl+1 + Bl ◦ El for l ≤ 2:

E1 ◦ B1[v]a = ∇
b(∇avb +∇bva)−

1
2
∇a(2∇bvb)

P0 = �va + λ(n− 1)va,
(E2 ◦ B2 + B1 ◦ E1)[h]a:b = (∇∇ ⊙ h)ac:bc + λ(g ⊙ h)ac:bc

+∇a


∇

chb:c −
1
2
∇b tr[h]


+∇b


∇

cha:c −
1
2
∇a tr[h]


P1 = �hab − 2λhab + 2λgab tr[h],

(E3 ◦ B3 + B2 ◦ E2)[r]a1a2:bc = δL ◦ dL[r]a1a2:bc −
1
2
dR ◦ tr ◦dL[r]a1a2:bc

+ (∇∇ ⊙ tr[r])a1a2:bc + λ(g ⊙ tr[r])a1a2:bc
P2 = �ra1a2:bc − 2(n− 1)λra1a2:bc + 2λ(g ⊙ tr[r])a1a2:bc .
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Finally, the same set of identities also implies the following formulas for Pl with l > 2:

(El+1 ◦ Bl+1 + Bl ◦ El)[b]a1···al:bc = (δL ◦ dL + dL ◦ δL)[b]a1···a1:bc
− (−)l


l−1dR ◦ tr ◦dL − (l− 1)−1dL ◦ dR ◦ tr


[b]a1···al:bc

Pl = �ba1···al:bc − (l(n− l)+ 2)λba1···al:bc + (−)
l2λ(g ⊙ tr[b])a1···al:bc .

Explicit formulas for Pl with low l have also been given in Section 2.2. Recall that, as in Eq. (124), we have used the notation
λ = k

n(n−1) .

A.6. An adjoint operator

Herewe derive Eq. (31), which according to the general formula (23) implies that−n−1δL is the formal adjoint of dL when
acting on tensors of Young type ca2···an:bc .

∇a(caa2···an:bcba2···an:bc) = caa2···an:bc∇aba2···an:bc + (∇acaa2···an:bc)ba2···an:bc
= caa2···an:bc∇[aba2···an]:bc + δL[c]

a2···an:bcba2···an:bc

−
1

n− 1
(∇acba2···an:ca −∇acca2···an:ba)ba2···an:bc

=
1
n
caa2···an:bcdL[b]aa2···an:bc + δL[c]

a2···an:bcba2···an:bc

−
1

n− 1
(b[a2···an:b]c∇acba2···an:ca + b[a2···an:c]b∇acca2···an:ba) (114)

=
1
n
caa2···an:bcdL[b]aa2···an:bc + δL[c]

a2···an:bcba2···an:bc . (138)

We have simply used the definitions of the dL and δL differential operators as well as the fact that the contraction of two
tensors, one of which being totally anti-symmetric in a subset of indices, allows the insertion of an anti-symmetrization over
the corresponding indices of the second tensor. Finally, some of the anti-symmetrizations annihilated the corresponding
tensors, due to their intercolumn identities and the application of the identity (114).

Appendix B. Homological algebra

Below we introduce some basic notions from homological algebra. A standard text on the subject is [87], where more
details can be found along with complete proofs.

Let Ai, also denoted A•, be a sequence of vector spaces (real vector spaces, for our purposes) with linear maps Ai → Ai+1
between them. If each successive pair of maps Ai−1 → Ai → Ai+1 composes to zero, this sequence is called a complex (of
vector spaces) or a cochain complex, with an element a ∈ Ai being referred to as a cochain (of degree i), and themaps Ai → Ai+1
referred to as cochain differentials. Any complex gives rise to cohomologies

H i(A•) = ker(Ai → Ai+1)/ im(Ai−1 → Ai). (139)

If all the cohomologies vanish, H i(A•) = 0 or the image of each map is equal to the kernel of the subsequent map, the
complex is called exact or an exact sequence. Given two complexes A• and B•, the vertical maps in the diagram

· · · Ai Ai+1 · · ·

· · · Bi Bi+1 · · ·

(140)

are called cochain maps provided they make the diagram commute. Furthermore, the diagonal maps in a diagram like

· · · Ai Ai+1 · · ·

· · · Bi Bi+1 · · ·

d d

h
δ

d

hδ δ

d d d

(141)

are called cochain homotopies. The homotopy maps induce vertical cochain maps by the formula h = dδ + δd. It is a basic
fact that cochain maps A• → B• naturally induce maps in cohomology H i(A•) → H i(B•). Of course, identity chain maps
induce identity maps in cohomology and zero chain maps induce zero maps in cohomology. Also, two cochain maps induce
the same map in cohomology when their difference is induced by a cochain homotopy.
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A short exact sequence

0 A• B• C• 0 (142)

between complexes A•, B• and C• consists of cochain maps between them such that each instance of

0 Ai Bi Ci 0 (143)

is an exact sequence of vector spaces. Another basic fact of homological algebra is that a short exact sequence of complexes
induces the following long exact sequence in cohomology

· · · H i(A•) H i(B•) H i(C•)

H i+1(A•) H i+1(B•) H i+1(C•) · · ·

, (144)

where the maps H i(A•) → H i(B•) and H i(B•) → H i(C•) are induced by the cochain maps from the short exact sequence
and the connecting maps H i(C•)→ H i+1(A•) are induced by the cochain differential.

Finally, another standard result is the so-called 5-lemma (or a simple variant thereof). It states that the central vertical
map in the commutative diagram

A−2 A−1 A0 A1 A2

B−2 B−1 B0 B1 B2

∼= ∼= ∼= ∼= (145)

is an isomorphism, provided that the top and bottom rows are exact sequences and all the other vertical maps are
isomorphisms themselves.

Appendix C. Jets and jet bundles

In this appendix, we briefly introduce jet bundles, fix the relevant notation and discuss differential operators in the
context of jets. For simplicity, we restrict ourselves to fields taking values in vector bundles. However, the discussion could
be straightforwardly generalized to general smooth bundles. More details, as well as a coordinate independent definition,
can be found in the standard literature [88,89].

Given a vector bundle F → M over a connected n-dimensional smooth manifold M , the k-jet bundle JkF → M is a
vector bundle whose defining characteristic is that for any (possibly non-linear) differential operator f : Γ (F) → Γ (F ′)
of order k, there exists a canonical factorization f [u] = f ◦ jku for any section u : M → F , where the k-jet prolongation
jk : Γ (F) → Γ (JkF) is composed with a smooth bundle map f : JkF → F ′, which by a slight abuse of notation we denote
using the same symbol as the original differential operator. Composing the differential operator f with an l-jet prolongation
canonically defines a new differential operator plf : J l+kF → J lF ′ called its l-prolongation, jlf [u] = plf ◦ jku. Given a
trivializable restriction FU → U of F to a chartU ⊂ M with local coordinates (xi) and fiber-adapted local coordinates (xi, ua),
there is a corresponding adapted chart JkFU ⊂ JkF with adapted local coordinates (xi, ua

I ), where I = i1 · · · il runs through
multi-indices of orders |I| = l = 0, . . . , k. In these coordinates, the k-jet prolongation is given by jku(x) = (xi, ∂Iua(x)),
while the l-prolongation is given by plf [u](x) = (xi, ∂I f b[u](x)), where f [u](x) = (xi, f b[u](x)) in fiber-adapted local
coordinates (xi, vb) on F ′. For any l > k, discarding the information about all derivatives of order > k defines a natural
projection J lF → JkF . The projective limit J∞F := lim

←−k→∞
JkF defines the∞-jet bundle. The∞-jet prolongation j∞ and

∞-prolongation p∞ are defined in the obvious way. By composing with the natural projection J∞F → JkF , the differential

operator f also canonically defines the smooth bundlemap f : J∞F → JkF
f
→ F ′, which is again denoted by the same symbol

f . Conversely, due to the projective limit construction, any smooth bundle map f : J∞F → F ′ can only depend on finitely
many coordinates of its domain, which means that there exists a k ≥ 0 such that this bundle map canonically factors as

f : J∞F → JkF
f
→ F ′, with the smallest such k being the order of f .

Given vector bundles F → M , E → M and a differential operator e : Γ (F)→ Γ (E), wewrite down the partial differential
equation (PDE) e[ψ] = 0, withψ ∈ Γ (F). Sometimes it is convenient to refer to F → M as the field bundle and to E → M as
the equation bundle. Wewill only consider linear PDEs below, where the differential operator e is linear. We denote the local
spaces of solutions by Se(U), where U ⊆ M is open and ψ ∈ Γ (F |U) belongs to Se(U) iff e[ψ] = 0 on U . The PDE is said to
be of order k if it can be written as e[ψ] = e(jkψ), where on the right-hand side we have a (linear) bundle map e : JkF → E.

In adapted coordinates (xi, ua) on F , the PDE e[ψ] = 0 has the form eI(x)∂Iψ(x) = 0. When the PDE is of order k, the
coefficients eI(x) vanish for multi-indices with |I| > k. The coefficients of the highest order derivatives, eI(x)with |I| = k, in
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fact transform as a tensor under coordinate changes and define a linear bundlemap σ e : F⊗SkT ∗M → E called the principal
symbol of e. If we fix (x, p) ∈ T ∗M , then the corresponding linear map σx,pe = σ e(x) · p⊗k : FxM → ExM can also be referred
to as the value of the principal symbol of e at (x, p).

The PDE e[ψ] = 0 is equivalent to the PDE e′[ψ ′] = 0, with e′ : Jk
′

F ′ → E ′, if they have isomorphic solution spaces. That
is e[ψ] = 0 implies that e′[f [ψ]] = 0 and e′[ψ ′] = 0 implies that e[f ′[ψ ′]] = 0, for some differential operators f and f ′. In
fact, it can be shown that the two PDEs are equivalent precisely when they fit into the following diagram, where arrows are
differential operators and the bundle labels stand in for the corresponding spaces of sections,

F E

F ′ E ′

e

f g

q

e′

f ′ g ′

q′

, (146)

where differential operators satisfy the following identities:

e′ ◦ f = g ◦ e, f ′ ◦ f = id+ q ◦ e, (147)

e ◦ f ′ = g ′ ◦ e′, f ◦ f ′ = id+ q′ ◦ e′. (148)

The reasonwe can express equivalence in this way, at least when all the differential operators are linear, follows from linear
algebra on jets. If we replace the operators e, e′, f and f ′ by the corresponding jet bundle maps, prolonged to the appropriate
order, it follows from basic linear algebra that there exist jet bundle maps that ostensibly correspond to the operators g ,
g ′, q and q′. It then follows from a deeper analysis of the properties of linear PDEs [16,44,90] that once these differential
operators are defined using prolongations of sufficiently high order, the appropriate identities hold at all higher orders. As
a simple example, note that the equation e[ψ] = 0 and its prolongation pke[ψ] = 0 are equivalent, with f = f ′ = id.

Consider vector bundles E, F ,G→ M and linear differential operators

f : Γ (G)→ Γ (F) and e : Γ (F)→ Γ (E), (149)

of respective orders k and l, such that e ◦ f = 0. We say that the composition of e and f is formally exact if the composition
pk+me ◦ pmf of jet bundle maps is exact in the usual linear algebra sense (the image of pmf is equal to the kernel of pk+me).
Formal exactness is a powerful hypothesis. For instance, it implies that certain differential operators factorize through either
e or f [16,11]. Namely, if g is any differential operator such that g ◦ f = 0, then theremust exist another differential operator
g ′ such that g = g ′◦e. Similarly, if g is any differential operator such that e◦g = 0, then theremust exist another differential
operator g ′ such that g = f ◦ g ′.

Appendix D. Deformations of flat principal bundles

The material below requires some familiarity with the theory of G-principal bundles [91,92,46,93]. Its main point is
to show how one can reduce the computation of the degree-1 cohomology space of a certain locally constant sheaf on a
manifold M to the computation of the degree-1 group cohomology of the fundamental group π = π1(M)with coefficients
in a certain corresponding representation. This reformulation is a significant simplification because group cohomology
calculations can often be reduced to finite dimensional linear algebra and many explicit calculations of that sort have
already been performed and are available in the literature. The connection between these sheaf and group cohomologies is
established by noticing that both of themdescribe equivalence classes of infinitesimal deformations of flat principal bundles.
Unfortunately, this argument is not sufficient to establish an isomorphism between these sheaf and group cohomologies in
higher degrees, but degree-1 is already interesting because it is the one relevant in the physical application we have inmind
(Section 5).

We briefly recall some basic facts about principal G-bundles [91,92,46,93]. The total space of the principal bundle P → M
has fibers that are right principal homogeneous spaces of the group G. A right principal homogeneous space is defined by the
possession a free, transitive action of G. Thus, any principal homogeneous space is diffeomorphic to themanifold underlying
the Lie group G and, if any particular point is identified with the unit element of G, the action of G coincides with right-
multiplication. The fiber-wise right action of G on P allows us to construct so-called associated bundles. If F is a left G-
space, with action ρ : G → Aut(F), then we define the corresponding associated bundle, denoted sometimes Fρ or FP ,
as P ×ρ F ∼= (P × F)/G, where the quotient identifies the points (pg, f ) = (p, gf ), p ∈ P , f ∈ F , g ∈ G. In particular, we can
define the associated bundles GP = P ×Ad G and gP = P ×Ad g, where Ad denotes respectively the adjoint action of the Lie
group on itself and its Lie algebra, Ad(b)a = bab−1 and Ad(b)α = bαb−1, with a, b ∈ G and α ∈ g. When convenient and
for simplicity of notation, we shall implicitly treat Lie group and Lie algebra elements as if they were faithfully represented
as matrices.

The principalG-bundle P → M is called flat when it is endowedwith a flat connection or a notion of flat parallel transport,
which are compatible with the structure group action. The details of these notions are discussed in the next subsections.
The arguments presented therein roughly establish the following
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Proposition 17. Let P → M be a flat principal G-bundle and π = π(M) be the fundamental group of M. We can define the
following structures associated to it: (a) the sheaf Fg of locally flat sections of the associated bundle gP → M, (b) the twisted
de Rham complex (Λ•M ⊗ gP ,D), and (c) the monodromy representation ρ : π → G. Then the following cohomology groups
(respectively the sheaf, twisted de Rham and group cohomologies) are all isomorphic, by reason of each being isomorphic to the
space of equivalence classes of infinitesimal deformations of the flat principal G-bundle structure of P → M:

H1(M,Fg) ∼= H1(Λ•M ⊗ gP ,D) ∼= H1(π,Adρ). (150)

We defer to the standard references [92,46,93] for detailed proofs.

D.1. Flat principle bundle cocycle

There are multiple ways to construct a principal G-bundle over a manifoldM . The one that will be important for us here
defines also a bit more structure than principal bundle itself, it also defines a flat connection thereon. We shall refer to these
structures as flat principal G-bundles. It is well known that this data can be specified as follows. Let U = (Ui) be an open
cover of M and (U, V ) → tU,V ∈ G an assignment of a structure group element to every ordered pair of opens U, V ∈ U.
Each tU,V is called a transition map. The transition maps define a principle G-bundle with a flat connection if they satisfy the
following cocycle identities,

tU,V tV ,U = id, (151)

tU,V tV ,W tW ,U = id. (152)

A change of trivialization is an assignment U → aU ∈ G for every open U ∈ U. The modified transition functions
t ′U,V = aU tU,Va−1V define an equivalent flat principal G-bundle.

Next, we describe infinitesimal deformations of a flat bundle cocycle tU,V . Namely, suppose that tU,V (s) is a smooth 1-
parameter family of flat bundle cocycles, with tU,V (0) = tU,V . Let us denote the derivative at s = 0 as ṫU,V = τU,V tU,V , with
τU,V ∈ g. Then, the defining relations (151) and (152) impose the following constraints on the infinitesimal deformation τU,V :

τU,V = −t−1V ,UτV ,U tV ,U , (153)

τU,V + tU,V τV ,W t−1U,V − τW ,U = 0. (154)

On the other hand, suppose that aU(s) is a smooth 1-parameter family of trivialization changes, with aU(0) = id. Let us
write the derivative at s = 0 as ȧU = −σU . The induced infinitesimal deformation in the transition functions tU,V (s) =
aU(s)tU,Va−1V is

τU,V = −σU + tU,VσV t−1U,V . (155)

The point of the above calculations is to show that infinitesimal deformations of the flat principal bundle cocycle, up
to infinitesimal trivialization changes, correspond precisely to the cohomology classes of a certain sheaf. To complete the
argument, we need only introduce the basic definitions of Čech cohomology, which is known to compute the cohomology
vector spaces of a corresponding sheaf [47,48]. We will take the sheaf to be Fg, where Fg(U) consists of the locally flat
sections of the bundle gP → M , associated to the flat principal G-bundle P → M . Let us now fix an open cover U = (Ui) of
M such that each Ui is contractible and anymultiple intersection of the Ui is also contractible. On amanifold, any open cover
can be refined to such a good cover [49, Thm.5.1]. In particular, the flat principal bundle cocycle can always be refined to a
good cover. The good cover hypothesis ensures that the Čech cohomology spaces are in fact isomorphic to the actual sheaf
cohomologies.

We define a Čech q-cochain σ as an assignment (Ui1 , . . . ,Uiq+1) → σi1···iq+1 ∈ Fg(Ui ∩ · · · ∩ Uiq+1) to every ordered
(q + 1)-tuple of opens from U. By local flatness, for any U ∈ U, Fg(U) ∼= F̄g

∼= g (cf. Section 3.1). It is convenient to
think of a Čech cocycle σi1···iq+1 as taking values in g ∼= Fg(Ui). This means that σi··· and σj··· restrict to the same element of
Fg(Ui ∩ Uj ∩ · · · ) only if σi··· = Ad(tUi,Vi)σj··· = (tUi,Vj)σj···(t

−1
Ui,Vj

). We shall only need the Čech differential to be defined on
0- and 1-cochains:

(δσ )ij = σj|Ui∩Uj − σi|Ui∩Uj

= Ad(tUi,Uj)σj − σi

= tUi,Ujσjt
−1
Ui,Uj
− σi, (156)

(δτ )ijk = τjk|Ui∩Uj∩Uk − τik|Ui∩Uj∩Uk + τij|Ui∩Uj∩Uk

= Ad(tUi,Uj)τjk − τik + τij

= tUi,Ujτjkt
−1
Ui,Uj
− τik + τij. (157)
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The space of closed Čech q-cocycles modulo the Čech coboundaries then is isomorphic to the sheaf cohomology group in
degree q, which in our case is Hq(Fg).

It should now be clear, from Eqs. (154) and (155), that the infinitesimal deformation of the flat bundle cocycle defines a
Čech 1-cocycle τij = τUi,Uj and an infinitesimal change in trivialization defines a Čech coboundary τij = (δσ )ij, with σi = σUi .

D.2. Flat connection on a principal bundle

Another, ultimately equivalent, way to specify a principal bundle with a flat connection is as follows.
A principal G-connection on a principal G-bundle P is a g-valued 1-form ω on the total space P (an element ofΩ1(P)⊗ g)

such that (i) ω is Ad-equivariant (R∗aω = Ad(a−1)ω, where Ra : P → P is the action of a ∈ G on P by right multiplication)
and (ii)ω(β) = β for any vertical vector β ∈ TP . Recall that vertical vectors are those annihilated by the tangent map of the
projection P → M and that the vertical subspace of TP at any point of P may be naturally identified with g, which we have
used in the preceding definition. The defining condition on the form ω is clearly linear inhomogeneous. Thus, the space of
all principal G-connections forms an affine subspace ofΩ1(P)⊗ g. So, the difference A = ω′−ω between any two principal
connections belongs to the subspace ofΩ1(P)⊗ g that is Ad-equivariant and horizontal (annihilates vertical vectors). This
subspace is in fact isomorphic, by pullback along the projection P → P/G ∼= M , to the space of sections Γ (Λ1M⊗gP) of the
associated bundle Λ1M ⊗ gP → M . In fact, we can identify the spaces of sections Γ (ΛpM ⊗ gP) with the Ad-equivariant,
horizontal subspaces ofΩp(P)⊗g. The first order differential operatorDA = dA+[ω∧A] (see below for notation) preserves
these subspaces and hence can be projected down to a first order differential operatorD : Γ (ΛpM⊗gP)→ Γ (Λp+1M⊗gP),
which we shall refer to as the twisted differential (cf. Section 2.4).

The curvatureΩ of a principal G-connection ω is defined to be the following g-valued 2-form on P:

Ω = dω +
1
2
[ω ∧ ω], (158)

where the bracketed wedge product is definite to satisfy [(λ ⊗ α) ∧ (µ ⊗ β)] = λ ∧ µ ⊗ [α, β] for any λ,µ ∈ Ω1(P)
and α, β ∈ g. SinceΩ is Ad-equivariant and horizontal, we can equally writeΩ ∈ Γ (Λ2M ⊗ gP). The twisted differential
D is not nilpotent, D2

≠ 0. However, its square is C∞(M)-linear and so is a differential operator of order 0. In fact, we can
compute it to be

D2A = [Ω ∧ A], (159)

for any A ∈ Γ (ΛpM ⊗ gP). If Ω = 0, then the connection is said to be flat. This is a sufficient condition for the twisted
differential to become nilpotent, D2

= 0. A necessary and sufficient condition would simply be that the curvatureΩ takes
values in the center of g, upon local trivialization of gP .

Given any two flat connections ω and ω′, their difference can be represented by a section ω′ − ω = A ∈ Γ (Λ1M ⊗ gP)
(or rather its pullback to P) that necessarily satisfies the following equation:

0 = dω′ +
1
2
[ω′ ∧ ω′] (160)

= d(ω + A)+
1
2
[(ω + A) ∧ (ω + A)] (161)

= dA+ [ω ∧ A] +
1
2
[A ∧ A] (162)

= DA+
1
2
[A ∧ A]. (163)

Where the last expression can be interpreted as computed on M rather than on P . Equating this last expression to zero
gives a differential equation on sections A ∈ Γ (Λ1M ⊗ gP) identifying those that parametrize the space of flat principal
G-connections (relative to ω, which defines the twisted differential D).

An automorphism of a principal G-bundle P → M is a bundle map f : P → P that covers the identity on M and is
equivariant with respect to the right action of G [94,93]. It is a standard fact that such maps can be expressed as functions
af : P → G that are Ad-equivariant (where Ad is the left action of G on G by conjugation) with respect to the right action of
G on P . In turn, the set of such maps is in bijection with the space of sections of the associated bundle GP = P ×Ad G. Since
the map f : P → P is an automorphism, the pullback connection f ∗ω is considered equivalent to the original one. Given its
equivariance, the map f corresponds to a section af ∈ Γ (GP). Equivalently, given a section a ∈ Γ (GP), we can define the
corresponding automorphism map fa : P → P . It is not hard to compute that

f ∗a ω = Ad(a−1)ω + a−1da. (164)

Naturally, the pullback f ∗ω of a flat connection ω is also a flat connection.
Next, we describe infinitesimal deformations of a flat principle G-connection. Given a flat connection described by a g-

valued 1-form ω on P , any smooth 1-parameter family of principal connection can be written as ω + A(s), with A(0) = 0,
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where A(s) can, for fixed s, be considered as a section of the associated bundleΛ1M ⊗ gP → M . This family consists of flat
connections if and only if the equation DA(s) + 1

2 [A(s) ∧ A(s)] = 0 is satisfied, where D is the twisted differential defined
by ω. If Ȧ(0) = A, then the preceding identity imposes the condition DA = 0 on this infinitesimal deformation. Also, if
a(s) ∈ Γ (GP), with a(0) = id and ȧ(0) = α ∈ Γ (gP), defines a smooth 1-parameter family of automorphisms fa(s) : P → P ,
then the corresponding infinitesimal deformation of the original flat connection is equal to A = dα − [α, ω] = Dα.

It should now be clear that infinitesimal deformations of a given flat principal G-connection, up to infinitesimal
automorphisms of the underlying principal G-bundle, are in bijections with the cohomology vector space H1(Λ•⊗ gP ,D) of
the twisted de Rham complex defined by the original flat connection.

D.3. Monodromy representation

A connection, in the sense of Ehresemann, can be defined as a splitting of the tangent space of P into Tx,aP ∼= TxM⊕ g, for
(x, a) ∈ P , with the g summand canonically identified with the subspace of vertical vectors, such that the splitting is smooth
in x and equivariant in a. The TxM summand is called the horizontal subspace of Tx,aP . This formulation leads naturally to the
idea of parallel transport. Given a point (x, a) ∈ P and a smooth curve γ : [0, 1] → M such that γ (0) = x and γ (1) = 1,
there exists a unique lift γ̃ of γ to P such that γ̃ (0) = (x, a) and the tangent vector ˙̃γ is always horizontal.With x and y fixed,
the endpoint (y, b) = γ̃ (1) defines b as the image of a parallel transported along γ . Since the splitting of TP is equivariant
with respect to the right action of G on P , so is parallel transport. It is easy to see that parallel transport does not depend
on the parametrization of γ , is well defined also when γ is piecewise smooth, and respects concatenation, aγ η = aγ aη for
γ (1) = η(0) and γ η being the concatenated curve. In particular, if γ is a closed curve based at x ∈ M (γ (0) = γ (1) = x),
then the effect of parallel transport is equivalent to the right action on the fiber Px by some element aγ ∈ G.

Let π = π1(M, x) be the fundamental group of M based at some point x. The connection splitting of TP is called flat
when the parallel transport along any closed contractible curve γ is trivial, aγ = id, and thus the group element aγ
effecting parallel transport along a closed curve γ based at x depends only on its homotopy type [γ ] ∈ π . In other words,
parallel transport defines a homomorphism ρ : π → G, ρ([γ ]) = aγ , which we call the monodromy representation of the
fundamental group ofM in the structure group of P → M (cf. the introduction to Section 4).

Thus, any flat principalG-bundle gives rise to a representation ρ : π → G. Two isomorphic flat principal bundles give rise
to equivalent monodromy representations, where two representations ρ ′ and ρ are equivalent if there exists an element
a ∈ G such that ρ ′([γ ]) = aρ([γ ])a−1. Conversely, any homomorphism ρ : π → G allows us to construct a flat principal
G-bundlewith amonodromy representation equivalent to ρ. Namely, consider the universal cover M̃ → M as a principalπ-
bundle and define the total space of the corresponding principal G-bundle as P = M̃ ×ρ G. A flat connection can be defined
on the trivial principal G-bundle M̃ × G using the construction of Appendix D.1 applied to a cover by contractible open sets
and transition maps defined by ρ. This flat connection then projects down to P .

Next, we describe infinitesimal deformations of a fixed monodromy representation ρ. Let ρs : π → G be a smooth
1-parameter family of monodromy representations, with ρ(s) = ρ and ρ̇s(a) = τ(s)ρ(a) for some τ : π → g. The
representation property ρs([γ ][η]) = ρs([γ ])ρs([η]) imposes the following constraint on the infinitesimal deformation:

τ([γ ])+ ρ([γ ])τ ([η])ρ([γ ])−1 − τ([γ ][η]) = 0. (165)

A family of trivial deformations is given by ρs([γ ]) = asρ([γ ])a−1s for a smooth 1-parameter family as ∈ G, with a0 = id
and ȧ0 = −σ ∈ g. The corresponding infinitesimal deformation of the representation is given by

τ([γ ]) = −σ + ρ([γ ])σρ([γ ])−1. (166)

The point of the above calculations is to show that these infinitesimal deformations can be identified with certain group
cohomology classes. To see that, we need to introduce some basic definitions [87, Ch. 6], [68]. Group cohomology is defined
given a group and a representation thereof. We will give the definitions by directly taking the group to be π and the
representation to be the composite adjoint representation ofπ on g, Adρ = Ad◦ρ : π → GL(g). The vector space Cp(π,Adρ)
of p-cochains consists of functions σ : πp

→ g, where πp
= π × · · · × π is the p-fold product. The cochain differentials

δ : Cp(π,Adρ)→ Cp+1(π,Adρ) are defined by the formula

δσ ([γ1], . . . , [γp+1]) = (−1)p+1σ([γ1], . . . , [γp])+ Adρ([γ1])σ ([γ2], . . . , [γp+1])

+

p
q=1

(−1)qσ(. . . , [γq][γq+1], . . .). (167)

For 0- and 1-cochains, we have the following explicit formulas:

δσ ([γ ]) = −σ + Adρ([γ ])σ

= −σ + ρ([γ ])σρ([γ ])−1, (168)
δτ([γ ], [η]) = τ([γ ])+ Adρ([γ ])τ ([η])− τ([γ ][η])

= τ([γ ])+ ρ([γ ])τ ([η])ρ([γ ])−1 − τ([γ ][η]). (169)
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It is worth noting that the degree-0 group cohomology is isomorphic to the subspace of the representation on which the
group acts trivially, H0(π,Adρ) ∼= gπ .

It should now be clear from Eqs. (165) and (166) that infinitesimal deformations of a monodromy representations
ρ : π → G, up to deformations by conjugation, are in bijection with the group cohomology H1(π,Adρ) of the group π
with coefficients in the composite adjoint representation of π on g.
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Cohomology with Causally Restricted
Supports

Igor Khavkine

Abstract. De Rham cohomology with spacelike compact and timelike com-
pact supports has recently been noticed to be of importance for under-
standing the structure of classical and quantum Maxwell theory on curved
spacetimes. Similarly, causally restricted cohomologies of different differ-
ential complexes play a similar role in other gauge theories. We introduce
a method for computing these causally restricted cohomologies in terms
of cohomologies with either compact or unrestricted supports. The calcu-
lation exploits the fact that the de Rham–d’Alembert wave operator can
be extended to a chain map that is homotopic to zero and that its causal
Green function fits into a convenient exact sequence. As a first applica-
tion, we use the method on the de Rham complex, then also on the Calabi
(or Killing–Riemann–Bianchi) complex, which appears in linearized grav-
ity on constant curvature backgrounds. We also discuss applications to
other complexes, as well as generalized causal structures and functoriality.

1. Introduction

Recently, a number of works on the structure of classical and quantum field the-
ory on curved spacetimes [5,6,15,19,31,34,36,47] have made use of de Rham
cohomology with spacelike compact supports. It appears in the characteri-
zations of the center of Poisson (or quantum) algebra of observables of the
Maxwell field and also of the degeneracy of the bilinear pairing between space-
like compactly supported solutions and compactly supported smearing func-
tions (see Proposition 1 for a specific statement). Similar considerations ap-
pear in more general field theories [34,36], though involving cohomologies of
complexes that are different from the de Rham one. One example is the Cal-
abi complex, which appears in linearized gravity on constant curvature back-
grounds [36, Sect. 4.4] (see Proposition 10 for a specific statement). Note that
cohomologies with timelike compact supports as well as on-shell cohomologies

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-016-0481-x&domain=pdf
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(restricted to solution spaces of some particular hyperbolic differential oper-
ators) have also appeared in the same contexts. We shall loosely refer to all
of these variations as causally restricted cohomologies or cohomologies with
causally restricted supports.

It was noticed long ago [1] that non-trivial spacetime topology can influ-
ence in a non-trivial way the construction of the classical and quantum field
theories. However, these effects had not been systematically investigated until
recently. This may explain why neither the standard literature on differential
geometry and topology, nor the literature on relativity seem to have consid-
ered1 cohomologies with supports restricted by causal relations (like spacelike
or timelike compactness). So, given their growing importance, they deserve
independent investigation, which is the subject of this work. We introduce a
method that allows us to compute the causally restricted cohomologies of a
differential complex, provided that complex is equipped with extra structure
similar to that found in Hodge theory [27,33]. The essentials of this method
are illustrated on the case of the de Rham complex. Then, other applications
and implications are discussed.

In Sect. 2, we briefly outline some well-known geometric properties of the
de Rham complex on a Lorentzian spacetime, as well as some basic facts of
homological algebra. These properties form the core of our method and are
reminiscent of the structure found in Hodge theory. Our method of computing
causally restricted cohomologies is then illustrated in Sect. 3 and is used to
express the various causally restricted de Rham cohomologies in terms of the
standard de Rham cohomologies with unrestricted and compact supports. Sec-
tion 4 applies the same method to the Calabi differential complex. The Calabi
complex plays a role in linearized gravity on a constant curvature background
analogous to that of the de Rham complex for Maxwell theory. Its structure is
briefly introduced and shown analogous to that highlighted in Sect. 2. Then,
in Sect. 4.4, its causally restricted cohomologies are computed in analogy with
Sect. 3. Section 5 discusses a few related questions that have appeared in the
study of gauge theories in the framework of locally covariant classical and
quantum field theory. In particular, Sects. 5.1 and 5.2 deal with the behavior
of the causally restricted cohomology groups under changes of causal structure
and under embeddings, and Sect. 5.3 briefly describes how the methods applied
to the de Rham and Calabi examples could be generalized to other differential
complexes that arise in the study of general field theories with constrains and
gauge invariance [34,36]. Finally, Sect. 6 concludes with a discussion of our
results.

It should be mentioned that results very similar to those in Sect. 3 have
been obtained independently in a recent work [5], though by different methods.

1 A notable exception is [39], which, as a byproduct of a different investigation, computed a
few low degree cohomology groups with spacelike compact supports or restricted to solutions
of the wave equation, but only on Minkowski space.
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Those methods are very specific to the de Rham complex, including its invari-
ance properties under topological homotopies. Such strong invariance proper-
ties certainly do not hold for other differential complexes. So it is noteworthy
that the content of our Sects. 4 and 5 goes beyond [5] in several directions.

2. Preliminaries

Fix an n-dimensional smooth manifold M (n ≥ 2) with a Lorentzian met-
ric g such that (M, g) is an oriented, time-oriented space, globally hyper-
bolic spacetime [4,32,43,52]. Recall that, according to the Geroch splitting
theorem, there exists a diffeomorphism M ∼= R × Σ (non-unique, of course)
where the corresponding projection t : M → R is a Cauchy temporal func-
tion [8,9,25]. Let Ωp(M) denote the linear space of differential p-forms on M
and let d: Ωp(M) → Ωp+1(M) denote the de Rham differential, which together
form the de Rham complex

0 Ω0(M) Ω1(M) · · · Ωn(M) 0,d d d (1)

This sequence of maps being a complex means that each pair of successive
maps compose to zero, d ◦ d = 0.

Its cohomology in degree p is defined and denoted by

Hp(M) :=
ker(d: Ωp(M) → Ωp+1(M))
im(d: Ωp−1(M) → Ωp(M))

.

The cohomology of any other complex is defined in a similar way. It is well
known that this de Rham cohomology is isomorphic, Hp(M) ∼= Hp(M,R), to
the singular cohomology of M with coefficients in R [11, Theorem 15.8], to
the Čech cohomology of M with coefficients in R [11, Theorem 8.9], and to
the sheaf cohomology of M with coefficients in the sheaf of locally constant
R-valued functions [11, Proposition 10.6], all of which being isomorphic are de-
noted by Hp(M,R). If we replace Ωp(M) in (1) with Ωp

c(M), the linear space of
differential p-forms with compact support, the corresponding de Rham coho-
mology of M with compact supports, which satisfies the following isomorphism:
Hp

c (M)∗ ∼= Hp(M,R). That isomorphism is implemented by a non-degenerate
bilinear pairing between Ωp(M) and Ωn−p

c (M),

〈α, β〉 =
∫

M

α ∧ β, (2)

which descends to a non-degenerate bilinear pairing between Hp(M) and
Hp

c (M). This result is known as Poincaré duality [11, Remark 5.7].
Using the Hodge star operator ∗ : Ωp(M) → Ωn−p(M) associated to

the metric g, we can define the de Rham co-differential δ = ∗d∗ : Ωp(M) →
Ωp−1(M). Next, we define the so-called de Rham–d’Alembertian or wave op-
erator � : Ωp(M) → Ωp(M),

� = dδ + δd. (3)
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This operator differs from the simple tensor d’Alembertian ∇a∇a by terms of
lower differential order. From its very definition, we see that the
d’Alembertian is a cochain map from the de Rham complex to itself, d� = �d,
which is moreover cochain homotopic to zero, with the co-differential δ the cor-
responding cochain homotopy. That is, it induces the zero map from Hp(M)
to itself. The following diagram illustrates the discussion:

0 Ω0(M) Ω1(M) · · · Ωn(M) 0

0 Ω0(M) Ω1(M) · · · Ωn(M) 0

d

�

d

�δ

d

δ
�δ

d d d

, (4)

where the rows constitute (de Rham) complexes, the solid arrows commute,
and the dashed arrows illustrate the cochain homotopy. This is an important
observation that will be used in an essential way in Sect. 3. Note that the
formula (3) is analogous to the formula for the Hodge–de Rham Laplacian in
Riemannian geometry. There, the observation that this Laplacian is homotopic
to zero lies at the foundation of Hodge theory [27,33].

The causal structure on M defined by the Lorentzian metric g allows us
to restrict the supports of differential forms in other ways as well. Recall that,
for a subset S ⊆ M , by J±(S) we denote the subset of M that can be reached
from S by piecewise smooth, future (+) or past (−) directed causal curves,
while J(S) = J+(S) ∪ J−(S). A closed set S ⊆ M is said to be retarded if
S ⊆ J+(K) for some compact K, advanced if S ⊆ J−(K) for some compact
K, spacelike compact if it S ⊆ J(K) for some compact K, past compact if
S ∩ J−(K) is compact for every compact K, future compact if S ∩ J+(K)
is compact for every compact K, and timelike compact if S is both past and
future compact [2,46]. Timelike compactness is also equivalent to the property
of having compact intersection with every spacelike compact set. Let Ωp

X(M),
with X = +,−, sc, pc, fc or tc, denote the linear space of differential p-forms
with, respectively, retarded, advanced, spacelike compact, past compact, future
compact or timelike compact supports. For brevity, we refer to these spaces as
space of forms with causally restricted supports.

Of course, since differential operators preserve supports, � also restricts
to � : Ωp

c(M) → Ωp
c(M). By the same reasoning, the spaces of forms with

causally restricted supports are also preserved by both d and �. We define
de Rham cohomology with causally restricted supports in the obvious way
and denote it by Hp

X(M), with X = +,−, sc, pc, fc or tc. Let Ωp
�(M) and

Ωp
�,X(M) denote the kernel of the wave operator �, also known as its solution

space, in the spaces of forms with corresponding supports. Finally, by the
cochain map property, the de Rham differential restricts to the kernel of the
wave operator, hence defining the de Rham cohomology groups Hp

�(M) and
Hp

�,X(M) of solutions.
The specific way in which these causally restricted cohomologies are of

importance in Maxwell gauge theory is summarized in the following proposi-
tion. For definiteness of notation let us fix a χ ∈ C∞(M) that is 1 in the future
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of a Cauchy surface Σ+ and 0 in the past of another Cauchy surface Σ−. The
following is a special case of the general result [36, Theorem 3.2].

Proposition 1. Maxwell gauge theory [36, Sect. 4.2] induces a symplectic form
on Ω1

�,sc(M) [36, Definition 3.10] that is non-degenerate when (a) the bilinear
form on H1

sc(M) × Hn−1
c (M) induced by 〈α, β〉 =

∫
M

α ∧ β is non-degenerate
and (b) the bilinear form on H1

�,sc(M) induced by 〈α, β〉� =
∫

M
α ∧ ∗�(χβ)

is non-degenerate (where ∗ denotes the Hodge dual).

From the proof of that proposition it also follows that degeneracies in (a)
and (b) can imply degeneracies in the corresponding (pre-)symplectic struc-
ture.

The wave operator on a globally hyperbolic Lorentzian manifold is well
known to be Green hyperbolic. That is, it has advanced and retarded Green
functions denoted, respectively, G+ and G−, G± : Ωp

c(M) → Ωp
±(M). Since

� commutes with d, then so do G+ and G−. The form β = G±[α] is the
unique solution of �β = α with, respectively, retarded or advanced support.
The domain of definition of the Green functions can be extended, in a unique
way, to Ωp

X(M) for X = +,−, pc or fc. Then, the maps

� : Ωp
Y (M) → Ωp

Y (M), GX : Ωp
Y (M) → Ωp

Y (M) (5)

are mutually inverse bijections, whenever X = + and Y = + or pc, or X = −
and Y = − or fc. The combination G = G+−G− is known as the causal Green
function and fits into the following, in our terminology Green-hyperbolic, exact
sequences [2,3,26,34,36]

0 Ωp
c(M) Ωp

c(M) Ωp
sc(M) Ωp

sc(M) 0,� G �

(6)

0 Ωp
tc(M) Ωp

tc(M) Ωp(M) Ωp(M) 0.� G �

(7)
Note that, according to the above formulas, we can represent the space of
solutions with spacelike compact or unrestricted support either as

Ωp
�,X(M) = ker � ⊂ Ωp

X(M) (8)

or Ωp
�,X(M) = G[Ωp

Y (M)] = Ωp
Y (M)/�Ωp

Y (M), (9)

with X = sc and Y = c, or X empty and Y = tc, respectively. On the other
hand, we have trivial solution spaces Ωp

�,X(M) = {0} when X = +,−, pc or
fc.

The existence of the Green-hyperbolic exact sequences will allow us to
later make use of the following elementary result of homological algebra [11,
p. 17]. Let A• = (Ap,d) be a cochain complex, and similarly for B• and C•. It
is well known that a short exact sequence of cochain maps (maps commuting
with the differentials d),

0 A• B• C• 0,
f g (10)
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induces a long exact sequence in cohomology,

0 H0(A•,d) H0(B•,d) H0(C•,d)

H1(A•,d) H1(B•,d) H1(C•,d) · · ·

[f ] [g]

[d]

[f ] [g] [d]

(11)

The maps [f ], [g] are induced by the corresponding cochain maps, while the
[d] maps are induced by the differentials of the complexes (hence our notation
for them) and are known as connecting homomorphisms.

3. Computation of Cohomology Groups

In this section, we state and prove our main results on de Rham cohomology
with causally restricted supports. We rely essentially on the properties of the
wave operator and its Green functions, as summarized in Sect. 2. The impor-
tant properties are that the wave operator � is cochain homotopic to zero, and
the way its range and kernel are characterized using the causal Green function
G. In particular, we do not explicitly rely on the invariance properties of the
de Rham complex under topological homotopies.

Theorem 2. De Rham cohomology Hp
X(M), with X = +,−, pc or fc, is trivial.

Proof. Let X = +,−, pc or fc. Then, as was noted in Sect. 2, the wave operator
is a cochain map of the corresponding de Rham complex into itself, is invertible
[Eq. (5)] and cochain homotopic to zero [Eq. (3)]. Thus, it induces a map in
cohomology that is both invertible and equal to zero, which can only mean that
all the cohomologies are trivial. More concretely, given any closed α ∈ Ωp

X(M),
the identity d(δGX [α]) = GX [(dδ + δd)α] = α shows that it is also exact. �
Theorem 3. We have the isomorphisms

Hp
sc(M) ∼= Hp+1

c (M), Hp
�,sc

∼= Hp
c (M) ⊕ Hp+1

c (M), (12)

Hp
tc(M) ∼= Hp−1(M), and Hp

�(M) ∼= Hp(M) ⊕ Hp−1(M), (13)

with the convention that all cohomologies vanish in degree p for p < 0 or p > n.

Proof. Recall again from Sect. 2 that both the wave operator � and its causal
Green function G commute with d and hence constitute cochain maps between
the de Rham complexes with appropriate supports, inducing maps in cohomol-
ogy. Moreover, since � is cochain homotopic to zero [Eq. (3)], it induces the
zero map in cohomology.

Let us start with spacelike compact supports. We can break the exact
sequence in (6) into two short exact sequences of complexes:

0 Ωp
c(M) Ωp

c(M) Ωp
�,sc(M) 0,� G (14)

0 Ωp
�,sc(M) Ωp

sc(M) Ωp
sc(M) 0.

⊂ � (15)



Cohomology with Causally Restricted Supports

Because � always induces the zero map, [�] = 0, the corresponding long exact
sequences in cohomology [cf. Eq. (11)] break up into the following short exact
sequences:

0 Hp
c (M) Hp

�,sc(M) Hp+1
c (M) 0,

[G] [d] (16)

0 Hp−1
sc (M) Hp

�,sc(M) Hp
sc(M) 0,

[d] [⊂] (17)

again with the convention that any Hp
X(M) vanishes for p < 0 or p > n. Since

we are dealing with real vector spaces, any exact sequence splits, giving us the
isomorphisms

Hp
c (M) ⊕ Hp+1

c (M) ∼= Hp
�,sc(M) ∼= Hp−1

sc (M) ⊕ Hp
sc(M).

Given that H0
c (M) and H−1

sc (M) both vanish (M is non-compact and there
are no forms in degree p = −1), plugging p = 0 into the above isomorphism
implies H0

sc(M) ∼= H1
c (M). Proceeding by induction on p, we can check that

Hp
sc(M) ∼= Hp+1

c (M) for all p. Thus, we obtain the isomorophisms

Hp
sc(M) ∼= Hp+1

c (M), (18)

Hp
�,sc(M) ∼= Hp

c (M) ⊕ Hp+1
c (M). (19)

Applying the same argument to the exact sequence (7), we obtain the
isomorphisms

Hp
tc(M) ∼= Hp−1(M), (20)

Hp
�(M) ∼= Hp(M) ⊕ Hp−1(M). (21)

This completes the proof. �

Let Σ ⊂ M be a Cauchy surface. Recall that, by the smooth Geroch
splitting theorem, we can always smoothly factor M ∼= R×Σ. This observation
results in

Corollary 4. We have the isomorphisms

Hp
sc(M) ∼= Hp

c (Σ), Hp
�,sc(M) ∼= Hp

c (Σ) ⊕ Hp−1
c (Σ) (22)

Hp
tc(M) ∼= Hp−1(Σ), and Hp

�(M) ∼= Hp(Σ) ⊕ Hp−1(Σ), (23)

with the convention that all cohomologies vanish in degree p for p < 0 or p > n.

Proof. The splitting M ∼= R×Σ shows that M is homotopic to Σ. Hence, by the
homotopy invariance of de Rham cohomologies with unrestricted supports, we
have the isomorphism Hp(M) ∼= Hp(Σ). On the other hand, Poincaré duality
induces the isomorphism Hp

c (M) ∼= Hp−1
c (Σ). Therefore, the desired conclu-

sion follows directly from these identities in combination with Theorem 3. �

Finally, knowing the respective de Rham cohomologies with spacelike
and timelike compact supports, we have the following generalization of the
Poincaré lemma.
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Corollary 5. The non-degenerate bilinear pairing between Ωp
sc(M) and

Ωn−p
tc (M) descends to a non-degenerate bilinear pairing between Hp

sc(M) and
Hn−p

tc (M). There exists also a non-degenerate bilinear pairing between
Hp

�,sc(M) and Hn−p
� (M).

Proof. A consequence of Theorem 3 is that Hp
sc(M) ∼= Hp+1

c (M) and
Hn−p

tc (M) = Hn−p−1(M). So, the usual Poincaré duality establishes that
Hp

sc(M)∗ ∼= Hn−p
tc (M). The isomorphism can be exhibited by bilinear pair-

ing, which descends from the standard bilinear pairing between Ωp
sc(M) and

Ωn−p
tc (M), tracing its effect throughout the proof of Theorem 3. Its non-

degeneracy is also a consequence of the Poincaré lemma applied to Hp
c (M)

and Hn−p(M).
It also follows from Theorem 3 that Hp

�,sc(M) ∼= Hp
c (M) ⊕ Hp+1

c (M)
and Hn−p

� (M) ∼= Hn−p(M) ⊕ Hn−p−1(M). Again, the usual Poincaré dual-
ity establishes the isomorphism Hp

�,sc(M)∗ ∼= Hn−p
� (M). The isomorphism

can be exhibited by a bilinear pairing between Ωp
�,sc(M) and Ωn−p

� (M) ∼=
Ωn−p

tc (M)/�Ωn−p
tc (M), defined by the latter identity and the self-adjointness

of � with respect to our pairing between forms. Again, tracing this pairing
through the proof of Theorem 3 and appealing to the standard Poincaré du-
ality establishes its non-degeneracy. �

As already discussed in Sect. 1, the importance of knowing the above
cohomology groups is important for understanding the (pre)symplectic and
Poisson structure of classical field theories, as emphasized in [5,6,34,36,47].
The same result as Corollary 4 was obtained independently in [5]. As a matter
of fact, the method of [5] can be seen as a special case of our homological
calculation, as discussed more explicitly at the end of Sect. 5.1.2.

4. Calabi or Killing–Riemann–Bianchi Complex

In [34,36], it was pointed out that the construction of the symplectic and
Poisson structures on the phase space of field theories with constraints and/or
gauge invariance can be done using a general framework, provided a given
field theory satisfies certain geometric conditions. These conditions include
the existence of certain differential complexes that extend the operators that
constitute the constraints and that generate the gauge transformations. For
Maxwell (and similar) theories, all of these complexes are invariably part of
the de Rham complex [36, Sects. 4.2–.3]. On the other hand, for linearized
gravity, one has to use something different. Unfortunately, the explicit form
of these differential complexes is not currently known for linearized gravity
on an arbitrary background [36, Sect. 4.4]. However, in the special case of
constant curvature backgrounds, the answer is known and it is the so-called
Calabi complex [13]. It is likely that, once an explicit understanding of the
corresponding differential complexes for more general backgrounds is achieved,
the general framework of [34,36] would supersede recent covariant treatments
of the quantization of linearized gravity like [18,30].
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The Calabi complex provides a fine resolution [12, Sect. II.9] of the sheaf
of Killing vectors, similarly to how the de Rham complex provides a fine res-
olution of the sheaf of locally constant functions. The cohomology of a sheaf
(a rather abstract object) is isomorphic to the cohomology of the complex of
global sections of a fine resolution of the same sheaf (a more concrete object),
which is what makes fine resolutions significant [12, Theorem II.4.1]. As such,
the Calabi complex has been studied in some literature on the deformation
of constant curvature geometric structures [7,13,16,23,24,29,44]. Because its
structure is substantially different from the de Rham complex, we summarize
some of its relevant properties in Sects. 4.1 through 4.3 before concentrating on
its causally restricted cohomologies in Sect. 4.4. Many of these properties are
scattered throughout or are simply not available in the existing literature. We
defer a fuller discussion of the Calabi complex, which collects these properties
and their proofs, to [35]. However, all that we really need for the purposes of
Sect. 4.4 is the existence of differential operators listed in Sect. 4.2 and the
identities between them. Since these differential operators are explicitly given,
the identities can in principle be verified by direct calculation.

4.1. Tensor Bundles

We will present later a differential complex whose nodes are sections of ten-
sor bundles that are not so easy to express in conventional notation. So, let
us introduce the following short-hands. We denote the cotangent bundle by
V M = T ∗M and the bundle of metrics (symmetric, covariant 2-tensors)
by S2M = S2T ∗M . Let RM ⊂ (T ∗)4M denote the sub-bundle of covari-
ant 4-tensors that satisfy the algebraic symmetries of the Riemann tensor
(R(ab)cd = Rab(cd) = Rabcd −Rcdab = R[abc]d = 0). Next, we let BM ⊂ (T ∗)5M
denote the target bundle of the Bianchi operator ∇[aRbc]de. At this point it
is convenient to notice that the fiber of each of these bundles carries [20] an
irreducible representation of GL(n), with n = dim M . In fact, it is easiest to
describe the remaining tensor bundles in terms of the irreducible GL(n) rep-
resentation carried by their fibers. So let ClM ⊂ (T ∗)l+2M (with C standing
for Calabi) denote the sub-bundles of covariant (l + 2)-tensors with the cor-
responding irreducible representations listed in Table 1, which also lists their
fiber ranks. It is consistent for us to assign C0M ∼= V M , C1M ∼= S2M and
C2M ∼= RM and C3M ∼= BM . Recall that, on an n-dimensional manifold, the
largest rank of a fully antisymmetric tensor is n. So the bundles ClM become
trivial (zero fiber rank) for l > n.

The table below lists the tensor bundles of the Calabi complex, the cor-
responding irreducible GL(n) representations (labeled by Young diagrams),
and their fiber ranks, for dimM = n. The rank is given by the famous hook
formula, which is the following fraction. The numerator is the product of the
following numbers: place n in the top left cell, increase by 1 to the right and
decrease by 1 down, until all cells are filled. The denominator is the product of
the following numbers: fill a given cell with the number of cells constituting a
hook with vertex at the given location, extending to the right and down [21].
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Table 1. It is conventional to label irreducible GL(n) repre-
sentations by Young diagrams [21]

Bundle Young diagram Fiber rank

VM ∼= C0M n

S2M ∼= C1M
n(n+1)

2

RM ∼= C2M
n2(n2−1)

12

BM ∼= C3M
n2(n2−1)(n−2)

24

ClM
1

2
.
.
.

l

n2(n2−1)(n−2)···(n−l+1)
2(l+1)l(l−2)!

Recall that a Young diagram with k cells of type (r1, r2, . . .) consists of a number of rows
of non-increasing lengths ri, ri+1 ≤ ri, such that

∑
i ri = k. Given a Young diagram with

k cells, an instance of the corresponding irreducible GL(n) representation class can be
realized as the image of the space of covariant k-tensors after two projections: assign an

independent tensor index to each cell of the diagram, symmetrize over each row,
antisymmetrize over each column

Given two S2M tensors, we can construct an RM tensor out of them
using the formula

(g � h)abcd = gachbd − gbchad − gadhbc + gbdhac. (24)

In fact, the above formula represents a GL(n)-equivariant map between S2⊗S2

and R (where we use the bundle prefixes to stand in for the corresponding
irreducible representations). The decomposition of the S2 ⊗S2 tensor product
has only one copy of R, so by Schur’s lemma such a map is unique, up to an
overall rescaling. The same argument can be repeated for the tensor product
S2⊗Y , where Y corresponds to any other Young diagram. This tensor product
decomposes into irreducible subrepresentations without multiplicities. Then
the projection onto any of the subrepresentations Y ′ is well defined up to a
rescaling. If we fix sections g of S2M and h of Y M , these projections define a
bilinear operation between g and h with the result a section of Y ′M . We use
the following explicit formulas:

(g � t)abc:de = +gadtbc:e + gbdtca:e + gcdtab:e

− gaetbc:d − gbetca:d − gcetab:d, (25)

(g � t)abcd:ef = +gaetbcd:f − gbetcda:f + gcetdab:f − gdetabc:f

− gaf tbcd:e + gbf tcda:e − gcf tdab:e + gdf tabc:e. (26)
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Note that a tensor with indices written as in tabc:de has the symmetry type
(2, 2, 1), while tabc:d corresponds to the symmetry type (2, 1, 1), and so on. The
colon : is used purely as a visual aid to separate groups of indices belonging
to different columns of a Young diagram.

The metric gab itself, an S2M tensor, can now be used to produce an
RM tensor,

(g � g)ab:cd = 2(gacgbd − gbcgad), (27)
which is obviously covariantly constant. In fact, a constant curvature spacetime
must have (covariant) Riemann tensor, Ricci tensor and Ricci scalar of the
following form

R̄abcd =
k

n(n − 1)
(gacgbd − gbcgad), R̄ac =

k

n
gac, R̄ = k. (28)

We have decorated these quantities with a bar to indicate the fact that we
shall fix a constant curvature background metric g and consider perturbations
on it. For our purposes, we also require that the Lorentzian manifold (M, g)
is globally hyperbolic.

We should note that solutions of Einstein equations (including a possible
cosmological constant term) with constant curvature include Minkowski space
(k = 0), de Sitter space (k > 0) and anti-de Sitter space (k < 0). There is
(up to isometry) a unique simply connected version of each of these cases [32,
Sects. 5.1–2]. Other examples may be obtained by taking quotients thereof
with respect to a discrete subgroup, thus changing the topology. The list of
possibilities is thus exhausted by considering open subsets of such quotients.
Some examples will not be globally hyperbolic (like anti-de Sitter space or
quotients of Minkowski space with respect to timelike translations) and thus
excluded from part of our discussion.

4.2. Differential Operators

Now, we introduce a number of differential operators between the tensor bun-
dles that we have defined. For convenience of notation, we denote the space of
sections of a bundle by the same symbol as the bundle itself. These operators
fit into the following diagram:

0 C0M C1M C2M · · · CnM 0

0 C0M C1M C2M · · · CnM 0.

B1

P0

B2

P1
E1

Bn

P2
E2

Pn
En

B1 B2 Bn
(29)

All the solid arrows commute and the rows constitute (cochain) complexes.
The vertical maps are then necessarily cochain maps. They happen to satisfy
the identities Pl = El+1 ◦ Bl+1 + Bl ◦ El, which means that they are null-
homotopic, with the El supplying the corresponding cochain homotopy.

Below, we give explicit formulas for all these differential operators in
dimension n = 4. More details can be found in [35], which draws from the
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earlier works [7,13,16,23,24,29,44]. As we shall see, for low indices they are
well known in the relativity literature. However, the relations between them in
terms of fitting into the above diagram do not seem to have been fully noted.

The Calabi differential complex is given by

B1[v]ab = ∇avb + ∇bva, (30)

B2[h]ab:cd =
(∇(a∇c)hbd − ∇(b∇c)had − ∇(a∇d)hbc + ∇(b∇d)hac

)

+ k
1

n(n − 1)
(g � h)ab:cd, (31)

B3[r]abc:de = 3∇[arbc]:de = ∇arbc:de + ∇brca:de + ∇crab:de, (32)

B4[b]abcd:ef = 4∇[abbcd]:ef (33)

= ∇abbcd:ef − ∇bbcda:ef − ∇cbdab:ef − ∇dbabc:ef , (34)

Bl[b]a1···al:bc = l∇[a1ba2···al]:bc (l ≥ 3), (35)

where (a1 · · · al) and [a1 · · · al] denote, respectively, complete idempotent sym-
metrization and antisymmetrization of a group of indices [52, Eqs. 2.4.3–4].
Recall also that the colon : is used purely as a visual aid to separate groups of
indices belonging to different columns of the Young diagrams in Table 1. The
details showing that these operators have the desired symmetry properties and
indeed define a complex, Bl+1 ◦ Bl = 0, which is moreover elliptic,2 can be
found in [35].

It is interesting to note the following relations with well-known differential
operators in relativity. The Killing operator is K[h] = B1[h]. The linearized
Riemann tensor is ˙FR[h] = − 1

2B2[h]+ k 2
n(n−1) (g �h), where the all covariant

non-linear Riemann tensor is expanded as R[g + λh]ab:cd = R̄ab:cd + λṘ[h]ab:cd

(convention of [52]). The background Bianchi operator is B̄[r] = B3[r], with
B̄[R̄] = 0. Finally, though the name is not standard, it is meaningful to call
B4[b] a higher Bianchi operator. Thus, it would also make sense to refer to the
Calabi complex as the Killing–Riemann–Bianchi complex. This complex also
happens to be locally exact3 [13,35]. Thus, according to the general machinery
of sheaf theory, the Calabi complex provides a fine resolution of the sheaf of
Killing vectors (or Killing sheaf) Kg on the Lorentzian manifold (M, g) [35,
Sect. 3]. This observation immediately gains us the following:

Proposition 6 (Calabi [13]). The (unrestricted) cohomology HCl(M, g) = ker
Bl+1/ im Bl of the Calabi complex is isomorphic to the sheaf cohomology H•

(M,Kg) of the sheaf of Killing vectors on any spacetime (M, g) of constant
curvature.

Calabi’s proof was rather elementary and relied on the specific structure
of this complex. Unfortunately, his method does not generalize easily to other

2 A complex of differential operators is elliptic if the corresponding complex of symbol maps
is exact for every non-zero covector.
3 A differential complex on a manifold M is locally exact if every x ∈ M has a neighborhood
such that the complex restricted to it becomes exact. For example, this condition is fulfilled
for the de Rham complex thanks to the Poincaré lemma.
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differential complexes. So, we discuss below a different method to get local ex-
actness, which relies mostly on the ellipticity of the Calabi complex, a property
which is expected to be shared by other complexes of interest.

Next, we give explicitly the homotopy differential operators

E1[h]a = D[h]a = ∇bhab − 1
2
∇ah, (36)

E2[r]a:b = tr[r]a:b = rac:b
c, (37)

E3[b]ab:cd = ∇ebeab:cd +
1
2
∇e(bcab:de − bdab:ce)

− 1
2
(∇cbabe:d

e − ∇dbabe:c
e)

− 1
2
(∇abcbe:d

e − ∇abdbe:c
e

+ ∇bbace:d
e − ∇bbade:c

e), (38)

E4[b]abc:de = ∇f bfabc:de +
1
3
∇f (bdabc:ef − beabc:df )

+
1
3
(∇dbabcf :e

f − ∇ebabcf :d
f )

+
1
6
(∇abdbcf :e

f − ∇abebcf :d
f

+ ∇bbadcf :e
f − ∇bbaecf :d

f

+ ∇cbabdf :e
f − ∇cbabef :d

f ), (39)

El+1[b]a1···al:bc = ∇abaa1···al:bc + l−1∇a(bba1···al:ca − bca1···al:ba)

− (−1)l

l
(∇bba1···ala:c

a − ∇cba1···ala:b
a)

− (−1)l

l(l − 1)
(∇{b}b{a1···al}a:c

a − ∇{c}b{a1···al}a:b
a)

for (l ≥ 2), where (40)

p{b}t{a1···al} =
l∑

i=1

(−1)i+1pai
taa1···âi···al

(âi omitted).

Their desired Young symmetry properties are demonstrated in [35]. Again, we
find the following relations with classical differential operators from relativity.
The de Donder operator is D[h] = E1[h]. The trace from the Riemann to
the Ricci tensors is given by R̄ab = R̄ac:b

c = E2[R̄]ab. The higher homotopy
operators El do not seem to be part of the classical literature. However, they
are essentially modified divergence operators and are thus reminiscent of the
de Rham co-differentials.

Finally, the cochain maps Pl = El+1 ◦Bl+1 +Bl ◦El (with the edge cases
P0 = E1 ◦ B1 and Pn = Bn ◦ En) are given by

P0[v]a = �va + k
1
n

va, (41)
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P1[h]ab = �hab − k
2

n(n − 1)
hab + 2k

gab tr[h]
n(n − 1)

, (42)

P2[r]ab:cd = �rab:cd − k
2
n

rab:cd + 2k
(g � tr[r])ab:cd

n(n − 1)
, (43)

P3[b]abc:de = �babc:de − k
(3n − 7)
n(n − 1)

babc:de − 2k
(g � tr[b])abc:de

n(n − 1)
, (44)

P4[b]abcd:ef = �babcd:ef − k
(4n − 14)
n(n − 1)

babcd:ef + 2k
(g � tr[b])abcd:ef

n(n − 1)
, (45)

Pl[b]a1···al:bc = �ba1···al:bc − k
(ln − l2 + 2)

n(n − 1)
ba1···al:bc

+ (−)l2k
(g � tr[b])a1···al:bc

n(n − 1)
(l ≥ 3), (46)

where we have defined the traces as tr[h] = he
e, tr[r]ab = rae:b

e, tr[b]ab:c =
babe:c

e, tr[b]abc:d = babce:d
e, and tr[b]a1···al:b = ba1···ala:b

a. The required null-
homotopy identities Pl = El+1 ◦ Bl+1 + Bl ◦ El (including the edge cases
P0 = E1 ◦B1 and Pn = Bn ◦En) are demonstrated in [35]. These identities for
P0[v] and P1[v] are well known and are tightly linked with the de Donder gauge
fixing condition in linearized gravity [18,52]. The higher cochain maps and the
corresponding identities appear to be new. Though, the identity for P2[r] is
related to the non-linear wave equations satisfied by the Riemann and Weyl
tensors on any vacuum background, sometimes known as the Lichnerowicz
Laplacian [40, Sect. 1.3] (see also [14, Sect. 7.1], [41, Exr. 15.2], [10, Eq. 35]).

4.3. Cohomology with Unrestricted and Compact Supports

Let us denote the cohomology of the Calabi complex by HCl
X(M, g), where

X = c,+,−, fc, pc, sc, tc or empty, according to the conventions of Sect. 2. As
in the case of the de Rham complex in Sect. 3, we will later relate the coho-
mology with causally restricted supports to that with unrestricted or compact
supports. It remains still to find a means to calculate these cohomology groups.
We will state some results in that direction below, referring to [35] for a fuller
discussion.

An important observation is that each of the Pl operators is wave-like,
that is, it has the same principal symbol as the wave operator �g with respect
to the background Lorentzian metric g. This observation has a dual role. First,
this means that each of the Pl operators is Green hyperbolic [2,3], while being
cochain homotopic to zero, opening the door to using the methods of Sect. 3
to compute the cohomology with causally restricted supports.

The second role is more subtle:

Remark 1. Note that the principal symbols of the Bl maps in the Calabi
complex are actually GL(n)-equivariant and so do not actually involve the
background metric g. On the other hand, the principal symbols of the cochain
maps Pl do depend on g. This dependence comes purely from the cochain
homotopy operators El = Eg

l and the identity Pl = P g
l = Eg

l+1◦Bl+1+Bl◦Eg
l ,

where we have used the subscript g to indicate that the background metric
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was used for covariant differentiation and index raising. On the other hand,
we are completely free to define a different set of cochain maps P gR

l = EgR

l+1 ◦
Bl+1 +Bl ◦EgR

l , which now depend on a different metric gR with Riemannian
signature. It is crucial to note that the principal symbol of P gR

l depends only
on the principal symbols of the EgR

l and Bl. So, in fact, it is equal to the
principal symbol of P g

l , but with the Lorentzian metric g replaced by the
Riemannian metric gR. In other words, each of the P gR

l operators is elliptic,
since its principal symbol coincides with the Laplace operator ΔgR

. Of course,
P gR

l would differ much more radically from the formulas we have given for P g
l

in the terms of subleading differential orders.

The ellipticity of the complex (together with a subtler property known
as a δ-estimate, discussed in more detail in [35,51]) results in the following

Proposition 7. Let us denote by Γ(ClM) the space of smooth sections of the
tensor bundle ClM → M . (a) The cohomology HC•(M, g) of the Calabi com-
plex (Γ(ClM), Bl) is isomorphic to the cohomology H•(M,Kg) of the sheaf
Kg of Killing vectors on (M, g). (b) If (M, g) is a simply connected, constant
curvature Lorentzian manifold, then H•(M,Kg) ∼= H•(M) ⊗ Vg, where Vg is
the vector space of all Killing vectors and H•(M) is the de Rham cohomology
group.

Killing vectors (or rather covectors in our notation) are solutions v ∈
Γ(T ∗M) of the Killing equation K[v]ab = ∇avb + ∇bva = 0. On simply con-
nected, constant curvature n-dimensional spacetimes, dim Vg =

(
n+1
2

)
. Note

also that the simple connectedness condition implies that H1(M) = 0. The
precise definition of a sheaf and its cohomology is not of particular importance
for the moment. For present purposes, it suffices that the above result, at the
very least, answers the question of what HC•(M, g) is for the simply connected
versions of Minkowski (Rn), de Sitter (R × Sn−1 for n ≥ 3, R2 for n = 2) and
anti-de Sitter (Rn) spacetimes. The proof, together with a partial discussion
of the non-simply connected case, can be found in [35].

It remains to discuss Calabi cohomology with compact supports
HC•

c (M, g). First, we note that the chain complex (Γ(C∗
l M), B∗

l ) formally ad-
joint to the Calabi complex has the interesting property that equation B∗

n[b] =
0 is equivalent to the (rank-(n − 2)) Killing–Yano equation Y [w]abc4···cn =
∇(awb)c4···cn , where a solution with w[bc4···cn] = wbc4···cn is called a (rank-
(n−2)) Killing–Yano tensor on (M, g). We define Calabi homology HCl(M, g)
as the cohomology of this adjoint complex (Γc(C∗

l M), B∗
l ) with compact sup-

ports and also locally finite Calabi homology as the cohomology of the adjoint
complex (Γ(C∗

l M), B∗
l ) with unrestricted supports. Since taking formal ad-

joints preserves the homotopy identities and ellipticity, appealing to the same
arguments as above (again, including a δ-estimate [35,51]) we also have

Proposition 8. (a) Locally finite Calabi homology HC lf
l (M, g) is isomorphic

to the cohomology H•(M,KYg) of the sheaf KYg of Killing–Yano tensors on
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(M, g). (b) If (M, g) is a simply connected, constant curvature Lorentzian man-
ifold, then H•(M,KYg) ∼= H•(M) ⊗ Wg, where Wg is the vector space of all
Killing–Yano tensors and H•(M) is the de Rham cohomology group.

On simply connected, constant curvature n-dimensional spacetimes,
dim Wg =

(
n+1
2

)
[49]. Furthermore, using Remark 1 and some general results

from the theory of elliptic differential complexes (see Example 5.1.11 of [51],
which relies on the results of [48]), we have the following generalized Poincaré
duality isomorphisms [35]:

Proposition 9. When finite dimensional, Calabi homology is the linear dual
of Calabi cohomology, HCl(M, g) = HCl(M, g)∗, while Calabi cohomology
with compact supports is the linear dual of locally finite Calabi homology,
HCl

c(M, g) = HC lf
l (M, g)∗. In both cases, the duality can be exhibited via

the non-degeneracy of the pairing descended from the natural pairing between
the chains and cochains of corresponding complexes.

4.4. Cohomology with Causally Restricted Supports

Recall that, in Sect. 2, we defined de Rham cohomologies Hp
X(M) with causally

restricted supports X = +,−, sc, tc, pc or fc by restricting the de Rham com-
plex to forms with supports indicated by X, with the on-shell cohomologies
Hp

�(M) and Hp
�,sc(M). Substituting the Calabi complex for the de Rham com-

plex and the Pl operators for the d’Alembertians �, by direct analogy we can
define the causally restricted Calabi cohomologies HCl

X(M, g), HCl
P (M, g)

and HCl
P,sc(M, g). We can use the same definitions also in the case of the ad-

joint Calabi complex, with slightly altered notation. Let the causally restricted
Calabi homology HCX

l (M, g) be the cohomology of the complex (ΓY (C∗
l M),

B∗
l ) where the pair (X,Y ) is one of retarded (+, fc), advanced (−, pc) , space-

like locally finite (slf , tc), timelike locally finite (tlf , sc) , future locally finite
(flf ,−) and past locally finite (plf ,+). Similarly, we define the on-shell Calabi
homologies HCP,lf

l (M, g) and HCP,tlf (M, g) as the cohomologies of the com-
plexes (ker P ∗

l ∩ Γ(C∗
l M), B∗

l ) and (ker P ∗
l ∩ Γsc(C∗

l M), B∗
l ), respectively. The

above (X,Y ) pairs are chosen specifically so that there is a bilinear pairing
between Calabi homology HCX

l (M, g) and Calabi cohomology HCl
Y (M, g),

which descends from the natural pairing between the corresponding spaces of
sections of C∗

l M and ClM .
The specific way in which these causally restricted cohomologies are of

importance in linearized gravity is summarized in the following proposition.
For definiteness of notation let us fix a χ ∈ C∞(M) that is 1 in the future of
a Cauchy surface Σ+ and 0 in the past of another Cauchy surface Σ−. The
following is a special case of the general result [36, Theorem 3.2].

Proposition 10. Linearized gravity on a constant curvature background [36,
Sect. 4.4] induces a symplectic form on ΓP,sc(C1M) [36, Definition 3.10] that
is non-degenerate when (a) the bilinear form on HC1

sc(M, g) × HC1(M, g)
induced by 〈α, β〉 =

∫
M

α · β is non-degenerate and (b) the bilinear form on
HC1

P,sc(M) induced by 〈α, β〉P =
∫

M
α · P1[χβ] is non-degenerate.
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From the proof of that proposition it also follows that degeneracies in (a)
and (b) can imply degeneracies in the corresponding (pre-)symplectic struc-
ture.

With the above discussion in mind, we can see immediately that we are in
a situation very similar to that of Sect. 3, with the de Rham complex replaced
by the Calabi complex (or its adjoint complex) and the wave operators � re-
placed by the operators Pl (or P ∗

l ), which have wave-like principal symbols and
are Green hyperbolic. So, repeating the arguments of Sect. 3, we immediately
have the following

Theorem 11. Consider a globally hyperbolic, constant curvature Lorentzian
manifold (M, g). The Calabi cohomology HCl

X(M, g) with the causally re-
stricted supports X = +,−, pc or fc is trivial. Moreover, for the cases X =
sc, tc, we have the isomorphisms

HCl
sc(M, g) ∼= HCl+1

c (M, g), HCl
P,sc(M, g) ∼= HCl

c(M, g)⊕HCl+1
c (M, g),

(47)

HCl
tc(M, g) ∼= HCl−1(M, g), HCl

P (M, g) ∼= HCl(M, g)⊕HCl−1(M, g),
(48)

with the convention that all cohomologies vanish in degree l for l < 0 or l > n.
Similarly, the Calabi homology HCX

l (M, g) with the causally restricted sup-
ports X = +,−, plf or flf is trivial. Moreover, for the cases X = tlf , slf , we
have the isomorphisms

HCtlf
l (M, g) ∼= HCl−1(M, g), HCl

P,tlf (M, g) ∼= HCl(M, g)⊕HCl−1(M, g),
(49)

HCslf
l (M, g) ∼= HC lf

l+1(M, g), HCl
P,lf (M, g) ∼= HC lf

l (M, g)⊕HC lf
l+1(M, g),

(50)

again with the convention that all cohomologies vanish in degree l for l < 0 or
l > n.

The Calabi cohomology with spacelike compact support in degree l = 1
is important in understanding the symplectic and Poisson structure of the
classical field theory (and of course the quantization) of linearized gravitons
on a background of constant curvature. This was pointed out explicitly in [36,
Sect. 4.4] as a special case of a more general phenomenon (also discussed
in [34]).

Remark 2. Using the above theorem and the results of Sect. 4.3, we can assert
that for n-dimensional Minkowski space HCl

sc vanishes in all degrees except
l = n − 1, while HCl

P,sc vanishes in all degrees except l = n, n − 1. For n-
dimensional de Sitter space HCl

sc vanishes in all degrees except l = n − 1,
while HCl

P,sc vanish in all degrees except l = 0, n − 1, n. Similar remarks
apply to Calabi homologies.
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5. Notes and Generalizations

5.1. Generalized Causal Structures

The notion of a causal structure on a manifold or even a topological space
(in the sense of a partial order on events) can be generalized quite far beyond
the context of Lorentzian geometry [22,37]. We will stick with the context of
differential geometry, where a natural generalization consists of introducing
at every point of a manifold an arbitrary convex cone in the tangent4 bun-
dle. Such a manifold could be called a conal manifold [34,38,42,50]. Various
notions generated by the causal structure on Lorentzian manifolds survive al-
most without modification on conal manifolds, including spacelike and timelike
compactness. The main question we will try to answer in this section is the
following: is it possible to use the methods of Sect. 3 to compute causally re-
stricted cohomologies on a conal manifold? We shall see that the answer is yes,
even if the conal manifold is not Lorentzian.

5.1.1. Conal Manifolds. Before dealing with spacelike and timelike compactly
supported forms, let us introduce the basics of conal manifolds and causal
relations on them. Let M be a smooth manifold and C ⊂ TM be an open
subset, such that Cx = C ∩TxM is an open, convex cone in TxM that does not
contain any affine line. It can be shown that the interior C�

x of the polar dual
(or convex dual) cone T ∗

x M ⊃ C∗
x = {p ∈ T ∗

x M | ∀v ∈ Cx : p · v ≥ 0} satisfies
the same conditions, with C� = �x∈MC�

x . The pair (M,C) or (M,C�) is
called a conal manifold, with C (or C�) called the tangent (or cotangent) cone
distribution or cone bundle. For example, the subset of non-vanishing, future-
pointing, timelike vectors on a Lorentzian manifold with a time orientation
satisfies the above conditions. In general, the cones Cx need not even have
elliptic cross sections, thus not be associated to any Lorentzian metric. The
cones of future pointing timelike vectors of linear symmetric hyperbolic PDE
systems also satisfy the same properties [34, Sect. 4.1]. Sometimes, it is also
convenient to admit degenerate cases where the cones are not open or contain
some affine lines, but some special care must be taken in those situations.

Given a conal manifold (M,C) we can define a chronological order re-
lation on the points of M . Namely, x � y if there exists a smooth curve
γ : [0, 1] → M , such that γ(0) = x, γ(1) = y and γ̇(t) ∈ C for all t ∈ [0, 1]. It
can be shown that the chronological order relation I+ ⊂ M × M is open and
transitive. We can also define the reverse chronological order, I−, and chrono-
logical influence, I = I+ ∪ I−, relations in the obvious way. We avoid defining
the analog of the causal order relation usually denoted by J+, simply because
we have not made any hypotheses about the regularity of the set of causal vec-
tors (Cx ⊂ TxM). Given any set K ⊆ M , we denote by I±(K) the set of all
points of M that, respectively, chronologically precede ore are preceded by the
points of K. In general, I±(K) is not closed, even if K is. So, for convenience
we define I

±
(K) = I±(K). We also use the notation I(K) = I+(K) ∪ I−(K)

4 One could equally do so in the cotangent bundle, and produce a tangent cone by convex
(or polar) duality.
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and I(K) = I
+
(K) ∪ I

−
(K). Note that I

± ⊆ M × M need not be transitive
as relations.

The definition of a Cauchy surface Σ ⊂ M is the usual one, every inex-
tensible smooth curve with timelike tangents must intersect Σ exactly once.
It has recently been shown that the smooth version of the Geroch splitting
theorem [8,9,25] generalizes to conal manifolds [17]. So, globally hyperbolicity
can be simply characterized by the existence of a Cauchy surface. Also, the
results of [46] should also directly carry over to conal manifolds. Finally, we
define the notions of advanced, retarded, spacelike compact, timelike compact,
future compact and past compact exactly in the same way as in Sect. 2, with
the exception that we use the relations Ī± and Ī instead of the relations J±

and J .5

5.1.2. Cohomology with Causally Restricted Supports. Let M be a globally
hyperbolic conal manifold and g an auxiliary globally hyperbolic Lorentzian
metric that induces another conal structure on M that is “slower” than the
original one. That is, Ωp

±g
(M) ⊆ Ωp

±(M), which also implies that Ωp
scg

(M) ⊆
Ωp

sc(M), while Ωp
fcg,pcg

(M) ⊇ Ωp
fc,pc(M), and hence Ωp

tcg
(M) ⊇ Ωp

tc(M). Any
conal manifold admits a nowhere vanishing vector field (contract each cone to a
ray and select a vector from it), which is moreover everywhere future directed.
So, the existence of such an auxiliary Lorentzian metric follows from the same
known, general arguments that show the existence of Lorentzian metrics on
manifolds of vanishing Euler characteristic (i.e., admitting a nowhere vanishing
vector field) [4,43]. The “slowness” requirement is implemented by making sure
that the Lorentzian timelike cones closely hug the directions singled out by the
above everywhere timelike vector field.

Let G± denote once again the advanced and retarded Green functions of
the wave operator �g defined with respect to g. Then it is easy to see that
the Green functions are still well defined and injective as maps G± : Ωp

c(M) →
Ωp

±(M). Appealing to the same logic as in the standard proofs6 [2,3,26,34,36],
we can extend the Green functions to bijective maps G± : Ωp

±(M) → Ωp
±(M)

and G± : Ωp
fc,pc(M) → Ωp

fc,pc(M), from which it is straightforward to establish
exactness of the following sequences, with G = G+ − G−:

0 Ωp
0(M) Ωp

0(M) Ωp
sc(M) Ωp

sc(M) 0,� G �

(51)

0 Ωp
tc(M) Ωp

tc(M) Ωp(M) Ωp(M) 0,� G �

(52)

5 We are not concerned with possible minor inconsistencies this substitution introduces in
the case of Lorentzian manifolds with ill-behaved causal structures. In any case, we shall
only apply these notions for globally hyperbolic spacetimes, where these differences do not
appear.
6 Pick an exhaustion of M by compact sets and adapt a sequence of smooth “step functions”
to this exhaustion. Precomposing G± with multiplication by these step functions gives a
sequence of operators which converges to an operator with the desired extended domain.
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where the supports are restricted by the given conal structure on M and not by
that induced by the auxiliary Lorentzian metric g. Note that the proofs would
make use of the hypothesis that the given conal structure is globally hyperbolic,
specifically in the construction of explicit splitting maps that demonstrate
exactness [36, Lemma 2.1]. Thus, repeating the arguments Sect. 3, we establish
the following generalization of Theorems 2 and 3.

Theorem 12. Consider a globally hyperbolic conal manifold M . Its de Rham
cohomology Hp

X(M) with causally restricted supports X = +,−, pc or fc is
trivial. Moreover, we have the isomorphisms

Hp
sc(M) ∼= Hp+1

c (M), Hp
�,sc

∼= Hp
c (M) ⊕ Hp+1

c (M), (53)

Hp
tc(M) ∼= Hp−1(M), and Hp

�(M) ∼= Hp(M) ⊕ Hp−1(M), (54)

with the convention that all cohomologies vanish in degree p for p < 0 or p > n.

It should be clear from the preceding discussion that there is nothing
inherently special in our use of the d’Alembertian �g, when it comes to the
calculation of de Rham cohomologies with causally restricted supports on a
globally hyperbolic conal manifold M . It is merely one of multiple possible
auxiliary hyperbolic differential operators that can serve the same purpose.
Here are the key required properties for such an operator h: (a) h must be a
cochain map that is homotopic to zero with respect to the de Rham complex,
(b) it must possess retarded and advanced Green functions, (c) these Green
functions must be causal with respect to the given conal structure on M .
In fact, the conclusion of our Theorem 3 was reached independently in the
recent paper [5] by following an argument structurally similar to ours, with
the d’Alembertian replaced by the Lie derivative Lv with respect to a complete
timelike vector field v. It is clearly (Green) hyperbolic [2,3,34,36] with Green
functions simply given by integration (into the future or past) along the flow
lines of v. Moreover, it is cochain homotopic to zero because of the well-known
magic formula of Cartan: Lv = ιvd + dιv.

5.2. Functoriality

Recall that ordinary de Rham cohomology is defined on any finite dimen-
sional manifold and the pullback of differential forms along a smooth map
between manifolds induces a map between their cohomologies (in the direc-
tion opposite the original smooth map). This observation has the following
well-known formalization: de Rham cohomology in degree p, Hp(−), is a con-
travariant functor7 from the category of smooth manifolds to the category
of real vector spaces. The same cannot be said for de Rham cohomology
with compact supports, Hp

c (−), because the pullback of a compactly sup-
ported form need not be compactly supported itself. This pullback problem is

7 We shall not delve here into the details of category theory. It suffices to say that any
statement that we shall make involving functors and categories will be simply a very terse
transcription of some other property that will be spelled out in more elementary terms. More
details about the functorial properties of de Rham cohomology can be found in [11].
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fixed by considering only proper8 smooth maps between manifolds. So, given
a proper smooth map f : M → N , pullback along it induces a contravari-
ant map between de Rham cohomologies in degree p with compact support,
f∗ : Hp

c (N) → Hp
c (M). If the map f satisfies a different restrictive condi-

tion, namely that it is an open embedding, it is possible to define a covariant
pushforward map f∗ : Hp

c (M) → Hp
c (N): we can identify M with its image

f(M), an open subset of N , and extend by zero any compactly supported
form defined M to all of N . In short, de Rham cohomology with compact
supports, Hp

c (−), defines a contravariant functor on the category of smooth
manifolds with proper maps as morphisms, when paired with the pullback,
while it defines a covariant functor on the category of smooth manifolds with
open embeddings as morphisms, when paired with the pushforward.

A natural question is the following: do similar properties hold, and under
what precise conditions, for de Rham cohomologies with causally restricted
supports? For instance, this question was briefly raised, but without any defi-
nite answer, in [5]. In fact, it is straight forward to present causally restricted
cohomologies as functors, provided we modify the domain category by adding
generalized causal structures to manifolds (as in Sect. 5.1) and by modifying
the notion of a proper map with respect to the causal structure.

Consider two conal manifolds M and N , with a smooth map f : M → N
between them. We call the map f reflectively spacelike-proper if the preim-
age of any spacelike compact set is also spacelike compact, while we call it
reflectively timelike-proper if the preimage of any timelike compact set is also
timelike compact. When the map f is an open embedding, we also introduce
the terminology monotonically spacelike-proper for the case when the image
of any spacelike compact set is itself spacelike-compact and monotonically
timelike-proper for the case when the image of any timelike compact set is
timelike compact. We should note that the above terminology is partly in-
spired by some general notions from the theory of partially ordered sets. A
map f : M → N between two partially ordered sets (M,≤) and (N,≤) is said
to be monotonic if x ≤ y implies f(x) ≤ f(y) and, on the other hand, it is said
to be order-reflecting if f(x) ≤ f(y) implies x ≤ y. The following theorem is a
straight forward generalization of the previous arguments for the simpler case
of compact supports.

Theorem 13. Let CMansc and CMantc be the categories of conal manifolds
with, respectively, reflectively spacelike-proper and reflectively timelike-proper,
smooth maps as morphisms, while the CMane

sc and CMane
tc categories have, re-

spectively, monotonically spacelike-proper and monotonically timelike-
proper open embeddings as morphisms. Then, de Rham cohomologies with
spacelike and timelike supports, Hp

sc(−) and Hp
tc(−), are contravariant func-

tors on CMansc and CMantc, respectively. Similarly, Hp
tc(−) and Hp

sc(−) are
covariant functors on CMane

tc and CMane
sc, respectively.

8 A continuous map is proper if the preimage of any compact set is compact.
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Proof. The proof is a direct parallel of the above arguments for the case with
compact supports, since the definitions have been specifically adapted to that
argument. �

To show that the definitions of spacelike- and timelike-proper maps are
in some sense natural, we give a couple of examples.

Lemma 14. Let M be a manifold and two conal structures on it, C ⊆ C ′ ⊆ TM
(C is “slower” than C ′) (Sect. 5.1). The identity map is a reflectively spacelike-
proper from (M,C ′) to (M,C) and reflectively timelike-proper from (M,C) to
(M,C ′).

Proof. Let K ⊆ M be any compact subset. Then, by hypothesis, the C-
influence set is smaller than the C ′-influence set, IC(K) ⊆ IC′(K). Therefore,
any C-spacelike compact set is also C ′-spacelike and hence the identity from
(M,C ′) to (M,C) is reflectively spacelike-proper. On the other hand, if U ⊆ M
is C ′-timelike compact, then we have the inclusion IC(K) ∩ U ⊆ IC′(K) ∩ U ,
the latter being compact. Therefore, U is also C-timelike compact and the
identity from (M,C) to (M,C ′) is reflectively timelike-proper. �
Lemma 15. Let (M, g) and (N,h) be two globally hyperbolic Lorentzian man-
ifolds and f : M → N an open isometric embedding, such that the image of
a Cauchy surface of M is a Cauchy surface of N . Then, f is monotonically
timelike-proper.

Proof. Let U ⊆ M be timelike compact. According to [46], this is equivalent
to U being contained between two Cauchy surfaces in (M, g), say Σ1,Σ2 ⊂ M .
This means that the image, f(U) is contained between f(Σ1) and f(Σ2), with
the latter, by hypothesis, being Cauchy surfaces in (N,h). Thus, f(U) is also
timelike compact and the map f is monotonically timelike-proper. �
5.3. Other Differential Complexes

Our interest in computing the de Rham and Calabi cohomologies with
causally restricted supports has was motivated by their importance in un-
derstanding the geometric structure of classical and quantum field theories [5,
6,15,19,31,34,36,47]. Namely, for a general class of linear field theories, one
can formulate sufficient conditions for the non-degeneracy of the theory’s Pois-
son structure and the completeness of compactly supported smeared fields as
physical observables in terms of the cohomologies of corresponding differential
complexes. Non-linear field theories can be studied in terms of their lineariza-
tions about arbitrary background solutions. To Maxwell electrodynamics cor-
responds the de Rham complex [36, Sect. 4.2]. To linearized gravity on constant
curvature backgrounds, corresponds the Calabi complex [36, Sect. 4.4]. Simi-
larly, to Yang–Mills linearized about a flat connection corresponds a twisted
de Rham complex.

Each of these examples can be treated using the methods presented in this
paper. Few other explicit examples of differential complexes corresponding to
other field theories of physical interest seem to be known. In particular, they
do not seem to be known for linearized gravity on non-constant curvature
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backgrounds and, perhaps, not even for Yang–Mills linearized about non-flat
connections. On the other hand, there are strong abstract reasons to believe
that such differential complexes do indeed exist [28,44,45].

If such a differential complex also shares the apparently crucial property
of admitting cochain homotopies that generate hyperbolic and elliptic cochain
maps (cf. the Eg

l , P g
l , EgR

l and P gR

l maps of Sects. 4.2 and 4.3), then its
causally restricted cohomologies can be related to those with unrestricted and
compactly supported ones, as in Theorems 3 and 11.

If, in addition, such a differential complex could also be seen as resolving
a locally constant sheaf, its unrestricted cohomologies could be computed by
algebraic means, without actually solving complicated systems of differential
equations, as in Sect. 4.3. The latter requirement is closely related to the initial
differential operator in the complex having only a finite dimensional space of
solutions (being of finite type), as is the case for the locally constant (de Rham)
and Killing (Calabi) conditions.

The compactly supported cohomologies could also be obtained if the cor-
responding formally adjoint complex satisfied similar requirements, as illus-
trated in Sect. 4.3 by the appearance of the locally constant sheaf of Killing–
Yano tensors.

6. Discussion

We have shown how to compute the de Rham cohomology with causally re-
stricted supports (retarded, advanced, past compact, future compact, spacelike
compact and timelike compact) on a globally hyperbolic Lorentzian space-
time, using special properties of the d’Alembert wave operator and its Green
functions. The result (Theorems 2, 3; Corollary 5) expresses these causally
restricted cohomologies in terms of the standard de Rham cohomologies of
the spacetime manifold, with either unrestricted or compact supports. These
results, confirm the independent similar results of the recent work [5]. How-
ever, since our method does not rely on the strong invariance properties of the
de Rham complex under topological homotopies, we have also obtained fur-
ther results. In particular, our method is also applicable to the Calabi complex
(Theorem 11). The Calabi complex appears in linearized gravity on constant
curvature backgrounds in a way similar to the de Rham complex in Maxwell
theory. These results answer some questions that have naturally arisen in re-
cent investigations of classical and quantum gauge theories on curved space-
times.

Finally, we have also made comments about other questions that have
naturally appeared in these investigations. Namely, we discussed the covariance
of causally restricted cohomologies under specific types of morphisms between
spacetimes, adapted to their causal structure, and under changes of the causal
structure itself.

We have presented almost the bare minimum of information about the
Calabi complex that is needed to obtain our results. A fuller discussion of this
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interesting complex, including relevant geometric properties that are difficult
to locate in or are absent from the current literature, is deferred to future
work [35]. In the future, it will also be interesting to find the analogs of the
Calabi complex on more general Lorentzian backgrounds, which would con-
sist of differential complexes resolving the sheaf of Killing vectors on a given
background. However, we conjecture that the Hodge-like structure that we
have used to compute causally restricted cohomologies will be shared by all of
them.
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Abstract
In general relativity, an IDEAL (Intrinsic, Deductive, Explicit, ALgorithmic) 
characterization of a reference spacetime metric g0 consists of a set of 
tensorial equations T[g]  =  0, constructed covariantly out of the metric g, its 
Riemann curvature and their derivatives, that are satisfied if and only if g is 
locally isometric to the reference spacetime metric g0. The same notion can be 
extended to also include scalar or tensor fields, where the equations T[g,φ] = 0 
are allowed to also depend on the extra fields φ. We give the first IDEAL 
characterization of cosmological FLRW spacetimes, with and without a 
dynamical scalar (inflaton) field. We restrict our attention to what we call 
regular geometries, which uniformly satisfy certain identities or inequalities. 
They roughly split into the following natural special cases: constant curvature 
spacetime, Einstein static universe, and flat or curved spatial slices. We also 
briefly comment on how the solution of this problem has implications, in 
general relativity and inflation theory, for the construction of local gauge 
invariant observables for linear cosmological perturbations and for stability 
analysis.

Keywords: differential invariants, cosmology, equivalence up to isometry
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2

1. Introduction

In this work, we are interested in an intrinsic characterization of homogeneous and isotropic 
cosmological spacetimes (also known as Friedmann–Lemaître–Robertson–Walker or FLRW 
spacetimes), either with or without the presence of a scalar field (aka inflationary space-
times). By a spacetime (M, g), we mean a smooth manifold M with a Lorentzian metric g. 
While ‘intrinsic’ generally does preclude direct reference to the form of the spacetime met-
ric in a special coordinate system, it is a vague enough term to have multiple interpreta-
tions. To be specific, we refer to an IDEAL5 or Rainich-type characterization that has been 
used, for instance, in the works [6, 12, 14, 15, 20, 27, 33]. It consists of a list of tensorial 
equations (Ta[g] = 0, a = 1, 2, . . . , N ), constructed covariantly out of the metric (g) and its 
derivatives (concomitants of the Riemann tensor) that are satisfied if and only if the given 
spacetime locally belongs to the desired class, possibly narrow enough to be the isometry class 
of a reference spacetime geometry. This notion has a natural generalization (Ta[g,φ] = 0) to 
spacetimes equipped with scalar or tensor fields (φ), with equivalence still given by isometric 
diffeomorphisms that also transform the additional scalars or tensors into each other. A nice 
historical survey of this and other local characterization results can be found in [22].

An IDEAL characterization neither requires the existence of any extra geometric struc-
tures, nor the translation of the metric and of the curvature into a frame formalism. Thus, it 
is an alternative to the Cartan–Karlhede characterization [31, chapter 9], which is based on 
Cartan’s moving frame formalism. Intrinsic characterizations, of various types, have been of 
long standing and independent interest in geometry and general relativity. But, in addition, 
they can be helpful in deciding when a metric, given for instance by some complicated coordi-
nate formulas, corresponds to one that is already known. In this regard, an IDEAL characteri-
zation is especially helpful if one would like to find an algorithmic solution to this recognition 
problem. In numerical relativity, the near-satisfaction of the tensor equations Ta[g] ≈ 0 may 
signal the local proximity of a numerical spacetime to a desired reference geometry. In addi-
tion, the approach to zero of Ta[g] → 0 could be used to study either linear or nonlinear stabil-
ity of reference geometries, in an unambiguous and gauge independent way.

The following particular application should be noted. By the Stewart–Walker lemma  
[32, lemma 2.2], the vanishing of a tensor concomitant Ta[g] = 0 for a metric g implies that 
its linearization Ṫa[h] (Ta[g + εh] = Ta[g] + εṪa[g] + O(ε2)) is invariant under linearized dif-
feomorphisms. Thus, any quantity of the form Ṫa[h] defines a gauge invariant observables in 
linearized gravity, when Einstein or Einstein-matter equations are linearly perturbed about a 
background solution g. A straight forward argument shows that an IDEAL characterization 
provides a list Ṫa[h], a = 1, . . . , N , of gauge invariant observables that is also complete (it 
suffices to check that Ta[g + h] do not approach zero at O(h2) or higher order). That is, the 
joint kernel of Ṫa[h] = 0 locally consists only of pure gauge modes (h = Lvg for some vector 
field v). The use of such local observables (given by differential operators) can be advanta-
geous both in theoretical and practical investigations of classical and quantum field theoretical 
models because they cleanly separate the local (or ultraviolet) and global (or infrared) aspects 
of the theory. This is of particular and current relevance to some controversies in inflation-
ary models of early universe cosmology [23, 34]. Despite their importance, complete lists 
of (linearized) local gauge invariant observables have been explicitly produced only in very 
few cases, by ad hoc methods. For instance, in the case of Einstein equations coupled to a 
single inflaton field, a complete list has been produced only recently [17]. On the other hand, 

5 The acronym, explained in [14] (footnote, p.2), stands for intrinsic, deductive, explicit and algorithmic.
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linearising the equations of an IDEAL characterization provides a systematic method of con-
struction. The results of this method can be compared to those of [17] and are equivalent [18]. 
Since these two sets of results naturally appear in rather different forms, a detailed comparison 
is beyond the scope of this work and will be presented elsewhere.

A similar geometric approach to the construction of gauge invariant linearized observables 
was taken in [11], using what we would call a partial IDEAL characterization of cosmological 
spacetimes. No proof of their completeness was ever given. In a sense, we complete the earlier 
literature in this regard.

In this work, we add the cases of FLRW and inflationary spacetimes to the (unfortunately 
still small) literature concerning IDEAL characterizations of isometry classes of individual 
reference geometries. Other IDEAL characterizations for geometries of interest in general rel-
ativity include Schwarzschild [12], Reissner–Nordström [13], Kerr [15], Lemaître–Tolman–
Bondi [14], Stephani universes [16] (see references for complete lists and details) and of 
course the classic cases of constant curvature spaces, which are known to be fully character-
ized by the structure of the Riemann tensor (by theorems of Riemann and Killing–Hopf).

The synopsis of the paper is the following: in section 1.1 we fix our notation and we out-
line our main results on the IDEAL characterization of FLRW spacetimes (theorem 1.4) and 
inflationary spacetimes (theorem 1.5). Our main goal there is to discuss our findings without 
dwelling on the technical proofs, which are left to the next sections. Hence a reader who 
wishes to focus more on the physical aspects of this paper should refer mainly to this part of 
the paper. In addition, still in section 1.1, we provide flowcharts for classifying spacetimes 
into FLRW and inflationary isometry classes, visually summarizing the contents of theorems 
1.4 and 1.5. In section 2 we collect relevant information on the geometry of FLRW and infla-
tionary spacetimes. In section 3, we distinguish the possible local isometry classes of FLRW 
or inflationary geometries and prove our main theorems. 

1.1. Main results

In this subsection, our goal is to introduce our conventions and to outline our main results. 
Therefore we will not dwell on the mathematical proofs, but we will focus on the basic techni-
cal tools, necessary to formulate and to understand the physical significance of our findings.

In this work, a spacetime or Lorentzian manifold (M, g) will be a smooth finite dimen-
sional manifold M (also Hausdorff, second countable, connected and orientable) of 
dimM = m + 1 � 2, with a Lorentzian metric g (with signature −+ · · ·+). A spacetime with 
scalar will consist of a triple (M, g,φ), where (M, g) is a Lorentzian manifold and φ : M → R 
is a smooth scalar field. Obviously, we could always consider the spacetime (M, g) as the 
special spacetime with zero scalar, (M, g, 0). In addition, with inflationary spacetimes, we will 
be assuming that the metric and the scalar field satisfy the coupled Einstein–Klein–Gordon 
equations, possibly with a nonlinear potential.

These observations should be kept in mind while reading the following

Definition 1.1 (Locally isometric). A spacetime with scalar (M1, g1,φ1) is locally 
isometric at x1 ∈ M1 to a spacetime with scalar (M2, g2,φ2) at x2 ∈ M  if there exist open 
neighbourhoods U1 � x1, U2 � x2 and a diffeomorphism χ : U1 → U2 such that χ(x1) = x2, 
χ∗g2 = g1 and χ∗φ2 = φ1. If we can choose U1 = M1 and U2 = M2 then they are (globally) 
isometric. If for every x1 ∈ M  there is x2 ∈ M2 such that (M1, g1,φ1) at x1 is locally isometric 
to (M2, g2,φ2) at x2, we simply say that (M1, g1,φ1) is locally isometric to (M2, g2,φ2) (note 
the asymmetry in the definition). If (M1, g1,φ1) is locally isometric to (M2, g2,φ2), as well as 
vice versa, we say that they are locally isometric to each other (which constitutes an equiva-
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lence relation). All spacetimes with scalar that are locally isometric to a reference (M, g,φ) 
constitute its local isometry class.

Our main results give an IDEAL characterization of local isometry classes of regular 
FLRW and inflationary spacetimes. In the following we give their precise definition, which is 
motivated in more detail in sections 2.3 and 2.4. Starting from the first case:

Definition 1.2 (Regular FLRW spacetime). Let us fix a constant κ �= 0. De-
note by the triple (m,α, f ), of a dimension m � 1, a constant α ∈ R and a smooth posi-
tive function f : I → R defined on an interval I ⊆ R, the corresponding FLRW spacetime 
(M, g) = (I × F,−dt2 + f 2gF) (definition 2.2), with α the sectional curvature of (F,gF) and 
F ∼= Sm (when α > 0) or F ∼= Rm (when α � 0).

We call (M, g) a regular FLRW spacetime if it belongs to one of the parametrized families 
identified below.

 (a) Constant curvature spacetime, with spacetime sectional curvature K:

CCm
K =




{(m, K, cosh(

√
Kt)) | K > 0, I = R},

{(m, 0, 1) | K = 0, I = R},
{(m, K, cos(

√
−Kt)) | K < 0, I = R}.

 (1)

 (b) Einstein static universe, with spatial sectional curvature K �= 0:

ESUm
K = {(m, K, 1) | m > 1, I = R}. (2)

 (c) Spatially flat constant scalar curvature spacetime, with spacetime scalar curvature 

m(m + 1)K  and such that f ′2

f 2 (I) = J :

CSCm,0
K,J = {(m,α, f ) | m > 1, f ′ �= 0,(

f ′′

f
− f ′2

f 2

)
+

(m + 1)
2

(
f ′2

f 2 − K
)

= 0
}

.
 (3)

 (d) Generic constant scalar curvature spacetime, with spacetime scalar curvature m(m + 1)K , 
normalized radiation density constant Ω and such that αf 2 (I) = J :

CSCm
K,Ω,J = {(m,α, f ) | m > 1, α �= 0, f ′ �= 0,

f ′2

f 2 +
α

f 2 = K +Ω
|α|(m+1)/2

f m+1

}
.

 (4)

 (e) Spatially flat FLRW spacetime with normalized pressure function P defined on an open 

interval J, with 0 < f ′2

f 2 (I) = J  and

P(u)
[
∂uP(u)− 1

2κ

]
�= 0 (5)

  everywhere on J:

FLRWm,0
P,J =

{
(m, 0, f ) |

(
f ′′

f
− f ′2

f 2

)
+

m
2

f ′2

f 2 = −κP
(
( f ′/f )2)

}
. (6)

 (f) Generic FLRW spacetime with normalized energy function E defined on an open interval 
J, with 0 �∈ α

f 2 (I) = J  and
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∂u

[
u∂uE(u)− (m + 1)

2

]
�= 0 (7)

  everywhere on J:

FLRWm
E,J =

{
(m,α, f ) | m > 1, α �= 0,

f ′2

f 2 +
α

f 2 = κE(α/f 2)

}
. (8)

Next, we focus our attention to the inflationary spacetimes, following the more detailed 
motivation from sections 2.5 and 2.6:

Definition 1.3 (Regular inflationary spacetime). Let us fix a constant κ �= 0. Denote 
by the quadruple (m,α, f ,φ), of dimension m  >  1, constant α ∈ R, and smooth functions 
f ,φ : I → R defined on an interval I ⊆ R, with f positive, the corresponding inflationary spa-
cetime (M, g,φ) = (I × F,−dt2 + f 2gF, φ̄) (definition 2.10), with φ̄ being the composition of 
standard projection I × F → I with φ, with α the sectional curvature of (F,gF) and F ∼= Sm 
(when α > 0) or F ∼= Rm (when α � 0).

We call (M, g, φ̄) a regular inflationary spacetime if it belongs to one of the parametrized 
families identified below.

 (a) Constant scalar, with scalar value Φ, on a constant curvature spacetime with scalar curva-
ture K:

CCm
KCSΦ = {(m,α, f ,Φ) | (m,α, f ) ∈ CCm

K}. (9)

 (b) Constant energy scalar, with energy density ρ > 0 and J = φ(I), on an Einstein static uni-

verse with spatial sectional curvature K = 2
m(m−1)κρ, or equivalently with cosmological 

constant Λ = (m−1)
m κρ:

ESUm
KCESρ,J = {(m, K, 1,

√
2ρ/mt) | I = J/

√
2ρ/m}. (10)

 (c) Spatially flat massless minimally-coupled scalar spacetime, with cosmological constant 

Λ, J = φ(I) and J′ = f ′

f (I) �� 0 and 2Λ/κ
m(m−1) <

1
κ (J

′)2:

MMSm,0
Λ,J,J′ =

{
(m, 0, f ,φ) | φ′ < 0,

f ′

f
�= 0,

f ′2

f 2 = κφ′2+2Λ
m(m−1) ,

(
f ′′

f − f ′2

f 2

)
+ m f ′2

f 2 = 2Λ
(m−1)

}
.

 
(11)

 (d) Generic massless minimally-coupled scalar spacetime, with cosmological constant Λ, 

normalized scalar energy constant Ω > 0, J = φ(I) and J′ = f ′

f (I) �� 0:

MMSm
Λ,Ω,J,J′ =

{
(m,α, f ,φ) | α �= 0,

f ′

f
�= 0,

φ′ = −
√
Ω |α|

m
2

f m , f ′2

f 2 + α
f 2 = 2Λ+κΩ|α|m/f 2m

m(m−1)

}
.

 
(12)

 (e) Spatially flat nonlinear Klein–Gordon spacetime, with non-constant scalar self-coupling 
potential V : J → R, with J = φ(I), and expansion profile Ξ : J → R, satisfying 
Ξ(u) �= 0, 1

κ∂uΞ(u) > 0 and HV(Ξ) = 0 in the notation of (18):

NKGm,0
V ,Ξ,J =

{
(m, 0, f ,φ) | f ′

f = Ξ(φ),φ′ = − (m−1)
κ ∂φΞ(φ)

}
. (13)
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 (f) Generic nonlinear Klein–Gordon spacetime, with non-constant scalar potential 
V : J → R, with J = φ(I), and expansion profile (Π,Ξ) : J → R2, satisfying Π < 0, 

Ξ �= 0, κ Π2+V
m(m−1) �= Ξ2 and GV(Π,Ξ) = 0 in the notation of (20):

NKGm
V ,Π,Ξ,J =

{
(m,α, f ,φ) | α �= 0,

f ′

f
�= 0,

φ′ = Π(φ), f ′

f = Ξ(φ), f ′2

f 2 + α
f 2 = κφ′2+V(φ)

m(m−1)

}
.

 
(14)

Below we directly give the list of tensor equations, covariantly constructed from the metric, 
the Riemann curvature, and its derivatives, that characterize the corresponding local isometry 
classes. Observe that an IDEAL characterization is not unique. Given one, many others can 
be produced by covariant and invertible transformations. Our choices are based on various 
conventions used in relativity and cosmology.

To be specific, our conventions for the relations between the metric gij, covariant derivative 
∇i, Riemann curvature, as well as Ricci tensor and scalar are the following:

(∇i∇j −∇j∇i)vk = Rijk
lvl, Rijkh = Rijk

lglh,

Rik = Rikj
k, R = Rijgij, B = RijRklgikg jl.

It is convenient to define the following product (sometimes also known as the Kulkarni–
Nomizu product) that builds an object with the symmetries of the Riemann tensor out of sym-
metric 2-tensors Aij, Bij:

(A � B)ijkh = AikBjh − AjkBih − AihBjk + AjhBik. (15)

Note that A � B = B � A and UU � UU = 0, with (UU)ij = UiUj and Ui any vector field. For 
dimM = m + 1 > 2, our formula for the Weyl tensor is

Wijkh = Rijkh −
1

(m − 1)
(g � R)ijkh +

1
2m(m − 1)

R(g � g)ijkh. (16)

Note that Wijkh vanishes precisely when Rijkh = (g � A)ijkh for some symmetric Aij. As usual, 
we denote idempotent symmetrization and anti-symmetrization by A(ij) =

1
2 (Aij + Aji), 

A[ij] =
1
2 (Aij − Aji).

The first theorem classifies just the Lorentzian spacetime, without reference to a scalar 
field. The definitions for the various scalar and tensor fields introduced below may seem ad 
hoc, but they have straightforward geometrical meanings. The vector field Ui plays the role 
of a future-pointing unit timelike vector field, orthogonal to the cosmological spatial slices. It 
is defined as a normalized gradient of a curvature scalar, with the choice of curvature scalar 
depending on the precise case being considered. The tensors Pij  and Dij  encode in them the 
shear, twist and geodesic character of Ui and are non-zero when the spacetime deviates from 
a generalized Robertson–Walker (GRW) spacetime (a possibly non-homogeneous geometry 
undergoing cosmological expansion or contraction). The expansion ξ of the vector field Ui 
also plays the role of the Hubble rate, while η that of the Hubble acceleration. The tensor Eijkh 
measures the deviation from the spatial slices from homogeneity and isotropy, while the scalar 
ζ, together with Eijkh, measures the deviation of spatial slices from flatness.

Theorem 1.4. Consider a Lorentzian manifold (M, g) of dimM = m + 1 � 2, κ �= 0 a 
fixed constant. With U a unit timelike vector field, consider the following notations, which are 
defined when possible:
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ξ : =
∇iUi

m
, η := Ui∇iξ, ζ :=

R− 2mη − 1
2 m(m + 1)ξ2

m(m − 1)
,

Pij : = U[i∇j]ξ, Dij := ∇iUj −
∇kUk

m
(gij + UiUj),

Zijkh : = Rijkh −
(

g �
[
ξ2

2
g − ηUU

])

ijkh
,

Cijkh : = Rijkh −
(

g �
[
(ξ2 + ζ)

2
g − (η − ζ)UU

])

ijkh
,

UR : =
−∇R√
−(∇R)2

, UB :=
−∇B√
−(∇B)2

.

 

(17)

Given x ∈ M , table 1 gives the list of inequalities and equations (right column, written  
using the above notation, with a specific choice of U) that are satisfied on a neighborhood of 
x if and only if the Lorentzian manifold belongs to the corresponding local isometry class at x 
(left column) of a regular FLRW spacetime (definition 1.2). Each local isometry class belongs 
to a family, parametrized by real constants, intervals or functions (middle column). By conti-
nuity, each inequality need only be checked at x.

In addition, since both theorem 1.4 and table 1 are densely packed with information, we 
include a graphical flowchart summaries of the same information in figure 1. The notation is 
the same as in the original theorems.

Finally, we state the theorem classifying inflationary spacetimes, those endowed with sca-
lar and satisfying the coupled Einstein–Klein–Gordon equations, where the equation for the 
scalar φ may be nonlinear due to a potential V(φ). The reader is referred to the paragraph 
preceding theorem 1.4 for an explanation of the notation. The new scalar HV roughly corre-
sponds to the Hamilton–Jacobi equation of spatially flat single field inflation, while GV  is its 
generalization to the non-flat case. See the end of section 2.6 for a more detailed motivation.

Theorem 1.5. Consider an inflationary spacetime (M, g,φ) of dimM = m + 1 > 2, 
κ �= 0 a fixed constant. With U a unit timelike vector field, recall the notation of theorem 1.4,  
supplemented with

(−)′ := Ui∇i(−), Uφ :=
∇φ√
−(∇φ)2

, (18)

HV(Ξ) := (∂uΞ)
2 − κ

mΞ2

(m − 1)
+ κ2 V

(m − 1)2 , (19)

GV(Π,Ξ) :=


 Π

(
∂uΞ + κ Π

(m−1)

)
−
(
κ Π2+V

m(m−1) − Ξ2
)

∂u

(
κ Π2+V

m(m−1) − Ξ2
)
+ 2 Ξ

Π

(
κ Π2+V

m(m−1) − Ξ2
)


 , (20)

where Ξ = Ξ(u) and Π = Π(u). Let g and φ satisfy the coupled Einstein–Klein–Gordon equa-
tions with scalar potential V(φ),

∇i∇iφ− 1
2
∂φV(φ) = 0, (21)

G Canepa et alClass. Quantum Grav. 35 (2018) 035013



8

Rij −
1
2
Rgij = κ

(
(∇iφ)(∇jφ)−

1
2

gij[(∇φ)2 + V(φ)]

)
. (22)

Given x ∈ M , table 2 gives the list of inequalities and equations (right column) that are 
satisfied on some neighborhood of x if and only if the inflationary spacetime belongs to the 
corresponding local isometry class at x (left column) of a regular inflationary spacetime. Each 

Table 1. IDEAL characterization of local isometry classes of regular FLRW spacetimes 
(theorem 1.4).

Class Parameters/U Inequalities/equations

(a) Constant curvature

CCm
K Rijkh − K

2 (g � g)ijkh = 0

(b) Einstein static universe

ESUm
K m > 1,

K �= 0
∃Vi :

(
gij − Rij

(m−1)K

)
ViV j < 0

Wijkh = 0, ∇iRjk = 0,
R j

i

(
Rk

j − (m − 1)Kδk
j

)
= 0,

R− m(m − 1)K = 0

(c) Spatially flat constant scalar curvature

CSCm,0
K,J

m > 1,
0 < J ⊂ R

(U = UB)

(∇B)2 < 0, ξ2(x) ∈ J

Pij = 0, Dij = 0,
Zijkh = 0,

η + (m+1)
2 (ξ2 − K) = 0

(d) Generic constant scalar curvature

CSCm
K,Ω,J m > 1, Ω �= 0,

0 �∈ J ⊂ R

(U = UB)

(∇B)2 < 0, ζ(x) ∈ J

∇iUj − ∇iζ
2ζ Uj − ξgij = 0,
Cijkh = 0,

ξ2 + ζ − K − Ω|ζ| m+1
2 = 0

(e) Spatially flat FLRW

FLRWm,0
P,J

0 < J ⊂ R,
P : J → R,

P[∂uP − 1
2κ ] �= 0

(U = UR)

(∇R)2 < 0, η �= 0, ξ2(x) ∈ J

Pij = 0, Dij = 0,
Zijkh = 0,

η + m
2 ξ

2 + κP(ξ2) = 0

(f) Generic FLRW

FLRWm
E,J m > 1, 0 �∈ J ⊂ R,

E : J → R, κE(u) > u,

∂u[u∂uE − (m+1)
2 E] �= 0

(U = UR)

(∇R)2 < 0, ξ �= 0, ζ(x) ∈ J

∇iUj − ∇iζ
2ζ Uj − ξgij = 0,
Cijkh = 0,

ξ2 + ζ − κE(ζ) = 0
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local isometry class belongs to a family, parametrized by real constants, intervals or functions 
(middle column). By continuity, each inequality needs only to be checked at x.

In addition, since both theorem 1.5 and table 2 are densely packed with information, we 
include a graphical flowchart summaries of the same information in figure 2. The notation is 
the same as in the original theorems.

Note that when we make the choice U = Uφ, it automatically follows that 
φ′ = −

√
−(∇φ)2 < 0. This convention is common in the study of inflation, where φ(t) starts 

off at a high value and then ‘rolls down hill’ as t increases. This is reflected in the inequalities 
in table 2.

Figure 1. IDEAL characterization of local isometry classes of regular FLRW 
spacetimes (theorem 1.4, table 1).
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Table 2. IDEAL characterization of local isometry classes of regular inflationary 
spacetimes (theorem 1.5).

Class Parameters Inequalities/equalities

(a) Constant scalar
CCm

KCSΦ V(u) = 2
κΛ,

K = 2
m(m−1)Λ

Rijkh − Λ
m(m−1) (g � g)ijkh = 0,

φ = Φ

(b) Constant energy scalar

ESUm
KCESρ,J V(u) = 2(m−1)

m ρ,
ρ > 0, K = 2κ

m(m−1)ρ

(U = Uφ)

(∇φ)2 < 0, ζ
κ > 0, φ(x) ∈ J

∇iUj = 0, Cijkh = 0,
(∇φ)2 = − 2

mρ, ζ = 2κρ
m(m−1)

(c) Spatially flat massless minimally-coupled scalar

MMSm,0
Λ,J,J′

0 �∈ J′,
2Λ/κ

m(m−1) <
1
κ (J

′)2

V(u) = 2
κΛ

(U = Uφ)

(∇φ)2 < 0, 1
κ (ξ

2 − 2Λ
m(m−1) ) > 0,

φ(x) ∈ J, ξ(x) ∈ J′

∇iUj − ∇iφ
′

mφ′ Uj − ξgij = 0,
Zijkh = 0, η + mξ2 = 2Λ

(m−1) ,

ξ2 = κφ′2+2Λ
m(m−1)

(d) Generic massless minimally-coupled scalar

MMSm
Λ,Ω,J,J′ V(u) = 2

κΛ,
0 �∈ J′, Ω > 0

(U = Uφ)

(∇φ)2 < 0,
φ(x) ∈ J, ξ(x) ∈ J′

∇iUj − ∇iφ
′

mφ′ Uj − ξgij = 0,

Cijkh = 0, φ′ = −
√
Ω|ζ| m

2 ,

ξ2 + ζ = 2Λ+κΩ|ζ|m
m(m−1)

(e) Spatially flat nonlinear Klein–Gordon

NKGm,0
V ,Ξ,J

V ,Ξ : J → R,
Ξ(u) �= 0, 1

κΞ
′(u) > 0,

V ′(u) �= 0,HV(Ξ) = 0

(U = Uφ)

(∇φ)2 < 0, ξ �= 0, 1
κη < 0

Pij = 0, Dij = 0, Zijkh = 0,

φ′ = − (m−1)
κ ∂φΞ(φ),

ξ = Ξ(φ)

(f) Generic nonlinear Klein–Gordon

NKGm
V ,Π,Ξ,J V ,Ξ,Π : J → R,

Π < 0, Ξ �= 0,

κ Π2+V
m(m−1) �= Ξ2,

V ′(u) �= 0,GV(Π,Ξ) = 0

(U = Uφ)

(∇φ)2 < 0, ξ �= 0,
ζ �= 0, η−ζ

κ < 0

Pij = 0, Dij = 0, Cijkh = 0,

ζ = κφ′2+V(φ)
m(m−1) − ξ2,

φ′ = Π(φ), ξ = Ξ(φ)
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Our characterization theorems cover what we have called regular FLRW or inflationary 
spacetimes (definitions 1.2 and 1.3), which are required to satisfy the inequalities listed in 
tables 1 and 2 everywhere.

2. Geometry of FLRW and inflationary spacetimes

Definition 2.1. Let (F,gF) be a m-dimensional Riemannian manifold, m � 1, I ⊆ R an 
open interval with standard coordinate t and endowed with the usual reversed metric −dt2 
and f ∈ C∞(I), with f  >  0. A generalized Robertson Walker (GRW) spacetime is a product 
manifold M = I × F  endowed with the metric g defined as

g = −π∗
I dt2 + ( f ◦ πI)

2π∗
FgF (23)

where πI  and πF  are respectively the projections on I and F. Furthermore I is called the base, 
F the fiber and f the warping function (also scale factor, in the literature on cosmology).

To simplify notation in the sequel, let us introduce the notation T̃ = π∗
FT  for any completely 

covariant tensor T defined on F.
The definition implies that around every point of M = I × F , there exists a coordinate 

system (x0, xi) adapted to the product structure, such that, denoting t  =  x0,

gij = −(dt)i(dt)j + f 2(t)gF
ij , (24)

where gF
ij  depends only on the xi coordinates with i  >  0 and gF

ij(∂t)
i = 0. The only obstacle to 

making the last statement global on M is that the F factor may not admit a global coordinate 
system.

Definition 2.2. A Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime is a Lorent-
zian manifold (M, g) that is a GRW spacetime (definition 2.1) where the fiber (F,gF) is simply 
connected, complete and has constant curvature with sectional curvature α (some constant), 
that is, the Riemann curvature tensor RF

ijkh of (F,gF) has the form

RF
ijkh = α(gF

ikgF
hj − gF

jkgF
hi). (25)

When dimM = 2, only α = 0 is possible, since any 2-dimensional (F,gF) is flat.
It is well known that any simply connected, complete Riemannian manifold of constant 

curvature, meaning that its Riemann curvature tensor is of the form (25), is isometric to 
either a round sphere (α > 0), flat Euclidean space (α = 0), or a hyperbolic space (α < 0)  
[36, section 2.4]. If the complete and simply connected hypotheses are dropped, then a con-
stant curvature Riemannian manifold is still locally isometric to one of these model spaces.

Similarly, in the sequel, we will be interested in Lorentzian spacetimes that are locally 
isometric (definition 1.1) to GRW or FLRW models.

2.1. Riemann curvature in GRW spacetimes

Below, we describe the Riemann curvature Rijkh in a GRW spacetime, in terms of the curvature 
of (F,gF), the warping function f and the vector field Ui = −(dt)i. For reference, let us denote 
the Riemann tensor on the (F,gF) factor by RF

ijkh, with RF
ij = (gF)khRF

ikjh and RF = (gF)ijRF
ij  

denoting respectively the corresponding Ricci tensor and scalar. Recall also the notation 

R̃F
ijkh = π∗

FRF
ijkh, R̃F

ij = π∗
FRF

ij  and R̃F = π∗
FRF .

G Canepa et alClass. Quantum Grav. 35 (2018) 035013



12

Figure 2. IDEAL characterization of local isometry classes of regular inflationary 
spacetimes (theorem 1.5, table 2).
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Adapting the more general results on the covariant derivative on warped products [26, 
proposition 7.35], the action of the spacetime covariant derivative is determined by

∇i( fUj) = f ′gij, ∇iX̃j = ∇̃iXj − 2
f ′

f
U(iX̃j), (26)

for any Xj defined on F. Recalling the notation already used in the introduction, for any Ui we 
can define the temporal derivative (−)′ := Ui∇i(−) and also

ξ :=
∇iUi

m
, η := ξ′ = U j∇jξ. (27)

With our choice of U on a GRW spacetime, we will be making repeated use of the identifies

ξ =
f ′

f
, η =

f ′′

f
− f ′2

f 2 . (28)

Geometrically ξ is called the expansion of the vector field U, while its GRW value f ′/f  is 
known as the Hubble rate in the literature on cosmology.

Next, adapting the more general result [26, proposition 7.42] of how to write the Riemann 
tensor of a warped product manifold in terms of the curvatures of its factors and the warping 
function, it is possible to give the following general expression for the Riemann tensor of 
GRW spacetimes:

Rijkh = f 2R̃F
ijkh +

(
g �

[
1
2

f ′2

f 2 g −
(

f ′′

f
− f ′2

f 2

)
dt2

])

ijkh

= f 2R̃F
ijkh +

(
g �

[
ξ2

2
g − ηUU

])

ijkh
,

 

(29)

where (dt2)ij = (dt)i(dt)j  and where we have used the product notation (15). When m  =  1, 
the tensors g � UU and g � g are no longer linearly independent, in fact g � UU = − 1

2 g � g. 
Moreover, the Riemann curvature for a 1-dimensional (F,gF) is always zero. Hence, in the 
special m  =  1 case we have the simplification

Rijkh =
(η + ξ2)

2
(g � g)ijkh =

f ′′

f
1
2
(g � g)ijkh. (30)

As a consequence, using the identities

gkhR̃F
ikjh =

1
f 2 π

∗
F((g

F)khRF
ikjh) =

1
f 2 R̃F

ij , (31)

gijR̃F
ij =

1
f 2 π

∗
F((g

F)ijRF
ij) =

1
f 2 R̃

F, (32)

we get the following formulas for the Ricci tensor Rij = gkhRikjh and scalar R = gijRij :

Rij = R̃F
ij − (m − 1)

(
f ′′

f
− f ′2

f 2

)
UiUj +

(
f ′′

f
+ (m − 1)

f ′2

f 2

)
gij

= R̃F
ij − (m − 1)ηUiUj + (η + mξ2)gij,

 
(33)

G Canepa et alClass. Quantum Grav. 35 (2018) 035013



14

R =
1
f 2 R̃

F + 2m
f ′′

f
+ m(m − 1)

f ′2

f 2

=
1
f 2 R̃

F + 2mη + m(m + 1)ξ2.
 

(34)

For completeness, we also compute the value of the scalar square of the Ricci tensor:

B =
B̃F

f 4 + 2
(

f ′′

f
+ (m − 1)

f ′2

f 2

)
R̃F

f 2 + m
(

f ′′

f
+ (m − 1)

f ′2

f 2

)2

+ m2 f ′′2

f 2

=
B̃F

f 4 + 2(η + mξ2)
R̃F

f 2 + m(η + mξ2)2 + m2(η + ξ2)2,

 

(35)

where BF = (gF)ik(gF) jhRF
ij R

F
kh.

The above formulas motivate the following definitions, which can be used to isolate the 
spatial curvature RF

ijkh from the knowledge of the spacetime curvature Rijkh and of Ui.

Definition 2.3. Consider a Lorentzian manifold (M, g) with a unit timelike vector field U. 
Recall also the scalars ξ and η scalars from (27).

 (a) We define the zero (spatial) curvature deviation (ZCD) tensor as

Zijkh := Rijkh −
(

g �
[
ξ2

2
g − ηUU

])

ijkh
. (36)

 (b) Provided m  >  1, we define the spatial curvature scalar as

ζ :=
Zij

ij

m(m − 1)
=

R− 2mη − m(m + 1)ξ2

m(m − 1)
 (37)

  and if m  =  1, we set ζ = 0.
 (c) We define the constant (spatial) curvature deviation (CCD) tensor as

Cijkh := Rijkh −
(

g �
[
(ξ2 + ζ)

2
g − (η − ζ)UU

])

ijkh
. (38)

On GRW spacetimes, the usefulness of these definitions lies in the identities

Zijkh = f 2R̃F
ijkh, ζ =

1
m(m − 1)

R̃F

f 2 , (39)

Cijkh = f 2

(
R̃F

ijkh −
1

m(m − 1)
R̃F

2
(g̃F � g̃F)ijkh

)
. (40)
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2.2. Riemann curvature in FLRW spacetimes

Next, we specialize the main formulas obtained in the preceding section from GRW to FLRW 
spacetimes (definition 2.2), by making use of their spatial curvature structure

RF
ijkh =

α

2
(gF � gF)ijkh, RF

ij = (m − 1)αgF
ij , RF = m(m − 1)α, (41)

and of the identity

f 2 1
2
(g̃F � g̃F)ijkh =

1
f 2

1
2
((g + UU)� (g + UU))ijkh

=
1
f 2

(
(g � UU)ijkh +

1
2
(g � g)ijkh

)
=

1
f 2

(
g �

[
1
2

g + UU
])

ijkh
,

 

(42)

where we have recalled that f 2g̃F = g + UU . Recall also the definitions of Ui = (dt)i, the 
scalars ξ and η from (27), and note the identity

ζ =
α

f 2 (43)

for the spatial curvature scalar (definition 2.3) when m  >  1. When m  =  1, we always have 
RF

ijkh = 0, so it is consistent to take ζ = 0, as we do.
Thus, for FLRW spacetimes of spatial sectional curvature α, we have

Rijkh =

(
g �

[
(ξ2 + ζ)

2
g − (η − ζ)UU

])

ijkh
, (44)

Rij = −(m − 1)(η − ζ)UiUj + [(η − ζ) + m(ξ2 + ζ)]gij, (45)

R = m
[
2(η − ζ) + (m + 1)(ξ2 + ζ)

]
, (46)

B = m[(η − ζ) + m(ξ2 + ζ)]2 + m2(η + ξ2)2, (47)

where we have also used BF = m(m − 1)2α2. In the special m  =  1 case, the above formulas 
simplify to

Rijkh =
(η + ξ2)

2
(g � g)ijkh, (48)

Rij = (η + ξ2)gij, (49)

R = 2(η + ξ2), (50)

B = 2(η + ξ2)2. (51)

Because of the frequent appearance of the combinations η − ζ = f ′′

f − f ′2

f 2 − α
f 2  and 

ξ2 + ζ = f ′2

f 2 + α
f 2 , in the sequel we will need the identity

(ξ2 + ζ)′ = 2ξ(η − ζ) or
(

f ′2

f 2 +
α

f 2

)′

= 2
f ′

f

(
f ′′

f
− f ′2

f 2 − α

f 2

)
. (52)
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2.3. Perfect fluid interpretation

An arbitrary FLRW spacetime will in general not satisfy the vacuum Einstein equations. But 
it could be interpreted, when m  >  1, as a solution of Einstein equations with a perfect fluid 
stress energy tensor

Rij −
1
2
Rgij + Λgij = κTij = κ(ρ+ p)UiUj + κpgij, (53)

where Λ is the cosmological constant, ρ is the energy density and p is the pressure. When 
m  =  3, the coupling constant usually has the value κ = 8πG/c4, where G is Newton’s con-
stant and c the speed of light. In other dimensions, there are at least two conventions: either 

keeping the value of κ the same, or setting it to κ = 2σmG/c4, where σm = 2π
m−1

2 /Γ(m−1
2 ) is 

the area of the unit (m − 1)-sphere. We will simply keep it as an unspecified but fixed constant 
κ �= 0. The cosmological constant could of course be shifted to Λ �→ 0 by the redefinitions 
p �→ p − Λ/κ, ρ �→ ρ+ Λ/κ. When m  =  1, the fluid interpretation is no longer possible, sim-
ply because the Einstein tensor Rij − 1

2Rgij is identically zero in two spacetime dimensions.
Defining T = gijTij , an equivalent form of Einstein’s equations is

Rij = κTij −
κ

m − 1
T gij = κ(ρ+ p)UiUj + κ

ρ− p
m − 1

gij. (54)

Hence, for FLRW spacetimes, these equations translate to

f ′2

f 2 +
α

f 2 =
2

m(m − 1)
κρ, κρ =

m(m − 1)
2

(
f ′2

f 2 +
α

f 2

)
, (55)

f ′′

f
− f ′2

f 2 − α

f 2 = − 1
m − 1

κ(ρ+ p), κp = −(m − 1)
(

f ′′

f
− f ′2

f 2 − α

f 2

)

− m(m − 1)
2

(
f ′2

f 2 +
α

f 2

)
,

 (56)
On the top-left we have the Friedmann equation, while on the bottom-left we have the  
acceleration equation. These equations agree with the formulas previously obtained in [4], 
which was one of the first to consider perfect fluid cosmologies in higher spacetime dimen-
sions. The Bianchi identity ∇i(Rij − 1

2Rgij) = 0 implies the stress–energy conservation 
∇iTij = 0 condition, which translates to the energy conservation or continuity equation

ρ′ + m
f ′

f
(ρ+ p) = 0. (57)

2.4. Special FLRW classes

Below, we list the forms of FLRW spacetimes (definition 2.2) satisfying some special geometric 
conditions. Throughout this section, consider an FLRW spacetime (M, g), dimM = m + 1 � 2, 
with warping function f : I → R and spatial sectional curvature α. Whenever parameters are 
present, they must be chosen to respect f (t) > 0 for all t ∈ I, even if not explicitly indicated, 
as well as α = 0 when m  =  1.
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Lemma 2.4. The complete list of possible triples (m,α, f (t)) satisfying the flat (or Minkows-
ki space) condition, Rijkh  =  0, consists of




f ′

f = 0: (m, 0, A) (A > 0);

f ′

f �= 0:

{
m = 1: f ′′

f = 0 (1, 0, A(t − t0)) (A �= 0);

m > 1: f ′2

f 2 + α
f 2 = 0 (m,α,±

√
−α(t − t0)) (α < 0).

Proof. From equation  (44), the necessary and sufficient conditions are f ′′

f = 0 and 

( f ′2

f 2 + α
f 2 ) = 0, when m  >  1, or only f ′′/f = 0, when m  =  1. It is easy to see that the desired 

conclusion exhausts the solutions of these equations under the constraint that f (t) �= 0 every-
where. □ 

Lemma 2.5. The complete list of possible triples (m,α, f (t)) satisfying the constant  
curvature (or (anti-)de Sitter space) condition, Rijkh = K

2 (g � g)ijkh, with sectional curvature 
K �= 0, consists of (A constant)




m = 1: f ′′

f = K




K > 0:





(
1, 0, A cosh(

√
K(t − t0))

)
,(

1, 0, Ae±
√

K(t−t0)
)

(A > 0);

K < 0:
{ (

1, 0, A cos(
√
−K(t − t0))

)
(A > 0);

m > 1:
f ′2

f 2 + α
f 2 = K,

f ′

f �= 0




K > 0:




(
m,α,

√
α/K cosh(

√
K(t − t0))

)
,(

m, 0, Ae±
√

K(t−t0)
)

(α > 0, A > 0);

K < 0:

{ (
m,α,

√
α/K cos(

√
−K(t − t0))

)

(α < 0).

Proof. Again, referring to equation  (44), the necessary and sufficient conditions are 
f ′′

f − f ′2

f 2 − α
f 2 = 0 and f ′2

f 2 + α
f 2 = K , when m  >  1, or only f ′′/f = K, when m  =  1. If m  >  1 

and f ′/f = 0, we must have K = α/f 2 = 0, which contradicts the K �= 0 hypothesis. Other-
wise, it is easy to see that the desired conclusion exhausts the solutions of these equations un-
der the constraint that f (t) �= 0 everywhere. □ 

Lemma 2.6. The complete list of possible triples (m,α, f (t)) satisfying both conditions 
R′ = 0 and B′ = 0, but not of constant curvature, consists of (A, K constant)

(m, KA2, A) (m > 1, K �= 0, A > 0).

This is is the Einstein static universe [35, section 16.2] with spatial sectional curvature K, 
which solves the Einstein equation, Rij − 1

2Rgij + Λgij = 0, with the cosmological constant 

Λ = (m−1)(m−2)
2 K .
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Proof. From equations (46) and (47), both R′ = 0 and B′ = 0 are third order equations in 
f. Eliminating f ′′′ from both of them, we obtain the integrability condition

m2(m − 1)2 f ′

f

(
f ′′

f
− f ′2

f 2 − α

f 2

)
= 0. (58)

Obviously, it is trivial when m  =  1. This is not surprising, because then R is the only inde-
pendent curvature component and R′ = 0 already implies that the spacetime is of constant 
curvature, which is excluded by the hypotheses.

Further, this integrability condition splits into the cases f ′/f = 0 and f ′/f �= 0. In the 

latter, it implies f ′′

f − f ′2

f 2 − α
f 2 = 0 and ( f ′2

f 2 + α
f 2 )

′ = 0 (see equation (52)). But these are pre-

cisely the necessary and sufficient conditions for the spacetime to be of constant curvature 

(lemma 2.5), which is excluded by our hypotheses. Thus, we are left with the only possibility 
f ′/f = 0 and the desired conclusion clearly exhausts the solutions of this equation. □ 

Lemma 2.7. The complete list of possible triples (m,α, f (t)) satisfying the constant scalar 
curvature condition R′ = 0, but with B′ �= 0, consists of



α = 0: (m, 0, f )

(
m > 1, f ′′

f − f ′2

f 2 + (m+1)
2 ( f ′2

f 2 − K) = 0, f ′2

f 2 − K �= 0
)

;

α �= 0: (m,α, f )
(

m > 1, f ′2

f 2 + α
f 2 = K + κΩ |α|

m+1
2

f m+1 , Ω �= 0
)

.

These are FLRW spacetimes with cosmological constant Λ = m(m−1)
2 K and radiation perfect 

fluid of energy density Ωr =
1
κ

(
f ′2

f 2 + α
f 2 − K

)
, where Ωr = C/f m+1 for some constant C. We 

refer to Ωr  as the radiation energy density because the term with the power law 1/fm+1 in the 
Friedmann equation

f ′2

f 2 +
α

f 2 = K + κ
C

f m+1 , (59)

when considered by itself gives rise to the constitutive relation pr(ρ) = ρ/m, which is char-
acteristic of radiation in thermal equilibrium [25]. If Ωα = α/f 2 is the energy density due to 
spatial curvature, when it is nonzero, the ratio Ω = Ωr/Ωα defines our normalized radiation 
density constant Ω.

Proof. If f ′/f = 0, then R = m(m − 1)α/f 2 and B = m(m − 1)2α2/f 4. Hence R′ = 0 im-
plies B′ = 0. The same implication holds if m  =  1 (see proof of lemma 2.5). Therefore, by the 
B′ �= 0 hypothesis, we can assume that m  >  1 and f ′/f �= 0.

From equation (46), the constant scalar curvature condition R = m(m + 1)K  (with some 
constant K)

2
(

f ′′

f
− f ′2

f 2 − α

f 2

)
+ (m + 1)

(
f ′2

f 2 +
α

f 2

)
= (m + 1)K, (60)

after multiplying both sides by the integrating factor ( f ′/f ) f m+1 and using identity (52), it is 
equivalent to
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f m+1
(

f ′2

f 2 +
α

f 2 − K
)

= κC, (61)

for some constant C. If C  =  0, we are back to the case of constant curvature (lemma 2.5), 
which is excluded by the B′ �= 0 hypothesis. When α �= 0, we can normalize this constant as 
C = Ω|α| m+1

2 , with some Ω �= 0. Thus, the desired conclusion clearly consists of the necessary 
and sufficient conditions for R′ = 0 and B′ �= 0 to hold. □ 

Lemma 2.8. For any triple (m,α, f (t)) for which α = 0, ( f ′2/f 2)′ �= 0 and (∇R)2 < 0, 

there is a unique smooth function P : J → R, where J = f ′2

f 2 (I), I ⊆ R and

f ′′

f
− f ′2

f 2 +
m
2

f ′2

f 2 = −κP
(
( f ′/f )2) . (62)

The function P(u) will also satisfy the following condition for each u ∈ J :

P(u)
[
κ∂uP(u)− 1

2

]
�= 0. (63)

We will call P the normalized pressure function because, when m  >  1, the spacetime 

admits a perfect fluid interpretation (section 2.3) with energy density κρ(t) = m(m−1)
2 ( f ′/f )2, 

pressure p(t) = (m − 1)P
(
( f ′/f )2

)
, which admits the constitutive relation p = p(ρ), where

p(ρ) = (m − 1)P
(

2
m(m − 1)

κρ

)
. (64)

When m  =  1, the triviality of the Einstein equations does not allow such an interpretation, so 
without loss of generality the function P simply determines the differential equation satisfied 
by f.

Proof. Under our hypotheses, the existence of a unique function P(u) is an elementary con-

sequence of the implicit function theorem. If P(u) = 0, then we are back to the case of flat or 

constant curvature spacetime (lemmas 2.4 and 2.5), while P(u) = 1
2κ [u − (m + 1)K] brings 

us back to the R′ = 0 case (lemma 2.7), both of which contradict the (∇R)2 < 0 hypothesis. 
For any other value of P(u), we have ∇R �= 0, which can then only be timelike. □ 

Lemma 2.9. For any triple (m,α, f (t)) for which we have α �= 0, f ′/f �= 0 and (∇R)2 < 0, 
there is a unique smooth function E : J → R, where J = α

f 2 (I), I ⊆ R and

f ′2

f 2 +
α

f 2 = κE(α/f 2). (65)

The function E(u) will also satisfy the following conditions for each u ∈ J :

κE(u)− u > 0, ∂u

[
u∂uE(u)− (m + 1)

2
E(u)

]
�= 0. (66)

We will call E the normalized energy function because, when m  >  1, the spacetime admits 

a perfect fluid interpretation (section 2.3) with energy density ρ(t) = m(m−1)
2 E(α/f 2) and 
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pressure p(t) = −( fρ′)/(mf ′)− ρ given by the continuity equation (57). When m  =  1, the 
triviality of the Einstein equations does not allow such an interpretation, so without loss of 
generality the function E simply determines the differential equation satisfied by f.

Proof. Under our hypotheses, the existence of a unique function E(u) is an elementary con-

sequence of the implicit function theorem. Since f ′2/f 2 > 0, we must also have κE(u)− u > 0. 

Finally, we want to make sure that κE(u) �= K + κΩu
m+1

2 , which would imply R′ = 0 (lemma 
2.7), contrary to our hypothesis that (∇R)2 < 0. With K and Ω arbitrary, these right-hand-
sides precisely exhaust the solutions of the equation u∂u(u∂u − m+1

2 )E(u) = 0. Thus, the sec-
ond inequality in (66) is sufficient to ensure that ∇R �= 0, which can then only be timelike.
 □ 

2.5. Scalar field

In this section, we will be interested in the geometry of Lorentzian spacetimes that are endowed 
with a scalar field and satisfying the coupled Einstein equations. To make non-trivial use of 
Einstein equations, throughout this section, we will assume that the spacetime dimension is 
m  +  1  >  2. This information will later be used in section 3.4 to classify the local isometry 
classes (definition 1.1) of such spacetimes.

Definition 2.10. We call a spacetime with scalar (M, g,φ), with dimM = m + 1 > 2, an  
inflationary spacetime when (M, g) can be put in FLRW form (23), (M, g) ∼= (I × F,−dt2 + f 2gF) 
such that φ = φ(t) is only a function of the t-coordinate, and for some constant Λ and smooth 
function V(φ) the coupled Einstein–Klein–Gordon equations are satisfied

∇i∇iφ− 1
2
∂φV(φ) = 0, (67)

Rij −
1
2

gijR+ Λgij = κTij,

where Tij = (∇iφ)(∇jφ)−
1
2

gij[(∇φ)2 + V(φ)].
 

(68)

Equation (67) is in general the nonlinear Klein–Gordon equation with V(φ) the self-
coupling potential, though in the special case that the potential is a quadratic polynomial it 
becomes linear. It is easy to see that we can set Λ �→ 0 by the redefinition V(φ) �→ V(φ) + 2

κΛ. 
We will adopt this convention from now on.

On an FLRW background, when φ = φ(t), the stress energy tensor and the wave operator 
are given by

Tij = φ′2UiUj +
1
2
[φ′2 − V(φ)]gij, (69)

∇i∇iφ = −φ′′ − m
f ′

f
φ′. (70)

Hence, the coupled Einstein–Klein–Gordon equations reduce to the system of ODEs

f ′2

f 2 +
α

f 2 = κ
φ′2 + V(φ)

m(m − 1)
, (71)
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f ′′

f
− f ′2

f 2 − α

f 2 = −κ
φ′2

(m − 1)
, (72)

φ′′ +
1
2
∂φV(φ) = −m

f ′

f
φ′, (73)

which we will refer to as the Friedmann equation (71), the (Einstein) acceleration equation 
(72), and the nonlinear Klein–Gordon equation. When φ′ �= 0, the nonlinear Klein–Gordon 
equation is not independent from the other two and follows from the continuity equation (57) 
applied to this situation. Note that the potential V(φ) can be isolated from the following com-
bination of the Friedmann and acceleration equations:

κ
V(φ)

(m − 1)
=

(
f ′′

f
− f ′2

f 2 − α

f 2

)
+ m

(
f ′2

f 2 +
α

f 2

)

=
f ′′

f
+ (m − 1)

(
f ′2

f 2 +
α

f 2

)
.

 
(74)

While we will eventually give a characterization of local isometry classes of inflationary 
spacetimes with a specific scalar potential V(φ), it is an interesting question how to recognize 
when an FLRW spacetime can be interpreted as part of a solution to an Einstein–Klein–
Gordon system with some potential V(φ). This is a coarser version of the question that asks 
for a Rainich-type characterization with a specific potential V(φ). The latter finer question was 
answered in theorem 4 of [20], on which we base the following considerations.

Our starting point are the equations

−κ
φ′2

(m − 1)
=

f ′′

f
− f ′2

f 2 − α

f 2 , (75)

κ
V(φ)

(m − 1)
=

(
f ′′

f
− f ′2

f 2 − α

f 2

)
+ m

(
f ′2

f 2 +
α

f 2

)
. (76)

To answer our question, we will be happy with some reasonable conditions on a given (α, f ) 
for the existence of φ(t) and V(φ) such that the above equations are satisfied. Supposing that 
the potential V(φ) has a smooth inverse, V(φ) = u ⇐⇒ φ = W(u), we have the relation 
(V(φ))′/φ′ = 1/W ′(V(φ)), which is of course consistent only if both expressions remain both 
finite and non-zero. On the other hand, knowing W ′(u), we can recover W up to the ambigu-
ity W(u) �→ W(u) + φ0, which determines V up to the ambiguity V(φ) �→ V(φ− φ0). Thus, 
under the hypotheses

− 1
κ

(
f ′′

f
− f ′2

f 2 − α

f 2

)
> 0, (77)

[(
f ′′

f
− f ′2

f 2 − α

f 2

)
+ m

(
f ′2

f 2 +
α

f 2

)]′
�= 0, (78)

using the last left-hand-side as the independent variable in an application of the implicit func-
tion theorem, we define functions W ′ by the formula
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(m−1)
κ

[(
f ′′

f − f ′2

f 2 − α
f 2

)
+ m

(
f ′2

f 2 + α
f 2

)]′

±
√
− (m−1)

κ

(
f ′′
f − f ′2

f 2 − α
f 2

)

=
1

W ′
(

(m−1)
κ

[(
f ′′
f − f ′2

f 2 − α
f 2

)
+ m

(
f ′2

f 2 + α
f 2

)]) ,

 

(79)

which fixes W uniquely up to the ambiguity, W(u) �→ ±W(u) + φ0. Hence, we can let 
V(φ) = W−1(φ) and

φ(t) = W
(
(m − 1)

κ

[(
f ′′

f
− f ′2

f 2 − α

f 2

)
+ m

(
f ′2

f 2 +
α

f 2

)])
, (80)

which are unique up to the ambiguity V(φ) �→ V(±[φ− φ0]) and φ(t) �→ ±[φ(t)− φ0]. With 
these definitions for φ(t) and V(t), (α, f ) will satisfy the desired coupled Einstein–Klein–
Gordon equations. Thus, any FLRW spacetime satisfying the inequalities (77) and (78) can 
be thought of as part of a solution of the Einstein–Klein–Gordon equations with some non-
constant potential. On the other hand, the conditions on α and f to be part of a solution of 
Einstein–Klein–Gordon equations with a constant potential are considered in lemma 2.13.

2.6. Special inflationary classes

Below, we list the forms of inflationary spacetimes (definition 2.10) satisfying some special 
geometric conditions. Throughout this section, consider an inflationary spacetime (M, g,φ), 
dimM = m + 1 > 2, with scalar field φ : I → R, warping function f : I → R and spatial sec-
tional curvature α. Whenever parameters are present, they must be chosen to respect f (t) > 0 
for all t ∈ I, even if not explicitly indicated.

Lemma 2.11. The complete list of possible quadruples (m,α, f (t),φ(t)) satisfying the  
constant scalar condition, φ(t) = Φ, as well as f ′/f �= 0, consists of (m,α, f ,Φ) with (m,α, f ) 
satisfying the constant curvature condition, Rijkh = K

2 (g � g)ijkh, with some spacetime  
sectional curvature constant K. The Einstein–Klein–Gordon equations are satisfied with the 
choice V(φ) = 2

κΛ, where the cosmological constant Λ = m(m−1)
2 K.

Proof. Since φ′ = 0, the Einstein–Klein–Gordon equations reduce to Rij − 1
2Rgij = −Λgij , 

or Rij = mKgij, with K = 2
m(m−1)Λ, which together with the FLRW property is precisely the 

necessary and sufficient to be of constant curvature. □ 

Further on, in several cases, we will require the condition f ′/f �= 0. So first, we explore 
the special case f ′/f = 0, of static backgrounds. We know from lemma 2.6 that the only static 
FLRW backgrounds are flat or Einstein static universes, with the flat case already covered 
by lemma 2.11. What is special about this case is that the energy 1

2 (φ
′2 + V(φ)) of the scalar 

field is conserved. It turns out that the converse is also true and it is only consistent with V(φ) 
being constant.

Lemma 2.12. The complete list of possible quadruples (m,α, f (t),φ(t)) satisfying the con-
stant energy condition 1

2 (φ
′2 + V(φ)) = ρ, with some constant ρ, but with (m,α, f (t)) not of 

constant curvature, consists of

(m, KA2, A,±
√

2ρ/m(t − t0)) (A > 0, ρ > 0) . (81)
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Proof. We can presume that φ′ �= 0, since otherwise the spacetime is of constant curva-
ture (lemma 2.11). The Friedmann equation (71) reduces to f ′2/f 2 + α/f 2 = κρ. Using the 
identity (52) and the acceleration equation  (72), we conclude that f ′/f = 0. Plugging this 
conclusion back into the Friedmann and acceleration equation, we find that each of K = α/f 2, 
2
κΛ = V(φ) and φ′2 must be individually constant, with K interpreted as the spatial sectional 
curvature and Λ the cosmological constant. If we take ρ as an independent constant, the rest 

are given by K = 2
m(m−1)κρ, φ′2 = (m−1)

κ K = 2
mρ and Λ = (m−1)

m κρ. □ 

Whenever the scalar potential V(φ) is a constant, the Klein–Gordon equation is just the 
wave equation ∇i∇iφ = 0, which we also call the massless minimally-coupled Klein–Gordon 
equation.

Lemma 2.13. The complete list of possible quadruples (m,α, f (t),φ(t)) with V(φ) = 2
κΛ a 

constant, where the scalar field is not constant nor of constant energy, consists of



α = 0: (m, 0, f ,φ)




(
f ′′

f − f ′2

f 2

)
+ m f ′2

f 2 = 2Λ
(m−1) ,

f ′2

f 2 = κφ′2+2Λ
m(m−1)




α �= 0: (m,α, f ,φ)




f ′2

f 2 + α
f 2 = 2Λ

(m−1) +
κ

m(m−1)Ω
|α|m
f 2m ,

φ′ = ±
√
Ω |α|

m
2

f m , Ω > 0




Proof. Recall from (76) that a constant potential V(φ) = 2
κΛ implies the equation

(
f ′′

f
− f ′2

f 2 − α

f 2

)
+ m

(
f ′2

f 2 +
α

f 2

)
= 2

Λ

(m − 1)
, (82)

which is also supplemented by the Friedmann equation (71)

f ′2

f 2 +
α

f 2 =
κφ′2 + 2Λ
m(m − 1)

 (83)

is clearly equivalent to the Einstein equations with a massless minimally-coupled scalar field 
stress energy tensor and, because of our hypothesis that φ′ �= 0 and the comments below equa-
tion  (73), which are equivalent to the full coupled Einstein–Klein–Gordon system. Setting 
α = 0 completes the proof of the first part of the lemma.

The hypothesis of non-constant energy and lemma 2.12 imply that f ′/f �= 0. Thus, we 
obtain the following equivalent form of (82) after multiplying it by the integrating factor 
2( f ′/f ) f 2m:

f 2m
(

f ′2

f 2 +
α

f 2 − 2
m(m − 1)

Λ

)
=

κ

m(m − 1)
C, (84)

for some constant C. When α �= 0, we can normalize C by a power of |α| to get

f ′2

f 2 +
α

f 2 =
2Λ + κΩ |α|m

f 2m

m(m − 1)
, (85)
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with another constant Ω. Provided that Ω > 0, we can determine φ(t) by the equa-

tion φ′ = ±
√
Ω |α|

m
2

f m , which is equivalent to the massless minimally-coupled Klein–Gordon 

equation

1
f m ( f mφ′)

′
= φ′′ + m

f ′

f
φ′ = 0. (86)

With the above expression for φ′, plugging it into the Friedmann equation gives exactly equa-
tion (85). This observation completes the proof of the second part of the lemma. □ 

Next, we will transform the Einstein–Klein–Gordon equations (71)–(73) under the hypoth-
esis that φ′ �= 0 everywhere. If we use the Friedmann equation  to eliminate α/f 2 from the 
acceleration equation, while also multiplying the Klein–Gordon equation by φ′ and adding to 
it a multiple of the acceleration equation, they can be equivalently expressed as

κ
φ′2 + V(φ)

m(m − 1)
− f ′2

f 2 =
α

f 2 , (87)

(
f ′

f

)′

+ κ
φ′2

(m − 1)
=

(
κ
φ′2 + V(φ)

m(m − 1)
− f ′2

f 2

)
, (88)

(
κ
φ′2 + V(φ)

m(m − 1)
− f ′2

f 2

)′

= −2
f ′

f

(
κ
φ′2 + V(φ)

m(m − 1)
− f ′2

f 2

)
. (89)

The equations (88) and (89) are second order, while (87) is first order. To see that there are 
no integrability conditions, note that differentiating the first order equation gives the identity

[
f 2
(
κ
φ′2 + V(φ)

m(m − 1)
− f ′2

f 2

)]′

= f 2

[(
κ
φ′2 + V(φ)

m(m − 1)
− f ′2

f 2

)′

+ 2
f ′

f

(
κ
φ′2 + V(φ)

m(m − 1)
− f ′2

f 2

)]
,

 (90)
where the right-hand-side is clearly proportional to (89).

Since we are assuming that φ′ �= 0, we can use φ as the independent variable and convert 
all t-derivatives as (−)′ = φ′∂φ(−). Denoting π = φ′ and ξ = f ′/f , we get the equations

f 2
(
κ
π2 + V(φ)

m(m − 1)
− ξ2

)
= α, (91)

π

[
∂φξ + κ

π

(m − 1)

]
=

(
κ
π2 + V(φ)

m(m − 1)
− ξ2

)
, (92)

∂φ

(
κ
π2 + V(φ)

m(m − 1)
− ξ2

)
= −2

ξ

π

(
κ
π2 + V(φ)

m(m − 1)
− ξ2

)
, (93)

where ξ, π and f are now all considered as functions of φ. With fixed V(φ), the system (92) and 
(93) closes in the (π, ξ) variables, with the symmetry (π, ξ) �→ (−π,−ξ) corresponding to the 
coordinate transformation t �→ −t , and can be solved for the highest derivatives ∂φξ  and ∂φπ 
(always assuming that π �= 0). In the notation of (20), we can use the short-hand GV(π, ξ) = 0 
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for this system. Hence the space of solutions ξ = Ξ(φ), π = Π(φ), will be two-dimensional. 
We will always leave these parameters implicit in the choice of the solution (Π(φ),Ξ(φ)). 

With (Π,Ξ) fixed, the equations φ′ = Π(φ), f ′/f = Ξ(φ) and α = f 2[κΠ2(φ)+V(φ)
m(m−1) − Ξ2(φ)] 

have a two-dimensional family of solutions, parametrized essentially by the transformations

(α, f (t),φ(t)) �→ (A2α, Af (t − t0),φ(t0 − t0)), (94)

which are the isometries preserving FLRW form (proposition 3.6). So the parameters deter-
mining (α, f ,φ) that are invariant under these transformations are essentially exhausted by the 
choice of V(φ) and the solution (Π,Ξ). We summarize as follows.

Lemma 2.14. For any quadruple (m,α, f (t),φ(t)) for which α �= 0, f ′/f �= 0 and 
(∇φ)2 < 0, there is a unique smooth function (Π,Ξ) : J → R2, where J = φ(I) and

φ′ = Π(φ),
f ′

f
= Ξ(φ),

α

f 2 = κ
Π2(φ) + V(φ)

m(m − 1)
− Ξ2(φ). (95)

For each u ∈ J , these functions will also satisfy Π(u) �= 0, Ξ(u) �= 0 and κΠ2(u)+V(u)
m(m−1) �= Ξ2(u), 

they will satisfy GV(Π,Ξ) = 0, in the notation of (20).

When α = 0, the above discussion can be greatly simplified. The Einstein–Klein–Gordon 
system reduces to the following equivalent forms, using the same notation as above and always 
supposing that π �= 0 everywhere:



κπ+V(φ)

m(m−1) − ξ2 = 0

π
[
∂φξ + κ π

(m−1)

]
= 0

⇐⇒

{
(∂φξ)

2 = κm(m−1)ξ2−κV(φ)
(m−1)2

π = − (m−1)
κ ∂φξ

 (96)

In a way, this simplification comes from eliminating π = φ′ from the equations. In the nota-
tion of (18), we use the short-hand HV(ξ) = 0 for the equation  satisfied by ξ(φ), which 
retains the symmetry ξ �→ −ξ. With V(φ) fixed, under the hypothesis ∂φΞ �= 0, this equa-
tion  will have a one-dimensional family of solutions ξ = Ξ(φ). We will always leave the 
corresponding parameter implicit in the choice of the solution Ξ(φ). With Ξ fixed, the equa-

tions φ′ = − (m−1)
κ ∂φΞ(φ), f ′/f = Ξ(φ) have a two-dimensional family of solutions, again 

parametrized by the transformations (94). So the parameters determining ( f ,φ) that are invari-
ant under these transformations are essentially exhausted by the choice of V(φ) and the solu-
tion Ξ. We summarize as follows.

Lemma 2.15. For any quadruple (m,α, f (t),φ(t)) for which α = 0, f ′/f �= 0 and 
(∇φ)2 < 0, there is a unique smooth function Ξ : J → R, where J = φ(I) and

φ′ = − (m − 1)
κ

∂φΞ(φ),
f ′

f
= Ξ(φ). (97)

For each u ∈ J , these functions will also satisfy Ξ(u) �= 0, ∂φΞ2(u) �= 0 and it will satisfy 
HV(Ξ) = 0, in the notation of (18).

In the spatially flat (α = 0) case, the equation HV(Ξ) = 0 is sometimes known as the 
Hamilton–Jacobi equation of single field inflation [24, 28]. The more general system 
GV(Π,Ξ) = 0 needed in the generic case (α �= 0) does not seem to have been considered 
before. In the cosmology literature, in the case of non-zero α, an alternative system of equa-
tions  has been used [30], though one less convenient for our purposes. There, a complex 
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scalar field Z(φ) is introduced, and plays the role of a ‘super-potential’ (in the sense of 
 super-symmetry) for a ‘pseudo-Killing’ spinor. The isometry class of (α, f ,φ) determines the 
integrability conditions for Z(φ), an algebraic relation between φ, Z(φ) and Z′(φ).

3. Geometric characterization

In this section, we leverage the information from section 2 to give necessary and sufficient 
conditions to belong to the local isometry class of a regular FLRW or inflationary spacetime, 
eventually proving our main theorems 1.4 and 1.5.

The resulting systems of conditions will be of the IDEAL type, as discussed in the 
Introduction, consisting of a list {Ta[g,φ] = 0}, a = 1, . . . , N , of tensor equations built covar-
iantly out of a metric g, a scalar field φ, and their derivatives. Each set of equations will consist 
of roughly three parts: for the GRW structure, for the FLRW structure, and for the specific 
isometry subclass.

3.1. Special cases

The two cases of FLRW spacetimes whose local isometry classes need to be characterized 
separately from the general pattern given in the sequel are the constant curvature spacetimes 
(lemmas 2.4 and 2.5) and Einstein static universes (lemma 2.6).

Proposition 3.1. Consider a Lorentzian manifold (M, g), dimM = m + 1 � 2.

 (a) Given a fixed constant K, if (M, g) everywhere satisfies

Rijkh − K
1
2
(g � g)ijkh = 0, (98)

  then it is locally isometric to any other spacetime satisfying the same condition.
 (b) Given a fixed constant K, if m  >  1 and (M, g) everywhere satisfies

Wijkh = 0, R j
i (Rjk − (m − 1)Kgjk) = 0, (99)

∇iRjk = 0, R− m(m − 1)K = 0, (100)

  while the 1-dimensional kernel of R j
i  is timelike, it is locally isometric to an Einstein 

static universe with spatial sectional curvature K. The value K  =  0 coincides with the flat 
case, Rijkh  =  0.

Proof. 

 (a) This is standard; see for instance theorem 2.4.11 in [36].
 (b) When m  =  1, spatial slices are always flat, hence it is impossible to have K �= 0 spatial 

sectional curvature. When K  =  0, we are back in the flat case, characterized by Rijkh  =  0, a 
special case of part (a). This is why we take m  >  1. Direct calculation (see 2.2) shows that 
the above equations hold when (M, g) is an Einstein static universe with spatial sectional 
curvature K �= 0.

Conversely, assume that we only know about (M, g) that the above equations hold, with 
K �= 0. The algebraic equations on the R j

i  tangent space endomorphism guarantee that it is 
diagonalizable with precisely two distinct eigenvalues, 0 and (m − 1)K , with the kernel being 
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1-dimensional. Since Rij is symmetric, the kernel can only be either timelike or spacelike 
(not null)6, with the hypotheses constraining it to be timelike. Since Rij is also covariantly 
constant, so is any unit vector Ui in its kernel. That is, Rij∇XU j = ∇X(RijU j) = 0 for any Xi, 
which implies that ∇XU j = AXU j  and AX = −Uj∇XU j = − 1

2∇X(UjU j) = 0. This gives us 
the desired ∇iU j = 0 conclusion.

The existence of a covariantly constant unit vector Ui implies that for any x ∈ M  and con-
tractible open neighborhood O � x, the holonomy action of (O, g|O) at x leaves invariant the 
subspace spanned by Ui at x as well as its orthogonal complement (simply note that contrac-
tion with Ui commutes with parallel transport). Under these conditions (proposition IV.5.2 
in [19]), it is possible to locally factor (O, g|O) into a direct product of a 1-dimensional and 
an m-dimensional pseudo-Riemannian manifold, (I,−dt2)× (F, gF), with gF of Riemannian 
signature. Furthermore, the algebraic conditions on Wijkh and Rij imply that WF

ijkh = 0 and 
RF

ij = (m − 1)KgF
ij , which means that the spatial factor (F,gF) is locally of constant curvature 

with sectional curvature K. In other words, we can locally describe (M, g) as an FLRW space-
time with α = K and f (t) = 1, which belongs precisely to the desired Einstein static universe 
class. □ 

3.2. FLRW spacetimes

An FLRW spacetime (definition 2.2) is a GRW spacetime (definition 2.1) whose spatial slices 
have constant curvature (equation (25)). GRW spacetimes have been geometrically character-
ized in two different but related ways by the existence of a spatially conformal vector field U 
by Sánchez [29] and of a concircular vector field v by Chen [5]. Given Chen’s vector field v, 
the vector field U = v/

√
−v2 satisfies the conditions of Sánchez. A recent survey of these and 

related geometric characterization results of GRW spacetimes can be found in [21].
Chen’s condition is somewhat simpler, but we will only be able to make use of it to char-

acterize spatially curved, but not spatially flat FLRW spacetimes. In one case it will be pos-
sible to produce Chen’s vector field v directly from the spacetime curvature, in the other not. 
Sánchez’s conditions work equally well also in the spatially flat case. So, motivated by provid-
ing the simplest set of equations when possible, we present both characterizations.

Proposition 3.2 (Sánchez’s conditions). Let (M, g) be a Lorentzian manifold, 
dimM = m + 1 � 2. It is locally GRW at x ∈ M  if and only if there exists, on a neighbor-
hood of x, a unit timelike vector field U that satisfies the conditions

Pjk := U[ j∇k]
∇iUi

m
= 0, (101)

Dij := ∇iUj −
∇kUk

m
(gij + UiUj) = 0. (102)

Proof. In one direction, given an FLRW metric in the form (23), direct calculation shows 
that the above conditions are satisfied with Ui = (∂t)

i.

6 Suppose the 1-dimensional kernel N of R j
i  is null. From its invariant factors and the symmetry of Rij, we have the 

following splittings of invariant subspaces: N⊥ = N ⊕ S and S⊥ = N ⊕ N′, where S is necessarily spacelike, mean-
ing that N′ is 1-dimensional and has a non-zero eigenvalue. But, by the well-known Segre classification  
[31, section 5.1], on S⊥, R j

i  can either have only a single degenerate eigenvalue or no null eigenvectors.
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In the other direction, Sánchez’s theorem 2.1 from [29] shows that locally (M, g) can be 
put into the form (23), with Ui = (∂t)

i. Sánchez’s original conditions look more complicated, 
but they follow from ours by easy algebraic manipulations. Sánchez’s hypotheses also include 
connectedness and simple connectedness. But, from the proof, these can all be dropped for the 
local result that we want. □ 

We have based the above result on the characterization of GRW spacetimes that Sánchez 
obtained independently [29, theorem 2.1] in the process of a detailed investigation of the geom-
etry of GRW spacetimes. However, this characterization (existence of a shear-free, D(ij) = 0, 
and twist-free, D[ij] = 0, vector field U, with expansion ξ constant in directions orthogonal to 
U, Pij = 0), at least when applied to FLRW spacetimes, has been known already as far back 
as [8, theorem 2.5.1, 9], and has been referenced for instance in [11, section III.B], [10, sec-
tion 5.1]. Another independent source for these conditions seems to be the unpublished thesis 
[7], which has been referenced in at least [2, p.124].

Proposition 3.3 (Chen’s conditions). Consider a Lorentzian manifold (M, g), 
dimM = m + 1 � 2. It is locally GRW at x ∈ M  if and only if there exists, on a neighbor-
hood of x, a timelike vector field v and a scalar μ that satisfy the condition

∇ivj = µgij. (103)

A vector field satisfying (103) is called concircular.

Proof. In one direction, given GRW metric in the form (23), direct calculation shows that 
we can take vi = f (∂t)

i and µ = f ′.
Chen’s theorem 1 from [5] shows that locally (M, g) can be put into the form (23), with 

vi = f (∂t)
i. Chen stated this result for m + 1 � 3. However, the same proof also works 

when m  +  1  =  2. It is easiest to see by showing that the concircular condition (103) im-
plies that Ui = vi/

√
−v2 satisfies Sánchez’s conditions, independently of the dimension. Let 

φ =
√
−v2 , so that vi = φUi . From the U j∇iUj = 0 identity, the concircular condition de-

composes into

Uj∇iφ+ φ∇iUj = −µUiUj + µ(gij + UiUj)

⇐⇒ ∇iφ = −µUi, ∇iUj =
µ

φ
(gij + UiUj).

 (104)

Then U[iUj] = 0 implies U[i∇j]φ = 0, and ∇[i∇j]φ = 0 implies U[i∇j]µ = 0. Finally, not-

ing that µ = Ui∇iφ = φ
m∇

iUi and eliminating both φ and μ gives us Sánchez’s conditions 

Pij = 0 and Dij = 0. □ 

The concircular condition can be rewritten slightly for our convenience.

Lemma 3.4. Let U be a vector field, ν and φ smooth functions, with φ > 0, and k a con-
stant. Then the condition

∇iUj + k
∇iφ

φ
Uj = νgij (105)

implies that v = φkU  is a concircular vector field. In particular, U[i∇j]φ = 0.

Proof. The concircular condition with v = φkU  and µ = φkν  is equivalent to 
φ−k∇i(φ

kUj) = φ−kµgij, which when expanded gives precisely equation (105). In GRW form 
(23), φkUi = f (∂t)

i and ∇jf = −f ′Uj , from which follows the desired condition on ∇jφ. □ 
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Proposition 3.5. Consider a GRW spacetime (M, g) ∼= (I × F,−dt2 + f 2gF), 
dimM = m + 1 � 2. Set Ui = (∂t)

i and recall the notation of definition 2.3.
The (F,gF) factor is locally of constant curvature if and only if the CCD tensor (see defini-

tion 2.3) vanishes and the spatial scalar curvature is constant,

Cijkh = 0 and U[i∇j]ζ = 0. (106)

If in addition the spatial scalar curvature or equivalently the ZCD tensor (see definition 2.3) 
also vanishes, ζ = 0 or

Zijkh = 0, (107)

then (F,gF) is actually flat.

Proof. From equation (40), Cijkh = 0 is equivalent to

RF
ijkh =

1
m(m − 1)

RF

2
(gF � gF)ijkh. (108)

while U[i∇j]ζ = 0 and (39) imply that RF is a constant. Hence, (F,gF) is of constant curvature. 
Furthermore, either of the conditions ζ = 0 or Zijkh = 0 implies that RF

ijkh = 0 and hence that 
(F,gF) is flat. □ 

3.3. FLRW local isometry classes

Within the class of FLRW spacetimes, two metrics in the form (23) with different (α, f ) 
parameters may or may not be isometric. Below, we give the results that allow us to classify 
FLRW metrics into isometry classes.

The obvious form-preserving transformations, time translation, reflection and rescaling, 
relate any FLRW metric to a 2-parameter family of (locally) isometric metrics. We state this 
result directly for FLRW spacetimes with scalar, which will come in useful later in section 3.4. 
As mentioned in the introduction, we can reduce to the case of no scalar field by setting the 
scalar field to zero.

Proposition 3.6. Consider two inflationary spacetimes (Mi, gi,φi), i  =  1,2, with corre-
sponding spatial sectional curvature, warping function and scalar field triples (αi, fi,φi), 
i  =  1,2. If for every x ∈ M1 with t1  =  t(x) in the domain of ( f1,φ1) there exists an open inter-
val (t1 − δ, t1 + δ) still in the domain of ( f1,φ1), with δ > 0, and an interval (t2 − δ, t2 + δ) 
in the domain of ( f2,φ2) such that




α1 = A2α2,
f1(t) = Af2(st + t0),
φ1(t) = φ2(st + t0),

 (109)

for some constants s ∈ {+1,−1}, A �= 0 and every t ∈ (t1 − δ, t1 + δ), then (M1, g1,φ1) is 
locally isometric to (M2, g2,φ2) at x ∈ M1.

Proof. The result follows from noting that an FLRW metric in standard form 
−dt2 + f (t)2g̃F  is locally isometric to each of −dt2 + f (−t)2g̃F, −dt2 + f (t + t0)2g̃F  and to 
−dt2 + (Af (t))2(g̃F/A2). □ 
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We will now show that, under certain conditions, two FLRW metrics with parameters 
(α1, f1) and (α2, f2) are locally isometric if and only if they belong to the same 2-parameter 
family as in proposition 3.6. To describe such a 2-parameter family of (α, f ) intrinsically, we 
will look for a differential equation satisfied by every element of that family and only elements 
of that family. Heuristically, we should look for either a second order equation for f or a first 
order equation for f depending also on the parameter α, either of which will generically have 
a 2-parameter general solution.

The following helpful lemma follows easily from standard ODE existence and uniqueness 
theory [1].

Lemma 3.7. Consider a smooth real function G defined on an open interval J, two nonzero 
real constants α1 and α2, and two nowhere vanishing smooth real functions f1(t) and f2(t) 
 defined respectively on the open intervals I1 and I2.

 (a) Suppose G  >  0 and that the pairs (α1, f1) and (α2, f2) both satisfy the differential 
 equation

( f ′/f )2 = G(α/f 2) (110)

  and that there exist t1 ∈ I1 and t2 ∈ I2 such that α1
f1(t1)2 = α2

f2(t2)2 ∈ J . Then there exist con-
stants s ∈ {+1,−1}, t0, A �= 0 and δ > 0 such that t2 = st1 + t0, as well as

α1 = A2α2 and f1(t) = Af2(st + t0) (111)

  for every t ∈ (t1 − δ, t1 + δ).
 (b) Suppose that the functions f1 and f2 both satisfy the differential equation

f ′′/f = G
(
( f ′/f )2) (112)

  and that there exist t1 ∈ I1 and t2 ∈ I2 such that f ′1 (t1)
f1(t1)

=
f ′2 (t2)
f2(t2)

∈ J. Then there exist  

constants s ∈ {+1,−1}, t0, A �= 0 and δ > 0 such that t2 = st1 + t0, as well as

f1(t) = Af2(st + t0) (113)

  for every t ∈ (t1 − δ, t1 + δ).

We are finally in a position to define and classify all regular FLRW spacetimes into families 
and to describe the parameters needed identify an isometry class within each family.

Lemma 3.8. Two regular FLRW spacetimes (those belonging to one of the families identi-
fied in definition 1.2) are isometric to each other (definition 1.1) if and only if they belong to 
the same parametrized family and the corresponding parameters are identical.

Proof. Let us fix m, noting that two isometric spacetimes must have the same dimension. 
To show that two spacetimes cannot be isometric, it is sufficient to point out an identity or in-
equality that is satisfied by curvature scalars or tensors on one spacetime but not on the other. 
With that in mind, recall (in the notation of theorem 1.4) that for FLRW spacetimes, ξ = f ′/f , 
η = f ′′/f − f ′2/f 2 and ζ = α/f 2, which are all curvature scalars as long as they are defined 
with respect to a vector field U that is also defined from pure, such as the choices U = UR or 
UB. To show that all the representatives of a family with identical parameters are all isometric 
to each other, there will be two possibilities to consider. Either the representative is unique, 
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which is the trivial case. Or, all representatives are selected by satisfying a differential equa-
tion. By invoking lemma 3.7, we can be sure that two solutions to such an equation (with all 
parameters fixed), if they can be matched up at at least one point, are in fact locally isometric 
around that point. If the domains of these solutions can also be matched up, then it is clear that 
they are also globally isometric.

 (a) For each K, there is a unique representative in CCm
K . The scalar curvature R = m(m + 1)K  

distinguishes the different values of K.
 (b) Again, for each K �= 0, there is a unique representative in ESUm

K. The scalar curvature 
R = m(m − 1)K  distinguishes the different values of K. Comparing the formulas from 
section 2.2 and proposition 3.1(b), the structure of the Ricci tensor Rij distinguish ESUm

K 
from any spacetime of constant curvature.

 (c) The representatives of CSCm,0
K,J  satisfy an equation like in lemma 3.7(b). The scalar cur-

vature R = m(m + 1)K  distinguishes the different values of K, and setting U = UB the 
range J = ξ2(I) distinguishes the different intervals J. Also, from lemma 2.7, (∇B)2 < 0 
distinguishes these spacetimes from those of parts (a) and (b), where B′ = 0.

 (d) The representatives of the class CSCm
K,Ω,J  satisfy an equation like in lemma 3.7(a). The 

scalar curvature R = m(m + 1)K  distinguishes the different values of K, and setting 

U = UB, the constant κΩ = (ξ2 + ζ − K)/|ζ| m+1
2  (lemma 2.7) and range J = ζ(I) distin-

guishes the different values of Ω and J. Again, (∇B)2 < 0 distinguishes these spacetimes 
from those of parts (a) and (b), while ζ �= 0 distinguishes them from those of part (c) 
where ζ = 0.

 (e) The representatives of the class FLRWm,0
P,J  satisfy an equation like in lemma 3.7(b). Setting 

U = UR, the identity η + m
2 ξ

2 = −κP(ξ2) and the range J = ξ2(I) distinguish different 
values of the P and J parameters. Also, combining the constraints on P and lemma 2.8, 
(∇R)2 < 0 distinguishes these spacetimes from those of parts (a), (b), (c) and (d), where 
R′ = 0.

 (f) The representatives of the class FLRWm
E,J satisfy an equation like in lemma 3.7(b). Setting 

U = UR, the identity ξ2 + ζ = κE(ζ) and the range J = ζ(I) distinguish different 
values of the E and J parameters. Again, combining the constraints on E and lemma 2.9, 
(∇R)2 < 0 distinguishes these spacetimes from those of parts (a), (b), (c) and (d), while 
ζ �= 0 distinguishes them from those of part (e), where ζ = 0. □

We are now finally in a position to prove our main result about IDEAL characterizations of 
regular FLRW spacetimes.

Proof of theorem 1.4. The goal is to prove that, for each of the cases listed in table 1, a 
spacetime satisfies the listed equations (and inequalities) if and only if it is locally isometric 
(definition 1.1) to one of the regular FLRW spacetimes listed in definition 1.2. In one direc-
tion (a regular FLRW spacetime satisfies the corresponding conditions), this is essentially the 
content of lemma 3.8. It remains to show the converse.

 (a) The constant curvature case is standard (proposition 3.1(a)).
 (b) We have already proven the desired conclusion in the Einstein static universe case in 

proposition 3.1(b).

  (c) and (e) With the appropriate definition of the unit timelike vector field U, according to 
proposition 3.2, the equations Pij = 0 and Dij = 0 are sufficient to locally put the space-
time in GRW form (23), while according to proposition 3.5 the equation Zijkh = 0 implies 
that the spatial slices are flat and hence the spacetime is locally FLRW. The remaining 
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conditions place the spacetime in the unique corresponding local regular FLRW isometry 
class, as per lemmas 3.8(c) and (e).

  (d) and (f) With the appropriate definition of the unit timelike vector field U, according 

to proposition 3.3 and lemma 3.4, the equation ∇iUj − ∇iζ
2ζ Uj − ξgij = 0 is sufficient to 

locally put the spacetime in GRW form (23) and show that ζ is constant along the spatial 
slices, while according to proposition 3.5 the additional equation Cijkh = 0 implies that 
the spatial slices are of constant curvature and hence the spacetime is locally FLRW. 
The remaining conditions place the spacetime in the unique corresponding local regular 
FLRW isometry class, as per lemma 3.8(c) and (e).

3.4. Inflationary local isometry classes

Within the class of inflationary spacetimes (M, g,φ), two spacetimes in the form (23) and with 
φ = φ(t), with different (α, f ,φ) parameters may or may not be isometric. Below, we give the 
results that allow us to classify inflationary spacetimes into isometry classes (definition 1.1).

Recall that proposition 3.6 gives a sufficient condition for local isometry. We will now 
show that, under certain conditions, two inflationary spacetimes with parameters (αi, fi,φi), 
i  =  1,2, are locally isometric if and only if they belong to the same 2-parameter family as in 
proposition 3.6. As in section 3.3, we will look for an ODE system, jointly satisfied by any 
locally isometric (α, f ,φ) triples, with a 2-parameter general solution. The following help-
ful lemma, the analog of lemma 3.7, again follows easily from standard ODE existence and 
uniqueness theory [1].

Lemma 3.9. Consider a smooth real function V : J → R defined on an open interval, two 
non-zero real constants αi, i  =  1,2, and two pairs of smooth real functions ( fi,φi) defined on 
intervals Ii, i  =  1,2, with either fi nowhere vanishing.

 (a) Suppose that Π,Ξ : J → R are smooth real functions that satisfy the GV(Π,Ξ) = 0, in the 
notation of (20). Suppose also that the triples (αi, fi,φi), i  =  1,2, both satisfy the system of 
differential equations

φ′ = Π(φ),
f ′

f = Ξ(φ),
α
f 2 = κΠ2(φ)+V(φ)

m(m−1) − Ξ2(φ),
 

(114)

  and that there exist ti ∈ Ii, i  =  1,2, such that φ1(t1) = φ2(t2) ∈ J  and α1
f1(t1)2 = α2

f2(t2)2 . Then 
there exist constants t0, A �= 0 and δ > 0 such that

α1 = A2α2, f1(t) = Af2(t + t0) and φ1(t) = φ2(t + t0) (115)

  for every t ∈ (t1 − δ, t1 + δ).
 (b) Suppose that Ξ : J → R is a smooth real function. Suppose also that the pairs ( fi,φi), 

i  =  1,2, both satisfy the system of differential equations

φ′ = − (m−1)
κ ∂φΞ(φ),

f ′

f = Ξ(φ),
 (116)

  and that there exist ti ∈ Ii, i  =  1,2, such that φ1(t1) = φ2(t2) ∈ J . Then there exist con-
stants t0, A �= 0 and δ > 0 such that
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f1(t) = Af2(t + t0) and φ1(t) = φ2(t + t0) (117)

  for every t ∈ (t1 − δ, t1 + δ).

We are finally in a position to define and classify all regular inflationary spacetimes into 
families and to describe the parameters needed to identify an isometry class within each family.

Lemma 3.10. Two regular inflationary spacetimes (those belonging to one of the families 
identified in definition 1.3) are isometric to each other (definition 1.1) if and only if they  
belong to the same parametrized family and the corresponding parameters are identical.

The following proofs are very much analogous to the proofs of lemma 3.8 and theorem 1.4, 
but we will write them in a mostly self-contained way.

Proof of lemma 3.10. Let us fix m, noting that two isometric spacetimes must have the 
same dimension. To show that two spacetimes with scalar cannot be isometric, it is sufficient 
to point out an identity or inequality that is satisfied by curvature scalars or tensors, possibly 
together also with scalars or tensors covariantly obtained from the scalar field, on one space-
time but not on the other. With that in mind, recall (in the notation of theorems 1.4 and 1.5), 
that for inflationary spacetimes ξ = f ′/f , η = f ′′/f − f ′2/f 2 and ζ = α/f 2, which are all cur-
vature scalars, as long as they are defined with respect to a vector field U that is also defined 
from either pure curvature or from the scalar field, such as the choices U = UR, UB or Uφ. To 
show that all the representatives of a family with identical parameters are all isometric to each 
other, there will be two possibilities to consider. Either the representative is unique, which is 
the trivial case. Or, all representatives are selected by satisfying a differential equation. By 
invoking lemmas 3.9 or 3.7, we can be sure that two solutions to such an equation (with all 
parameters fixed), if they can be matched up at at least one point, are in fact locally isometric 
around that point. If the domains of these solutions can also be matched up, then it is clear that 
they are also globally isometric.

 (a) For each Λ (hence K = 2
m(m−1)Λ) and Φ, there is a unique representative in CCm

KCSΦ. 
The scalar curvature R = m(m + 1)K  and the scalar field φ = Φ distinguish the different 
values of these parameters.

 (b) For each ρ > 0 (hence K = 2
m(m−1)κρ) and interval J ⊆ R, there is a unique repre-

sentative in ESUm
KCESρ,J. The scalar curvature R = m(m − 1)K  and the range J = φ(I) 

distinguish different values ρ and J. The condition (∇φ)2 < 0 distinguishes these space-
times from those in part (a), where φ′ = 0.

 (c) The representatives of MMSm,0
Λ,J,J′ satisfy the equations  f ′′/f + (m − 1) f ′2/f 2 = 2Λ

(m−1) 
which is like in lemma 3.7(a), and

φ′ = −

√
1
κ

(
f ′2

f 2 − 2Λ
m(m − 1)

)
, (118)

  since by hypothesis φ′ < 0. Thus, the first equation shows that the underlying Lorentzian 
spacetimes are isometric for identical Λ and J′ . The second equation shows, by applying 
once again standard ODE existence and uniqueness theory, that the inflationary spacetimes 
are also isometric (as spacetimes with scalar) for identical J. With the choice U = Uφ, the 

curvature scalars η + mξ2 = 2Λ
(m−1)  and the ranges of J = φ(I), J′ = ξ(I) distinguishes 

different Λ, J and J′ . The implication that ξ = f ′/f �= 0 and φ′ �= 0 distinguish these 
spacetimes from those of parts (a) and (b).
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 (d) The representatives of the class MMSm
Λ,Ω,J  satisfy an equation  like in lemma 3.9(a), 

namely

φ′ = −
√
Ω
|α| m

2

f m ,
f ′

f
= ±

√
2Λ + κΩ|α|m/f 2m

m(m − 1)
− α

f 2 , (119)

  where the  ±  sign is determined by whether 0 < J′ or J′ < 0. With the choice U = Uφ, 

the curvature scalars η + mξ2 = 2Λ
(m−1) , |ζ|−m(ξ2 + ζ) = κΩ

m(m−1) and the range J = φ(I) 
distinguish different Λ, Ω and J. The implication that ξ = f ′/f �= 0 and φ′ �= 0 distinguish 

these spacetimes from those of parts (a) and (b), while ζ = κΠ2(φ)+V(φ)
m(m−1) − Ξ2(φ) �= 0 

distinguishes them from those of part (c), where ζ = 0.

 (e) The representatives of the class NKGm,0
V ,Ξ,J satisfy an equation like in lemma 3.9(b). With 

the choice U = Uφ, the identities φ′ = − (m−1)
κ ∂φΞ(φ), ξ = Ξ(φ) and the range J = φ(I) 

distinguish different Ξ, and J. It is important to note that for any solution of HV(Ξ), −Ξ is 
also a solution that defines another spacetime isometric to a given one via t �→ −(t − t0) 
for some t0. We have broken this degeneracy by the 1

κ∂uΞ(u) > 0 requirement (due to 
using Uφ and not −Uφ), so distinct Ξ imply non-isometric spacetimes. The identity 

η + mξ2 = κ V(φ)
(m−1), with non-constant V(φ), distinguishes these spacetimes from those 

in parts (a), (b), (c) and (d), where the left-hand-side would have been constant.
 (f) The representatives of the class NKGm

V ,Π,Ξ,J  satisfy an equation like in lemma 3.9(a). With 
the choice U = Uφ, the identities φ′ = Π(φ), ξ = Ξ(φ) and range J = φ(I) distinguish 
different Π, Ξ and J. It is important to note that for any solution of GV(Π,Ξ), (−Π,−Ξ) is 
also a solution that defines another spacetime isometric to a given one via t �→ −(t − t0) for 
some t0. We have broken this degeneracy by the Π < 0 requirement (due to using Uφ and 

not −Uφ), so distinct Ξ imply non-isometric spacetimes. The identity η + mξ2 = κ V(φ)
(m−1), 

with non-constant V(φ), distinguishes these spacetimes from those in parts (a), (b), (c), 
and (d), where the left-hand-side would have been constant, while ζ �= 0 distinguishes 
them from those of part (e), where ζ = 0. □

We are now finally in a position to prove our main result about IDEAL characterizations of 
regular inflationary spacetimes.

Proof of theorem 1.5. The goal is to prove that, for each of the cases listed in table 2, a 
spacetime satisfies the listed equations (and inequalities) if and only if it is locally isometric 
(definition 1.1) to one of the regular inflationary spacetimes listed in definition 1.3. In one 
direction (a regular inflationary spacetime satisfies the corresponding condition), this is es-
sentially the content of lemma 3.10. It remains to show the converse.

 (a) When φ = Φ is a constant, so is V(φ) = 2
κΛ, which we have parametrized for our con-

venience with Λ. Then the Einstein–Klein–Gordon equations become the cosmological 
vacuum equations Rij − 1

2Rgij + Λgij = 0, which under the FLRW hypotheses have only 
the constant curvature solution.

 (b) The existence of a timelike covariantly constant vector U = Uφ, ∇iUj = 0, implies that 
the spacetime decomposes into a direct sum, with one of the factors being of constant 
curvature, since the CCD tensor Cijkh = 0 (see definition 2.3) vanishes and the spatial 

scalar curvature ζ = 2κ
m(m−1)ρ is constant (proposition 3.5); see the proof of proposition 
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3.1(b) for details. The conclusion, as desired, is that the spacetime is an Einstein static 
universe and the equation φ′ = −

√
2ρ/m  means that we can choose the time coordinate 

to put φ(t) precisely into the form in lemma 2.12.
 (c) and (d) With the vector field U = Uφ, according to proposition 3.3 and lemma 3.4, the 

equation ∇iUj − ∇iφ
′

mφ′ Uj − ξgij = 0 is sufficient to locally put the spacetime into GRW 

form (23) and show that φ′ is constant along spatial slices. In case (c), the vanishing of 

the ZCD tensor Zijkh = 0 (see definition 2.3) implies that the spatial slices are flat. In 
case (d), the equation φ′ = −

√
Ω|ζ| m

2  shows that ζ is also constant on spatial slices, and 
together with the vanishing of the CCD tensor Cijkh = 0 this implies that the spatial slices 
are of constant curvature. In both cases we have referred to proposition 3.5, and in both 
case we have established that the spacetime is locally FLRW. Now, recalling the identities 
ξ = f ′/f , η = f ′′/f − f ′2/f 2 and ζ = α/f 2, the remaining conditions in each case clearly 
show that the spacetime is locally isometric to the corresponding reference class in defini-
tions 1.3(c) or (d).

 (e) and (f) With the vector field U = Uφ, according to proposition 3.2, the equations Pij = 0 
and Dij = 0 are sufficient to locally put the spacetime into GRW form (23). In case (e), 
the vanishing of the ZCD tensor Zijkh = 0 implies that the spatial slices are flat. In case 

(f), the equations φ′ = Π(φ), ξ = Ξ(φ) show that ζ = κφ′2+V(φ)
m(m−1) − ξ2 is then constant 

along spatial slices (slices of constant φ), and together with the vanishing of the CCD 

tensor Cijkh = 0 this implies that the spatial slices are of constant curvature. In both cases 
we have referred to proposition 3.5, and in both cases we have established that the spa-
cetime is locally FLRW. Now, recalling the identities ξ = f ′/f , η = f ′′/f − f ′2/f 2 and 
ζ = α/f 2, the remaining conditions in each case clearly show that the spacetime is locally 
isometric to the corresponding reference class in definitions 1.3(e) or (f). □ 
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Abstract

In general relativity, an IDEAL (Intrinsic, Deductive, Explicit, ALgorithmic) character-
ization of a reference spacetime metric g0 consists of a set of tensorial equations T [g] = 0,
constructed covariantly out of the metric g, its Riemann curvature and their derivatives, that
are satisfied if and only if g is locally isometric to the reference spacetime metric g0. We give
the first IDEAL characterization of generalized Schwarzschild-Tangherlini spacetimes, which
consist of Λ-vacuum extensions of higher dimensional spherically symmetric black holes, as
well as their versions where spheres are replaced by flat or hyperbolic spaces. The standard
Schwarzschild black hole has been previously characterized in the work of Ferrando and Sáez,
but using methods highly specific to 4 dimensions. Specialized to 4 dimensions, our result
provides an independent, alternative characterization. We also give a proof of a version of
Birkhoff’s theorem that is applicable also on neighborhoods of horizon and horizon bifurca-
tion points, which is necessary for our arguments.

1 Introduction

In this work, we are interested in an intrinsic characterization of higher dimensional generaliza-
tions of the Schwarzschild black hole. These spherically symmetric, asymptotically flat vacuum
spacetimes were first studied by Tangherlini [33]. By a spacetime (M, g), we mean a smooth
manifold M with a Lorentzian metric g, though a similar discussion can be carried out for any
pseudo-Riemannian geometry. While “intrinsic” generally does preclude direct reference to the
form of the spacetime metric in a special coordinate system, it is a vague enough term to have
multiple interpretations. To be specific, we refer to an IDEAL1 or Rainich-type characterization
that has been used, for instance, in the works [27, 32, 3, 6, 7, 9, 15, 14, 20, 2]. It consists of a list
of tensorial equations (Tk[g] = 0, a = 1, 2, . . . , N), constructed covariantly out of the metric (g)
and its derivatives (concomitants of the Riemann tensor) that are satisfied if and only if the given
spacetime locally belongs to the desired class, possibly narrow enough to be the isometry class
of a single reference spacetime geometry. This notion has a natural generalization (Tk[g, φ] = 0)
to spacetimes equipped with scalar or tensor fields (φ), with equivalence still given by isometric
diffeomorphisms that also transform the additional scalars or tensors into each other, though we
will not make use of this generalization here. A nice historical survey of this and other local
characterization results can be found in [23].

An IDEAL characterization requires neither the existence of any extra geometric structures,
nor the translation of the metric and of the curvature into a frame formalism. Thus, it is an
alternative to the Cartan-Karlhede characterization [30, Ch.9], which is based on Cartan’s moving
frame formalism. Intrinsic characterizations, of various types, have been of long standing and
independent interest in geometry and General Relativity. But, in addition, they can be helpful in
deciding when a metric, given for instance by some complicated coordinate formulas, corresponds

1The acronym, explained in [9] (footnote, p.2), stands for Intrinsic, Deductive, Explicit and ALgorithmic.
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to one that is already known. In this regard, an IDEAL characterization is especially helpful if one
would like to find an algorithmic solution to this recognition problem. In numerical relativity, the
near-satisfaction of the tensor equations Tk[g] ≈ 0 may signal the local proximity of a numerical
spacetime to a desired reference geometry. In addition, the approach to zero Tk[g] → 0 could be
used to study either linear or nonlinear stability of reference geometries, in an unambiguous and
gauge independent way.

The following additional application should be noted. By the Stewart-Walker lemma [31,
Lem.2.2], the vanishing of a tensor concomitant Tk[g] = 0 for a metric g implies that its linearization
Ṫk[h] (Tk[g+εh] = Tk[g]+εṪk[g]+O(ε2)) is invariant under linearized diffeomorphisms. Thus, any
quantity of the form Ṫk[h] defines a gauge invariant observable in linearized gravity, when Einstein
or Einstein-matter equations are linearly perturbed about a background solution g. A straight
forward (though heuristic) argument shows that an IDEAL characterization of a local isometry
class provides a list Ṫk[h], k = 1, . . . , N , of gauge invariant observables that should also complete:
the joint kernel of Ṫk should coincide with the tangent space to the isometry orbit (to make this
argument completely rigorous, it suffices to check that Tk[g + h] do not approach zero at O(h2)
or higher order). That is, the joint kernel of Ṫk[h] = 0 locally consists only of pure gauge modes
(h = Lvg for some vector field v). The use of such local observables (given by differential operators)
can be advantageous both in theoretical and practical investigations of classical and quantum field
theoretical models because they cleanly separate the local (or ultraviolet) and global (or infrared)
aspects of the theory. This may be of interest in the problem of reconstructing the metric of a linear
gravitational wave from its complete set of gauge invariant observables [25], or in the problem of
determining the decay properties of linear gravitational waves in a gauge-independent way [4].

In this work, we add the family of generalized Schwarzschild-Tangherlini geometries to the
(unfortunately still small, but slowly growing) literature concerning IDEAL characterizations of
isometry classes of individual reference geometries. That family consists of all Λ-vacuum 2 + m-
warped products, where the warped m-dimensional factor is maximally symmetric. When the
latter factor is a round sphere, we recover the asymptotically flat or (anti-)de Sitter generaliza-
tion of the Schwarzschild-Tangherlini black holes [33, 19]. Replacing the sphere by flat Euclidean
space, we get the higher dimensional generalizations of Taub’s plane symmetric spacetimes [34].
Replacing the sphere by hyperbolic space, we obtain so-called pseudo-Schwarzschild wormhole
spacetimes [22]. Other IDEAL characterizations for geometries of interest in General Relativ-
ity include (4-dimensional) Schwarzschild [6, 15], Reissner-Nordström [5], Kerr [7, 14], Lemâıtre-
Tolman-Bondi [9], Stephani universes [10] (see references for complete lists and details), and most
recently FLRW and inflationary spacetimes (in any dimension) [2]. Of course, for completeness,
we have to mention the classic cases of constant curvature spaces (cf. (14)), which are known
to be fully characterized by the structure of the Riemann tensor (by theorems of Riemann and
Killing-Hopf [36]).

For definiteness, let us state what we mean by a local isometry and local isometry class.

Definition 1 (locally isometric). A pseudo-Riemannian geometry (M1, g1) is locally isometric at
x1 ∈M1 to a pseudo-Riemannian geometry (M2, g2) at x2 ∈M2 if there exist open neighbourhoods
U1 3 x1, U2 3 x2 and a diffeomorphism χ : U1 → U2 such that χ(x1) = x2 and χ∗g2 = g1. If
we can choose U1 = M1 and U2 = M2 then they are (globally) isometric. If for every x1 ∈ M
there is x2 ∈ M2 such that (M1, g1) at x1 is locally isometric to (M2, g2) at x2, we simply say
that (M1, g1) is locally isometric to (M2, g2) (note the asymmetry in the definition). If (M1, g1)
is locally isometric to (M2, g2), as well as vice versa, we say that they are locally isometric to
each other (which constitutes an equivalence relation). All pseudo-Riemannian geometries that are
locally isometric to a reference (M, g) constitute its local isometry class.

The synopsis of the paper is the following: In Section 2 we define and exhibit the main geometric
features of 2 +m-warped product geometries. Proposition 3 gives a geometric characterization of
2 + m-warped products in terms of a symmetric projector whose covariant derivative satisfies a
special constraint. In Section 2.1 we introduce the family of generalized Schwarzschild-Tangherlini
(gST) geometries, with special attention to the structure of their Riemann curvature. Section 2.2
states and proves a version of Birkhoff’s theorem, according to which a locally maximally symmetric
2+m-warped product that is also a Λ-vacuum must locally coincide with one of the gST geometries.
The main reason to include a proof is to pay special attention to the applicability of this result to
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points lying on a (Killing) horizon. Finally, Theorem 7 in Section 3 puts all the pieces together to
give an IDEAL characterization of the local isometry classes of the gST geometries. Due to a quirk
of the structure of the gST Riemann curvature in n = 4 dimensions, the final result looks slightly
different in n = 4 and n ≥ 5 dimensions. This difference is accounted for by Theorem 8. In the
case of spherical symmetry in n = 4 dimensions with Λ = 0, our results provide an independent
alternative characterization of the standard Schwarzschild spacetime, which was first characterized
in [6]. All other instances of the results from Section 3 are new. Finally, in Section 4, we conclude
with a discussion of our results and of directions for future work.

Throughout the paper we follow the conventions of [35]: (−+ · · ·+) for Lorentzian signature,
and 2∇[µ∇ν]ωλ = Rµνλ

κωκ for curvature. Unless otherwise specified, all functions will be consid-
ered C∞ smooth.

2 2 + m-warped products

Below, we consider 2 +m-warped product geometries. That is, pseudo-Riemannian geometries on
an n-dimensional manifold, which can be represented as a warped product of a 2-dimensional and
an m-dimensional geometry. Our main family of examples consists of the generalized Schwarzschild-
Tangherlini spacetimes (Section 2.1), which includes the spherically symmetric black holes in four
and higher dimensions. We will discuss the structure of Riemann curvature tensor of the warped
product and the consequences for the 2-dimensional base factor when the product satisfies the
Einstein equation (Birkhoff’s theorem, Section 2.2).

Definition 2 (warped product). A pseudo-Riemannian geometry (M̄, ḡ) ∼= (M, g)×r (S,Ω) is a
warped product with warping function r when M̄ ∼=M×S and the metric can be written as

ḡ = g + r2Ω, (1)

where the metric tensors g and Ω are lifted to the product space by pulling back along the projections
M̄ → M and M̄ → S, while r is the pullback of a nowhere vanishing function on M. We call
(S,Ω) the warped factor and (M, g) the base factor.

Let us now introduce some notational conventions that will simplify subsequent discussions.
Denote by ∇̄µ, ∇a and DA the canonical Levi-Civita connections on (M̄, ḡ) ∼= (M, g) ×r (S,Ω),
(M, g) and (S,Ω), respectively. We will use Greek indices (αβ · · · ) for tensors on M̄, lower case
Latin indices (ab · · · ) for tensors on M, and upper case Latin indices (AB · · · ) on S. Using the
product structure M̄ ∼=M×S, any tensor or differential operator on M or S can be canonically
transferred to M̄. We will do so for the usual Riemann and Ricci curvature tensors and the
derivative of the warping function:

Rabcd[g], Rab[g], R[g]→ Rµνλκ, Rµν , R, RABCD[Ω], RAB [Ω], R[Ω]→ Sµνλκ, Sµν , S,

ra = ∇ar → rµ = ∇µr.
(2)

We will also use the obvious notation R̄µνλκ = Rµνλκ[ḡ], R̄µν = Rµν [ḡ], R̄ = R[ḡ]. We will use the
following self-explanatory convention when raising and lowering indices on tensors transferred to
M̄ from one of the factors: ḡµνgνλ = gµλ, but ḡµνr2Ωνλḡ

λκ = r−2Ωµκ.
The covariant derivative on the warped product geometry acts as

∇̄µXν = ∇µXν +DµXν − 2Xλ(r2Ω)λ(ν∇̄µ) log r +Xλ(∇̄λ log r)(r2Ω)µν , (3)

where the action of ∇̄ on scalars is just through the exterior derivative. In particular, we get

∇̄µgνλ = 2
r2Ωµ(νrλ)

r
, and ∇̄µ(r2Ω)νλ = −2

r2Ωµ(νrλ)

r
. (4)
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The curvature tensors are given by

R̄µνλκ = r2Sµνλκ +Rµνλκ −
(
∇∇r
r
� r2Ω

)
µνλκ

− rσr
σ

2r2
(r2Ω� r2Ω)µνλκ, (5)

R̄µν = Sµν +Rµν −m
∇µ∇νr

r
− �r

r
r2Ωµν − (m− 1)

rσr
σ

r2
r2Ωµν , (6)

R̄ =
S

r2
+R− 2m

�r
r
−m(m− 1)

rσr
σ

r2
, (7)

where for convenience we have introduced the Kulkarni-Nomizu product of symmetric tensors:

(A�B)µνλκ = AµλBνκ −AνλBµκ −AµκBνλ +AνκBµλ. (8)

Note that we could rewrite the ∇-derivatives using ∇̄-derivatives in the above formulas with the
help of the identity

∇µ∇νr
r

=
∇̄µ∇̄νr

r
− rλr

λ

r2
(r2Ω)µν = ∇̄µ

∇̄νr
r

+
rµrν
r2
− rλr

λ

r2
(r2Ω)µν . (9)

These formulas can be extracted from [26, Prp.7.42]. But the quickest way check them is to
notice that ḡµν = r2(r−2gµν + Ωµν), in which a pair of nested conformal transformation relates ḡ
and a product metric, and use the standard formulas for the conformal transformations of covariant
derivatives and curvatures [35, App.D].

Proposition 3 ([8], [13, Thm.16(2)]). A pseudo-Riemannian geometry (M̄, ḡ) can be locally put
into the form of a 2 +m-warped product

ḡµν = gµν + r2Ωµν (10)

iff there exist a 1-form `µ and a symmetric tensor Ω̄µν = Ω̄(µν) that together satisfy the following
conditions

∇̄[µ`ν] = 0, `µΩ̄µν = 0,

Ω̄µ
νΩ̄νλ = Ω̄µλ, Ω̄µ

µ = m, ∇̄µΩ̄νλ = −2Ω̄µ(ν`λ).
(11)

Then we can choose gµν = ḡµν − Ω̄µν and Ωµν = r−2Ω̄, with r satisfying ∇̄µ log |r| = `µ.

Proof. In one direction, starting with the definitions of Ω̄µν and `µ in terms of r and Ωµν , verifying
the above identities is a matter of direct calculation (cf. Equation (4)).

In the other direction, the key observation is that a warped product metric is conformal to a
direct product metric, namely ḡµν = r2ĝµν , with ĝµν = r−2gµν + Ωµν , where the warping function
r2 plays the role of the conformal factor. Given our first condition on `µ, and since we are working
locally, we can always find a smooth function r satisfying ∇̄µ log |r| = ∇̄µr/r = `µ. Again locally,
we can choose r to be nowhere vanishing. The choice is unique, up to a multiplicative constant.

Define ĝµν = r−2ḡµν , ĝµν its inverse, Ωµν = r−2Ω̄µν and let ∇̂ be the ĝ-compatible Levi-Civita
connection. A straight forward calculation shows that our conditions on Ω̄ translate to

Ωµν ĝ
νλΩλκ = Ωµκ, ĝµνΩµν = m, and ∇̂µΩνλ = 0. (12)

It is well known [8] that the existence of such a rank-m ∇̂-covariantly constant symmetric projector
Ωµν implies that ĝµν can be locally put into 2 + m-product form ĝµν = (ĝµν − Ωµν) + Ωµν . Our
second condition on `µ implies that r does not depend on the Ω-factor. Thus, without loss of
generality, we can define gµν = r2(ĝµν −Ωµν) and write the product form as ĝµν = r−2gµν + Ωµν .

Undoing the conformal transformation, we end up with the desired local 2+m-warped product
form gµν = gµν + r2Ωµν .

2.1 Generalized Schwarzschild-Tangherlini geometries

Consider an integer n ≥ 4 and a triple of real numbers (α,M,Λ), where M 6= 0. The 2-dimensional
metric

gab = −fdtadtb +
1

f
dradrb, f(r) = α− 2M

rn−3
− 2Λ

(n− 1)(n− 2)
r2, (13)
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is well-defined and Lorentzian in the interiors of the r-intervals separated by r = 0 and the roots of
f(r) = 0. It is well-known that each one of these regions has a unique maximal analytic, connected
and simply-connected extension [21, 28]. Each region with r > 0 generates the same extension
(topologically R2), and similarly for each region with r < 0. When n is even, the extensions with
r > 0 and r < 0 are distinct. However, the r < 0 extension is isometric to the r > 0 extension
with M replaced by −M , by sending r 7→ −r. When n is odd, the extensions with r > 0 and
r < 0 are isometric, again by sending r 7→ −r, but the geometry obtained by replacing M by −M
is different. Thus, for book keeping convenience, let us denote by (M, g)n,α,M,Λ the disjoint union
of the r > 0 and r < 0 extensions with the same M parameter when n is even, and the disjoint
union of the r > 0 extension with parameter M and the r < 0 extension with parameter −M when
n is odd. In either case, M ∼= R2 t R2. Naturally, by our construction, each of these maximally
extended geometries is accompanied by the distinguished scalar function r, taking on all non-zero
real values, which was analytically extended along with the metric.

The precise way in which the (t, r) charts are glued together along horizons and horizon bi-
furcation points to form the analytic extension can be glimpsed from Proposition 6, where (a)
corresponds to a generic points covered by an (t, r) chart, (b) corresponds to a horizon points,
and (c) corresponds to a horizon bifurcation point of the extension. The gluing is done with the
help of the tortoise coordinate r∗ from (49). Penrose conformal diagrams for the extensions can be
found in [21, 28].

Recall that (S,Ω) is of constant curvature [36], with sectional curvature α, if its Riemann
curvature tensor is

RABCD[Ω] =
α

2
(Ω� Ω)ABCD. (14)

When an m-dimensional Riemannian geometry (S,Ω) is simply connected, geodesically complete
and of constant curvature it can only be one of the following [36, Sec.2.4]: Euclidean m-space,
round m-sphere, hyperbolic m-space. These are called maximally symmetric spaces. Let us denote
the corresponding maximally symmetric space with sectional curvature α by (S,Ω)m,α.

Definition 4 (generalized Schwarzschild-Tangherlini spacetime). Fix a dimension m ≥ 2 and a
triple of real numbers (α,M,Λ), with M 6= 0. Set n = 2 + m and denote the warped product
(M̄, ḡ)α,M,Λ

∼= (M, g)(n,α,M,Λ) ×r (S,Ω)m,α, where the base factor and the warping function r
are defined in the discussion following (13), and the warped factor is the m-dimensional maxi-
mally symmetric space of sectional curvature α. We call (M̄, ḡ)α,M,Λ a n-dimensional generalized
Schwarzschild-Tangherlini (gST) spacetime.

If we had included the M = 0 cases, then each such geometry would correspond to a particular
representation of a subset of a maximally symmetric geometry (de Sitter or anti-de Sitter space-
time), as we will see shortly (Equation (23)). Since this case has already been extensively studied
(e.g., see our previous works [17, 2]), we exclude it from consideration.

For tensors with two or four indices, we define contractions

(A ·B)µν = Aµ
λBλν , and (R · S)µνλκ = Rµν

στSστλκ. (15)

Recalling also the definition of the Kulkarni-Nomizu product (8), when A, B, C and D are sym-
metric, we have the useful identities

[(A�B) · (C �D)]µνλκ = 2[(A · C)� (B ·D) + (A ·D)� (B · C)]µνλκ, (16)

(A�B)µν
ν
κ = [A ·B − (trA)B −A(trB) +B ·A]µκ. (17)

Now, we compute the curvature of the gST geometries that we have defined above. Let us start
with the 2-dimensional (M, g) factor. We basically follow the presentation from [24]. Working in
the (t, r) chart, clearly ta = (∂t)

a is a timelike Killing vector. For convenience, we also introduce the
notation ta = gabt

b = −fdta and ra = dra. They are related as ta = −εabrb, where εab = (dt∧dr)ab.
Then, of course, rar

a = f and tat
a = −1/f . The action of the covariant derivative is summarized

by

∇atb =
f1

2r
εab and ∇arb =

f1

2r
gab. (18)
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For the record, let us write out in full the following identities for (M, g):

rar
a

r2
=

f

r2
=

α

r2
− 2

M

rn−1
− 2Λ

(n− 1)(n− 2)
, (19)

∇a∇br
r

=

(
(n− 3)

M

rn−1
− 2Λ

(n− 1)(n− 2)

)
gab, (20)

Rabcd =
R

4
(g � g)abcd, Rab =

R

2
gab, (21)

R =
4Λ

(n− 1)(n− 2)
+ 2(n− 2)(n− 3)

M

rn−1
. (22)

They can be directly plugged into (5), the formula for the Riemann tensor of a 2 + m-warped
product, to get the explicit expression for the Riemann tensor R̄µνλκ of a gST geometry (M̄, ḡ).

R̄µνλκ =
Λ

(n− 1)(n− 2)
(ḡ � ḡ)µνλκ

+
M

rn−1

[
(n− 2)(n− 3)

2
(g � g)µνλκ + (r2Ω� r2Ω)µνλκ − (n− 3)(g � r2Ω)µνλκ

]
. (23)

Next, let us define several tensors and scalars built out of the Riemann tensor and its derivatives:

T̄µνλκ[ḡ] := R̄µνλκ −
Λ

(n− 1)(n− 2)
(ḡ � ḡ)µνλκ, (24)

ρ[ḡ] :=

[
(T̄ · T̄ · T̄ )µν

µν

8(n− 1)(n− 2)(n− 3)[(n− 2)(n− 3)(n− 4) + 2]

] 1
3

, (25)

`µ[ḡ] := − 1

(n− 1)

∇̄µρ
ρ

, (26)

A[ḡ] := `µ`
µ + 2ρ+

2Λ

(n− 1)(n− 2)
. (27)

For future reference, we also compute some algebraic combinations among these tensors (see [18,
Sec.3.3] for more intermediate steps of the calculations):

T̄ =
M

rn−1

[
(n− 2)(n− 3)

2
(g � g) + (r2Ω� r2Ω)− (n− 3)(g � r2Ω)

]
, (28)

T̄ · T̄ =

(
M

rn−1

)2 [
(n− 2)2(n− 3)2(g � g) + 4(r2Ω� r2Ω) + 2(n− 3)2(g � r2Ω)

]
(29)

T̄ · T̄ · T̄ =

(
M

rn−1

)3 [
2(n− 2)3(n− 3)3(g � g) + 16(r2Ω� r2Ω)− 4(n− 3)3(g � r2Ω)

]
,

(30)

(T̄ · T̄ )µν
ν
κ = −

(
M

rn−1

)2 [
2(n− 1)(n− 2)(n− 3)2gµκ + 4(n− 1)(n− 3)r2Ωµκ

]
, (31)

(T̄ · T̄ )µν
µν = 4(n− 1)(n− 2)2(n− 3)

(
M

rn−1

)2

, (32)

(T̄ · T̄ · T̄ )µν
µν = 8(n− 1)(n− 2)(n− 3)[(n− 2)(n− 3)(n− 4) + 2]

(
M

rn−1

)3

, (33)

ρ =
M

rn−1
, `µ =

rµ
r
, A =

α

r2
. (34)

Given the last row of identities, it is clear that

sgnA = sgnα, and An−1ρ−2 = αn−1M−2. (35)
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Next, we find a way to express the projector r2Ωµν onto the warped factor in terms of the
curvature. Here we find a slight dimension dependence (as already noted in [18, Sec.3.3]). In
dimension n ≥ 5, one can find a formula that involves only products and contractions ḡ of T̄ :

(r2Ω)λκ =
2(n− 2)2

(n− 1)(n− 4)

(T̄ · T̄ )λν
ν
κ

(T̄ · T̄ )µνµν
+

(n− 2)(n− 3)

(n− 1)(n− 4)
ḡλκ. (36)

Obviously, the above formula has poles and hence fails when n = 4. On the other hand, the
following slightly more complex formula works both in n = 4 as well as higher dimensions:

(r2Ω)λκ = − 1

(n− 1)(n− 3) ρ `2

(
T̄µλνκ −

(n− 2)(n− 3)

2
ρ (ḡ � ḡ)µλνκ

)
`λ`κ. (37)

The complexity of the second formula is due to the presence of the `µ vector, which is itself defined
as the gradient of a scalar of a gradient constructed from T̄ . Thus formula (36) may be preferable
in n ≥ 5 to (37), even if the latter also works in higher dimensions.

The following result simply identifies the invariant parameters that can be used to exhaustively
label the distinct isometry classes of gST reference geometries as we have defined them earlier.
Note that below we adopt the convention that the sign function satisfies sgn 0 = 0.

Proposition 5. A gST geometry (M̄, ḡ)α,M,Λ is locally isometric at x ∈ M̄ to another gST
geometry (M̄′, ḡ′)α′,M ′,Λ′ at x′ ∈ M̄′ iff

((sgnα) |α|n−1
M−2,Λ) = ((sgnα′) |α′|n−1

M ′−2,Λ′), ρ[ḡ](x) = ρ[ḡ′](x′) (38)

and one of the following holds

(a) x is a generic point, `2[ḡ](x) 6= 0 6= `2[ḡ′](x′), or

(b) x is a horizon point, `µ[ḡ](x) 6= 0 6= `µ[ḡ′](x′) and `2[ḡ](x) = 0 = `2[ḡ′](x′), or

(c) x is a horizon bifurcation point, `µ[ḡ](x) = 0 = `µ[ḡ′](x′).

Hence, (M̄, ḡ)α,M,Λ and (M̄′, ḡ′)α′,M ′,Λ′ are isometric iff

((sgnα) |α|n−1
M−2,Λ) = ((sgnα′) |α′|n−1

M ′−2,Λ′2). (39)

In other words, the pair or real numbers(
(sgnα)|α|n−1M−2,Λ

)
∈ R2 (40)

uniquely and exhaustively identifies all isometry classes among the gST geometries (Definition 4).
Moreover, non-isometric gST geometries are not even locally isometric.

Proof. Many of the arguments below are based on the fact that the existence of a local isometry
linking the points x and x′ forces the pairwise equality of all curvature scalars respectively evaluated
at these points. A slight generalization of this idea to covariant identities involving curvature
tensors immediately establishes our claims (a), (b) and (c). Also, recall that, from our definition
of a reference gST geometry, the coordinate transformation r 7→ −r always corresponds to the
parameter flip M 7→ −M , independent of the parity of the dimension n. Finally, we will assume
that the points x ∈ M̄ and x′ = M̄′ belong to the regions where we can introduce the (t, r) and
(t′, r′) coordinates, as in (13), on the base factors. Then, simple coordinate transformations on (t, r)
extend to globally defined diffeomorphisms of M̄ or M̄′ by analyticity. When such coordinates
are ill-defined on neighborhoods of x or x′, the same logic applies, but where we need to directly
apply the diffeomorphisms defined by analytic extension.

First, note that Λ = Λ′ is necessary for local isometry. Relying on (23), we can obtain this

constant from the Ricci scalar of the geometry, R̄[ḡ] = 2nΛ
(n−2) and R̄[ḡ′] = 2nΛ′

(n−2) . Let us assume

the equality Λ = Λ′ from now on.
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Next, relying on (35), note that

sgnA[ḡ] = sgnα, A[ḡ]n−1ρ[ḡ]−2 = αn−1M−2 (41)

and sgnA[ḡ′] = sgnα′, A[ḡ′]n−1ρ[ḡ′]−2 = α′n−1M ′−2. (42)

Hence, since knowledge of (sgnα)|α|n−1M−2 is equivalent to the knowledge of both sgnα and
αn−1M−2, the equality (sgnα)|α|n−1M−2 = (sgnα′)|α′|n−1M−2 is also necessary for local isom-
etry. Let us assume this equality from now on. It remains only to check that both equalities
guarantee the existence of an isometry.

When sgnα = 0 = sgnα′, apply the coordinate transformations (1/t, r) 7→ |M |
1

n−1 (1/t, r) and

(1/t′, r′) 7→ |M ′|
1

n−1 (1/t′, r′), together with a possible r 7→ −r and/or r′ → −r′ flip, depending on
the signs of M and M ′, to bring the base factors to isometric form with M = 1 = M ′. To keep
r and r′ as the warping functions, these transformations must be accompanied by the conformal

rescalings Ω 7→ |M |
2

n−1 Ω and Ω′ 7→ |M |
2

n−1 Ω′. However, since α = 0 = α′ and the two warped
factors are flat, these rescalings do not affect their isometry class. Hence, the two gST geometries
must be isometric since they have the same warped product structure.

Now, assume that α 6= 0 6= α′, while necessarily sgnα = (−1)k = sgnα′. Then the coordinate

redefinitions (1/t, r) 7→ |α| 12 (1/t, r) and (1/t′, r′) 7→ |α| 12 (1/t′, r′) bring them both to α = (−1)k =
α′. Let us assume this equality from now on.

The only possible remaining difference between the parameters is that sgnM 6= sgnM ′, while
|M | = |M ′|. But then, applying r 7→ −r or r′ 7→ −r′ brings about the equality M = M ′ and hence
the desired isometry.

Clearly, the above arguments apply both to local isometries as well as to global isometries.
This concludes the proof.

2.2 Birkhoff’s theorem

It is well-known that being a 2 +m-warped product solution of cosmological Einstein’s equations
is highly restrictive. In particular, the geometry of the base factor is restricted to locally coincide
with one of the base factors of a gST geometry, whether the warped factor is spherically symmetric
or not. This rigidity result (though usually stated with the spherical symmetry assumption) is
known as Birkhoff’s theorem [21, 29, 28, 1]. Below, we state and prove a version that is convenient
for our purposes. The main reason to include a proof is to make sure that we can cover the corner
cases (when ∇r becomes null or even vanishes) that are often skipped in the literature.

Recall that a metric ḡµν is called a Λ-vacuum when it satisfies the source-free Einstein equations
with cosmological constant Λ:

R̄µν [ḡ]− 1

2
R̄[ḡ]ḡµν + Λḡµν = 0 ⇐⇒ R̄µν [ḡ]− 2Λ

(n− 2)
ḡµν = 0. (43)

Proposition 6 ([21, 29, 28, 1]). Consider a pseudo-Riemannian geometry (M̄, ḡ) of dimension
n = 2 + m that locally, say at x̄ ∈ M̄, has the form (M, g) ×r (S,Ω) of a 2 + m-warped product,
with

ḡµν = gµν + r2Ωµν , (44)

where (M, g) is Lorentzian and r is not locally constant at x ∈M, the projection of x̄ toM. When
ḡµν is a Λ-vacuum that is not locally of constant curvature at x̄, the metric of the base factor can
be locally put into one of the following forms at x:

(a) when ∇ar 6= 0, (∇r)2 6= 0 at x, in local (t, r) coordinates,

gab = −f dtadtb +
1

f
dradrb, (45)

(b) when ∇ar 6= 0, (∇r)2 = 0, r = rH at x, in local (v, r) coordinates,

gab = −f dvadvb + 2 dv(adrb), (46)
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(c) when ∇ar = 0, r = rH at x, in local (U, V ) coordinates,

r = r(UV ) = rH + rHUV +O3(U, V ), with zr′(z) =
f(r)

f ′(rH)
, and

gab =
−4fe−h

f ′(rH)2 (1− r/rH)
dU(adVb), with h(r) =

∫ r

rH

ds

(
f ′(rH)

f(s)
− 1

s− rH

)
, (47)

where in each case

f(r) = α− 2M

rn−3
− 2Λ

(n− 1)(n− 2)
r2, (48)

for some constants α and M 6= 0. In cases (b) and (c), r = rH is a root of f(r) = 0; in case (c)
the root is always simple.

Thus, (M, g) is locally isometric at x to either (a) a generic point, (b) a horizon point, or (c)
a horizon bifurcation point of a gST, as classified in Proposition 5.

Proof. We address the last statement first. The transitions between the different charts in (a), (b)
and (c) are effected with the help of the tortoise coordinate

r∗ =
1

f ′(rH)
log

(
r

rH
− 1

)
+

h(r)

f ′(rH)
, which satisfies dr∗ =

dr

f(r)
, (49)

implicitly defining h(r) as in (47). The null coordinate from (b) has the form v = t + r∗, while
the double null coordinates from (c) have the form U = −e−f ′(rH)(t−r∗)/2, V = ef

′(rH)(t+r∗)/2.
Direct calculation shows that the metrics gab expressed in these charts agree on overlaps. Hence,
charts (b) and (c) constitute analytic extensions of the charts from (a), which when glued in a
simply connected way, form the maximal analytic extension, of the gST geometry from Definition 4.
The correspondence between points (a), (b) and (c) from the current Proposition with those from
Proposition 5 is obvious.

Before entering further specific arguments, we use formulas (6) and (9) to project the Einstein
equations (43) onto the base factor of the warped product:

Rab − (n− 2)
∇a∇br
r

− 2Λ

(n− 2)
gab = 0. (50)

Recalling that in 2 dimensions Rab = 1
2Rgab, the equation decomposes into its trace and traceless

parts:

R− (n− 2)
�r
r
− 4Λ

(n− 2)
= 0, (n− 2)

∇a∇br
r

− �r
2r
gab = 0. (51)

Contracting the traceless part with εab shows that ta = −εabrb is Killing, ∇(atb) = 0.
Suppose that x is critical a point of r, that is, ∇ar(x) = 0, and hence also ta(x) = 0. We

will now argue that this critical point must be non-degenerate and hence isolated (cf. Remark 2.9
in [1]). From the projected Einstein equations above, ∇a∇br ∝ gab, hence either ∇a∇br(x) = 0
or the critical point is non-degenerate. If indeed ∇a∇br(x) = 0, then the formula ta = −εab∇br
tells us that ta(x) = 0 and ∇atb(x) = 0 as well. In turn, this implies that locally ta ≡ 0, and
hence also ∇ar ≡ 0, which contradicts our hypothesis that r is not locally constant. The reason
is that ta solves the Killing equation, which is an equation of finite type. In short, knowing ta(x)
and ∇atb(x) determines ta uniquely in a neighborhood of x [16, App.B], which in this case gives
ta ≡ 0.

Next, we address each of the possibilities stated in the theorem. The function f(r) from (48)
always appears as the general solution, parametrized by constants α and M , of the differential
equation

r (rf ′ + (n− 3)f)
′

= − 4Λ

(n− 2)
r2. (52)

(a) When ∇ar 6= 0 is non-null, we are free to pick orthogonal coordinates (t, r), with (∂t)
a ∝ ta

Killing. Then, the most general ansatz for the metric is gab = −f(r)dtadtb + 1/h(r)dradrb. The
projected Einstein equations reduce to

h′

h
=
f ′

f
, r (rf ′ + (n− 3)f)

′
= − 4Λ

(n− 2)
r2. (53)
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Up to rescaling t by a constant, h(r) = f(r) and f(r) is as stipulated. The metric gab is singular
only when α = M = Λ = 0, meaning that all other values of the parameters are allowed.

(b) When ∇r(x) 6= 0 is null, we are free to pick coordinates (v, r), with ∇av null everywhere,
with (∂v)

a ∝ ta Killing. Then, the most general ansatz for the metric is gab = −f(r)dvadvb +
2h(r)dv(adrb). The projected Einstein equations reduce to

h′ = 0, r(rf ′ + (n− 3)f)′ = − 4Λ

(n− 2)
r2. (54)

Up to rescaling v by a constant, h(r) = 1 and f(r) is as stipulated. For ∇ar to be null at x as
well, we must have f(rH) = 0.

(c) When x is a non-degenerate critical point of r, we are free to pick double null coordinates
(U, V ) centered at x. Let rH = r(x), which must be a non-zero constant. In 2 dimensions, double
null coordinates are unique up to permutation and individual reparametrization of each coordinate.
Then, the most general ansatz for the metric is

gab = 2F (U, V ) dU(adVb). (55)

Our hypotheses on r force its Taylor expansion to start, up to a constant rescaling, as

r(U, V ) = rH +
1

2L
gab(U∂U )a(V ∂V )b +O3(U, V ) = rH +

F (0, 0)

L
UV +O3(U, V ), (56)

for some constant L 6= 0, which will be constrained later on. The precise form of r = r(U, V ) is to
be determined from the equations. The traceless part of the projected Einstein equations reduces
to

∂U
∂Ur

F
= 0, ∂V

∂V r

F
= 0 ⇐⇒ ∂Ur

ξ(U)
= V

F (U, V )

Lξ(U)η(V )
,

∂V r

η(V )
= U

F (U, V )

Lξ(U)η(V )
, (57)

for some arbitrary ξ(U) and η(V ), though with ξ(0) = 1 = η(0) as needed to maintain our hypothe-
ses on the Taylor expansion of r. We are free to change our ansatz by F (U, V ) 7→ F (U, V )ξ(U)η(V )
and reparametrize the coordinates subject to ξ(U)dU 7→ dU , η(V )dV 7→ dV , effectively setting
ξ = 1 = η. Then, two immediate integrability conditions follow:

U(∂Ur − V F )− V (∂V r − UF ) = U∂Ur − V ∂V r = 0, (58)

U∂U (∂V r − UF )− V ∂V (∂Ur − V F ) = UV (U∂UF − V ∂V F ) = 0. (59)

Therefore, both F and r are constant along the flow lines of the vector field U∂U −V ∂V , which are
the connected components of the level sets of UV . Without loss of generality, we can restrict to a
neighborhood where each level set of UV consists of exactly two connected components, exchanged
by the flip (U, V ) 7→ (−U,−V ).

At this point, we would like to conclude that r = r(UV ) and F = F (UV ) for some smooth
functions r(z) and F (z), but this conclusion must be postponed due to the technical complication
(not shared by polynomial or analytic functions) that a smooth function invariant under the flow of
U∂U −V ∂V takes such a form only on those open regions where the product UV may play the role
of a simple coordinate (no critical points, connected level sets). For instance, F = F{U>0}(UV )
on U > 0 and F = F{V >0}(UV ) on V > 0, but F{U>0}(z) and F{V >0}(z) may be different smooth
functions. Of course, these functions have to agree on overlapping regions, namely for z > 0, in
this case. Below, we will presume that we are restricting to one of the open regions U > 0, U < 0,
V > 0, or V < 0.

It turns out that it is more convenient to write everything in terms of r, UV = UV (r) and
F = F (r), which is always possible to do locally, away from (U, V ) = (0, 0) and subject to the
above caveats. Taking advantage of the usual identity (UV )′ = 1/r′, our previous integrating
step (57) simply gives F = L/(UV )′. Thus, the remaining trace part of the projected Einstein
equations reduces to

r∂r(r∂r + (n− 3))
2

L

UV

(UV )′
= − 4Λ

(n− 2)
r2 ⇐⇒ UV

(UV )′
=
L

2
f(r), (60)
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with f(r) as stipulated. At (U, V ) = 0, the above left-hand side evaluates to 0. Hence, r = rH
must solve f(r) = 0. If it is a multiple root, that is f(r) = C(r − rH)k + O(r − rH)k+1 for some

constants C and k > 1, then asymptotically UV ∼ eD/(r−rH)k−1

for some constant D as r → rH ,
which is not compatible with our requirement that UV be a smooth function of r at r = rH and
vice versa. Hence, r = rH must also be a simple root of f(r) = 0, meaning that f ′(rH) 6= 0.

Thus, given that f(r) = 0 has a simple root at rH , we can rewrite the equation for UV as

(UV )′

UV
=

2

Lf ′(rH)(r − rH)
+ h′(r) ⇐⇒ UV = C(r/rH − 1)

2
Lf′(rH ) eh(r), (61)

for some constant C, with smooth

h(r) =
2

Lf ′(rH)

∫ r

rH

ds

(
f ′(rH)

f(s)
− 1

s− rH

)
. (62)

For this formula to be consistent with the Taylor expansion r(U, V ) = rH + F (0,0)
L UV +O3(U, V ),

we must have L = 2/f ′(rH) and C = rHL/F (0, 0). The final form of the solution is then

UV =
2rH

f ′(rH)F (0, 0)

(
r

rH
− 1

)
eh, F =

L

(UV )′
=
f ′(rH)F (0, 0)

2rH

−2fe−h

f ′(rH)2(1− r/rH)
. (63)

To bring the metric into the desired form, it remains only to choose the value of F (0, 0) = 2rH
f ′(rH) ,

which could be done by appropriately rescaling U or V by a constant. This also finally fixes the
initial coefficients in Taylor expansion r = rH + rHUV +O3(U, V ).

Finally, recall that the above discussion, determining the precise form of UV = UV (r) and
F = F (r), applies separately in each of the open regions U > 0, U < 0, V > 0 or V < 0, though
that precise form of the functions UV (r) and F (r) may differ from region to region. It is obvious
that the only differences may be in the values of the constants α and M , which a priori may
be different in these different regions. However, UV (r) and F (r) must agree on the intersection
whenever two of these regions overlap (e.g., U > 0 and V > 0), and this is only possible if the values
of α and M agree between the overlapping regions. Considering all possible overlaps, the values of
α and M must then agree in all these regions. In other words, the formulas in (63) actually hold
on a whole neighborhood of (U, V ) = (0, 0) without any more reservations (the extension to the
origin is by continuity). This concludes the proof.

3 Characterization

In this Section, we state and prove our main result on the IDEAL characterization of local isome-
try classes (Definition 1) of generalized Schwarzschild-Tangherlini (gST) geometries (Definition 4).
The result comes in two versions, one valid for any dimension n ≥ 5 (Theorem 7), and the other
valid for n = 4 as well as higher dimensions (Theorem 8). The only difference between them is
the covariant formula for extracting the idempotent projector Ω̄µν from the curvature. In higher
dimensions, n ≥ 5, it can be obtained by a simpler formula than in n = 4. However, the more com-
plicated formula that works in n = 4 also generalizes to higher dimensions. When restricted to the
standard spherically symmetric, Λ = 0, n = 4 Schwarzschild solution, our Theorem 8 provides an
independent alternative IDEAL characterization compared to the one previously obtained in [6].2

For other values of the dimension n, and the parameters α, M and Λ, the results of this Section
are new.

Theorem 7. Consider a Lorentzian geometry (M̄, ḡ), with dimM̄ = n ≥ 5. Given a constant Λ,

2The notation in [6] is somewhat hard to follow. A transcription of the key formulas into more standard tensor
notation can be found in [15].
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define the following tensors and scalars from the metric and the curvature:

T̄µνλκ := R̄µνλκ −
Λ

(n− 1)(n− 2)
(ḡ � ḡ)µνλκ, (64a)

ρ :=

[
(T̄ · T̄ · T̄ )µν

µν

8(n− 1)(n− 2)(n− 3)[(n− 2)(n− 3)(n− 4) + 2]

] 1
3

, (64b)

`µ := − 1

(n− 1)

∇̄µρ
ρ

, (64c)

A := `µ`
µ + 2ρ+

2Λ

(n− 1)(n− 2)
, (64d)

Ω̄µν :=
2(n− 2)2

(n− 1)(n− 4)

(T̄ · T̄ )µλ
λ
ν

(T̄ · T̄ )λκλκ
+

(n− 2)(n− 3)

(n− 1)(n− 4)
ḡµν , (64e)

gµν := ḡµν − Ω̄µν , (64f)

Zµνλκ := T̄µνλκ

− ρ
[

(n− 2)(n− 3)

2
(g � g)µνλκ + (Ω̄� Ω̄)µνλκ − (n− 3)(g � Ω̄)µνλκ

]
. (64g)

Then the geometry (M̄, ḡ) is locally isometric at x̄ ∈ M̄ to a gST geometry (M̄′, ḡ′)α′,M ′,Λ′ (Def-
inition 4) iff Λ = Λ′ and the following conditions hold on some neighborhood of x̄:

ρ 6≡ 0, `µ 6≡ 0, Ω̄µν ≥ 0, (65a)

∇̄[µ`ν] = 0, `µΩ̄µν = 0,

Ω̄µ
µ = (n− 2), Ω̄µ

νΩ̄νλ = Ω̄µλ, ∇̄µΩ̄νλ = −2Ω̄µ(ν`λ),
(65b)

Zµνλκ = 0, (sgnA) |A|n−1
ρ−2 = (sgnα′) |α′|n−1

M ′−2. (65c)

By the inequality Ω̄µν ≥ 0 we mean that the quadratic form Ω̄(v, v) = Ω̄µνv
µvν is positive-

semidefinite.
Note that, in choosing the precise form of the conditions (65), we have aimed for clarity rather

than any particular kind of minimality. So, for instance, the condition Ω̄µ
µ = (n− 2) is automati-

cally satisfied by virtue of our definition of Ω̄µν , the same being true for the condition ∇̄[µ`ν] = 0.

Proof. In the easy direction, the direct calculations from Section 2.1 show that all of the identi-
ties (65) hold for any gST geometry.

In the other direction, we first note that the conditions (65b) involving `µ and Ω̄µν are precisely
needed by Proposition 3 to locally put the geometry into 2 + m-warped product form (M̄, ḡ) =
(M, g)×r (S,Ω), with m = n−2 and ḡµν = gµν +r2Ωµν , where Ωµν = r−2Ω̄µν and `µ = ∇̄µ log |r|,
r not locally constant by `µ 6≡ 0. Since, Ω̄νν ≥ 0 and ḡµν is Lorentzian, gµν must be a Lorentzian
metric when restricted to the base factor of the warped product.

Next, taking the trace of the Zµνλκ = 0 identity, we obtain precisely the Λ-vacuum Einstein
equations, forcing the equality Λ = Λ′. Appealing to Birkhoff’s theorem (Proposition 6), we can
conclude that the metric gab on the base of the warped product has the gST form (M, g)n,α,M,Λ

(Section 2.1), for some values of the parameters α and M (we have not yet drawn any conclusion
about the warped factor). Note that our version of Birkhoff’s theorem is applicable as long as the
warping function r is not locally constant at x̄ ∈ M̄, without other restrictions on ∇̄µr(x̄), with
the different possibilities listed as parts (a), (b) and (c) in Proposition 6.

Two immediate consequences, again following the direct calculations in Section 2.1, are the
identities

ρ =
M

rn−1
and A =

α

r2
.

Now, knowing that our geometry is locally of 2 + m-warped product form, implies that its
Riemann tensor takes the form (5), where we can replace rσr

σ/r2 = `2. Hence, projecting the
identity Zµνλκ = 0 by Ω̄µν on each index, we obtain

Ω̄µµ′Ω̄
ν
ν′Ω̄

λ
λ′Ω̄

κ
κ′

(
r2Sµνλκ −

A

2
(Ω̄� Ω̄)µνλκ

)
= 0. (66)
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Substituting in what we already know about Ω̄µν and A into this formula, it reduces to the equality
SABCD = α

2 (Ω�Ω)ABCD on the warped factor (S,Ω). In other words, the warped factor is locally
of constant curvature, with sectional curvature α. Hence, our geometry (M̄, ḡ) is indeed locally
isometric at x̄ ∈ M̄ to a gST geometry (M̄′, ḡ′)α,M,Λ with parameters α, M and Λ (Definition 4).

Finally, referring again to the direct calculations from Section 2.1, and in particular the iden-
tity (35), the last identity from (65) implies the equality

(sgnα) |α|n−1
M−2 = (sgnα′) |α′|n−1

M ′−2. (67)

So, invoking Proposition 5, we can at last conclude that the gST geometry that we have identified
locally about x̄ ∈ M̄ is indeed isometric to the desired reference gST geometry, (M̄′, ḡ′)α,M,Λ

∼=
(M̄′, ḡ′)α′,M ′,Λ′ .

For a version of the above result that holds also when n = 4 we need only replace formula (64e)
for Ω̄µν by formula (68) below (recall the discussion around Equations (36) and (37) in Section 2.1).
Hence, the proof of the following result proceeds in an exactly analogous way.

Theorem 8. Consider a Lorentzian geometry (M̄, ḡ), with dimM̄ = n ≥ 4. Then the same
statement as in Theorem 7 holds, with the exception that we must change the definition

Ω̄µν := − 1

(n− 1)(n− 3) ρ `2

(
T̄µλνκ −

(n− 2)(n− 3)

2
ρ (ḡ � ḡ)µλνκ

)
`λ`κ. (68)

4 Discussion

We have given an IDEAL characterization (Theorems 7, 8) of each spacetime from the family
of local isometry classes generalized Schwarzschild-Tangherlini (gST) spacetimes (Definition 4),
which consists of maximally symmetric Λ-vacuum 2 + m-warped products. In particular, this
family includes the higher dimensional spherically symmetric black holes, which generalize the
4-dimensional Schwarzschild solution and which were first investigated by Tangherlini [33].

Our strategy, inspired by the related recent work on the characterization of cosmological FLRW
spacetimes [2], was to first identify a geometric characterization of the 2 + m-warped product
structure in terms of a rank-m symmetric projector Ω̄ (Proposition 3) [8, 13] and then to identify a
covariant formula for Ω̄ in terms of the curvature of a given gST geometry. The previously existing
IDEAL characterization of the 4-dimensional Schwarzschild geometry [6, 15] relied much more on
an intricate algebraic classification of the Riemann tensor, special to 4 dimensions. Unfortunately,
we could not generalize the latter approach to higher dimensions directly. On the other hand,
our general strategy succeeds also in 4 dimensions (Theorem 8) and thus provides an alternative
characterization of the Schwarzschild geometry, which should be compared to that of [6]. We leave
such a comparison to future work.

As discussed in [11], the linearization of the tensors of an IDEAL characterization of a given ref-
erence geometry provides a set of gauge invariants with respect to linearized gauge transformations
(diffeomorphisms) of linearized gravity on that geometry. Heuristically, this set of invariants is a
good candidate for being complete, but to be rigorous its completeness should be proven separately.
In the recent work [18], we have explicitly exhibited (by a different method) complete sets of linear
invariants for each geometry in the gST family. Relating these invariants to the linearization of the
IDEAL characterization tensors, as well as vice versa, can accomplish two goals: give a geometric
interpretation to the invariants of [18] and to prove the completeness of the linearized invariants
that can be obtained from the present work.

A natural direction for related future work is to extend it to an IDEAL characterization of
other black hole spacetimes. For instance, the generalization to charged spherical symmetric black
holes, the Reissner-Nordström geometry and its higher dimensional generalizations, should be
straight forward. A bigger challenge would be to generalize it to higher dimensional rotating black
holes, the Myers-Perry generalizations of the Kerr geometry, perhaps building on the existing
characterization of the 4-dimensional Kerr spacetime [7]. Eventually, it would be interesting to
extend the characterization to the full Kerr-Taub-NUT-(A)dS family [12] and higher dimensional
versions.

13



An important future application of the above results could be an intrinsic and invariant charac-
terization of asymptotic flatness. Usually, asymptotic flatness is defined by an asymptotic condition
on the metric in a special coordinate system. On the other hand, this definition is supposed to
capture the asymptotic approach to flatness or the asymptotic end of a black hole spacetime.
Thus, having an on hand an IDEAL characterization of these reference geometries may give us a
chance to intrinsically and invariantly define asymptotic approach to them, providing an alternative
definition of asymptotic flatness.
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[6] J. J. Ferrando and J. A. Sáez, “An intrinsic characterization of the Schwarzschild metric,”
Classical and Quantum Gravity 15 (1998) 1323–1330.
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Abstract

In linearized gravity, two linearized metrics are considered gauge-equivalent, hµν ∼ hµν +
Kµν [v], when they differ by the image of the Killing operator, Kµν [v] = ∇µvν + ∇νvµ. A
universal (or complete) compatibility operator for K is a differential operator K1 such that
K1 ◦K = 0 and any other operator annihilating K must factor through K1. The components
of K1 can be interpreted as a complete (or generating) set of local gauge-invariant observables
in linearized gravity. By appealing to known results in the formal theory of overdetermined
PDEs and basic notions from homological algebra, we solve the problem of constructing the
Killing compatibility operator K1 on an arbitrary background geometry, as well as of extending
it to a full compatibility complex Ki (i ≥ 1), meaning that for each Ki the operator Ki+1 is its
universal compatibility operator. Our solution is practical enough that we apply it explicitly in
two examples, giving the first construction of full compatibility complexes for the Killing oper-
ator on these geometries. The first example consists of the cosmological FLRW spacetimes, in
any dimension. The second consists of a generalization of the Schwarzschild-Tangherlini black
hole spacetimes, also in any dimension. The generalization allows an arbitrary cosmological
constant and the replacement of spherical symmetry by planar or pseudo-spherical symmetry.

1 Introduction

An important aspect of General Relativity is its invariance under diffeomorphisms, also called
gauge transformations of this theory. Of course, this invariance survives linearization about some
fixed background metric g and the linearized diffeomorphisms (or linearized gauge transformations)
change the linearized metric as hab 7→ hab + Kab[v], where Kab[v] = ∇avb + ∇bva is the Killing
operator with respect to the background metric g. Solutions of the Killing equation K[v] = 0
are Killing vectors va. Because two linearized metric configurations are considered physically
equivalent if they differ only by a linearized gauge transformation, an inescapable part of the study
of linearized gravity (linearized General Relativity) is the need to separate gauge and physical
degrees of freedom; the latter essentially parametrize equivalence classes of linearized metrics under
linearized gauge transformations.

A local gauge-invariant observable is a differential operator O[h] such that O[K[v]] = 0 for an
arbitrary argument va. Clearly, such differential operators have many potential applications in
linearized gravity and, not surprisingly, their study has a long history [34]. While not all useful
gauge-invariant observables O[h] are local (where O is local if it is a differential, rather than an
integral, operator), the local ones are distinguished by the property that they preserve supports,
suppO[h] ⊆ supph, which helps to disentangle the gauge-invariant information contained in h
from infrared or asymptotic properties of h. Further discussion of these issues, with brief surveys
of previous work, can be found [14], in the context of cosmological perturbations, and in [21, 31, 1],
in the context of black hole perturbations.

In this work, we are interested in the problem of explicitly constructing complete (or gen-
erating) sets of local gauge-invariant observables on spacetime backgrounds of physical interest.
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Completeness refers to the ability to express any local gauge-invariant observable in terms of linear
combinations of derivatives of a given set. For technical reasons [22, 23], it also becomes impor-
tant to identify complete sets of differential relations between them, complete sets of differential
relations between these differential relations, and so on. Phrased in mathematical terms, given
a background metric g, we are interested in constructing a (full) compatibility complex for the
corresponding Killing operator K[v], where full refers to the continuation of the sequence of differ-
ential relations until it terminates (becomes identically zero), a property that is usually required
implicitly.

An unfortunate aspect of the study of local gauge-invariant observables O[h] is that their
structure depends strongly on the background metric g, since the Killing operator K[v], which
determines the structure of gauge-equivalence classes, depends on g in an essential way. Thus, in
principle, this problem needs to be attacked anew for each background metric of interest. Unfor-
tunately, a full solution (a complete set of gauge-invariants, relations between them, etc.) can be
found in the literature only in very few cases, even if we restrict ourselves only to the construction
of complete sets of gauge-invariants (and not relations between them, etc.). To our knowledge,
the full Killing compatibility complex is known only for flat (Minkowski) and constant curvature
(de Sitter or anti-de Sitter) spacetimes [23]. In principle, the methods of [15, 16] could have been
used to generate the compatibility complex on locally symmetric spacetimes (those with a covari-
antly constant Riemann tensor), but to our knowledge they have never been explicitly elaborated
in the Lorentzian setting [7]. In addition, complete sets of local gauge-invariant observables are
known only for cosmological (inflationary FLRW) spacetimes in any dimension, due to the recent
construction in [13, 9, 14], and for the 4-dimensional Kerr black hole, as recently highlighted in [1].
Full proofs of the results announced in [1] will appear in [2] and will be based on the methods to
be presented in this work.

The major obstacle to solving the problem that we have posed (the construction of a compat-
ibility complex for the Killing operator) has so far been proving completeness (of a set of gauge-
invariants, of a set of relations between them, etc.). In the flat and constant curvature cases, the
proof was basically due to Calabi [8, 23], and was specific to those geometries. In the cosmological
case, the proof is due to [13], but is somewhat ad-hoc and without clear generalizations.

The main innovation in this work is the application of methods from the formal theory of
PDEs [32, 18, 30] and homological algebra [37] to the problem of constructing Killing compatibility
complexes. In fact, a method for systematically constructing a complete compatibility operator
for any overdetermined linear differential operator (under mild regularity conditions) has been
known for a long time [18] (it was this method that was applied in [15, 16]). Unfortunately, it is
rather cumbersome to apply directly. There do exist computer algebra implementations of this
method [6], but they suffer from the problem that the input and output of this computer algebra
construction must be matrices of scalar differential operators written in some explicit coordinates,
which often destroys any manifest symmetry or other structure that the original linear differential
operator had. This is certainly an undesirable feature when dealing with the Killing operator
on a spacetime with some symmetry, product or warped product structure. However, there is a
significant simplification of the general systematic construction when we restrict our attention to
differential operators of finite type, of which the Killing operator is an example. We will take full
advantage of this simplification, together with some basic notions from homological algebra, to give
a practical sufficient condition (Lemma 4) for the completeness of a given set of local gauge-invariant
observables in linearized gravity (or more generally, the completeness of a compatibility operator
for any operator). In practice, this criterion also leads to a way to construct (Theorem 9) the
full Killing compatibility complex (or more generally, the compatibility complex for any operator
of finite type), which can preserve various structural properties of a given background spacetime
geometry.

In Section 2, we introduce some ideas from homological algebra, applied to linear differential
operators, and use it to show how to explicitly construct a compatibility complex for a PDE of
finite type (the appropriateness of our definition of finite type operator is discussed at length in
Appendix A). This technique is applied to the Killing equation in Section 3, with some examples.
In particular, we treat in detail the examples of spacetimes of constant curvature (Section 3.1), cos-
mological FLRW spacetimes (Section 3.2) and Schwarzschild-Tangherlini black holes (Section 3.3).
In each case we make some remarks about the relation or our results with the literature. Ap-
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pendix B gives a helpful reference for the notation used in different subsections of Section 3. In
all examples, we keep the spacetime dimension n general (that is, we allow at least n ≥ 4). The
results of Sections 3.2 and 3.3 are new. Finally, we conclude with a discussion of further work in
Section 4.

Whenever speaking of differential operators, we will specifically mean a linear differential opera-
tor with smooth coefficients acting on smooth functions. More precisely, we will consider differential
operators that map between sections of vector bundles, say V1 → M and V2 → M , on some fixed
manifold M , K : Γ(V1)→ Γ(V2). The source and target bundle of a differential operator, V1 →M
and V2 → M respectively in the last example, will be considered as part of its definition and
will most often be omitted from the notation. We will denote the composition of two differential
operators K and L by K ◦ L, or simply by KL, if no confusion is possible. A local section of a
vector bundle V → M is a section of the restriction bundle V |U → U for some open U ⊂ M . A
local section v that solves the differential equation K[v] = 0 on its domain of definition is a local
solution.

2 Compatibility operators

We start by introducing some basic notions from homological algebra [37].

Definition 1. A (possibly infinite) composable sequence Kl of linear maps, l = lmin, . . . , lmax, such
that Kl+1 ◦ Kl = 0 when possible, is called a (cochain) complex. Given complexes Kl and K ′l a
sequence Cl of linear maps, as in the diagram

· · · • • • • · · ·

· · · • • • • · · ·

Kl−1

Cl−1

Kl

Cl

Kl+1

Cl+1 Cl+2

K′l−1 K′l K′l+1

, (1)

such that its squares commute, that is K ′l ◦ Cl = Cl+1 ◦Kl when possible, is called a cochain map
or a morphism between complexes. A homotopy between complexes Kl and K ′l (which could also
be the same complex, Kl = K ′l) is a sequence of morphism, as the dashed arrows in the diagram

· · · • • • • · · ·

· · · • • • • · · ·

Kl−1

Cl−1

Kl

Cl
Hl−1

Kl+1

Cl+1
Hl

Cl+2
Hl+1

K′l−1 K′l K′l+1

, (2)

and the sequence of maps Cl = K ′l−1 ◦ Hl−1 + Hl ◦ Kl is said to be a morphism induced by the
homotopy Hl. An equivalence up to homotopy between complexes Kl and K ′l is a pair of morphisms
Cl and Dl between them, as in the diagram

• • • •

• • • •

H̃lmin−1

Klmin

Clmin

· · ·
Hlmin

Kl

Cl

· · ·

Cl+1

Hl

Klmax

Clmax+1

Hlmax

H̃lmax+1

H̃′lmin−1
K′lmin

Dlmin

· · ·
H′lmin

K′l

Dl

· · ·

Dl+1

H′l

K′lmax

Dlmax+1

H′lmax

H̃′lmax+1

, (3)

such that Cl and Dl are mutual inverses up to homotopy (Hl and H ′l), that is

Dl ◦ Cl = id−Kl−1 ◦Hl−1 −Hl ◦Kl, (4)

Cl ◦Dl = id−K ′l−1 ◦H ′l−1 −H ′l ◦K ′l , (5)
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with the special end cases

Dlmin
◦ Clmin

= id− H̃lmin−1 −Hlmin
◦Klmin

, Klmin
◦ H̃lmin−1 = 0, (6)

Clmin
◦Dlmin

= id− H̃ ′lmin−1 −H ′lmin
◦K ′lmin

, K ′lmin
◦ H̃ ′lmin−1 = 0, (7)

Dlmax+1 ◦ Clmax+1 = id−Hlmax ◦Klmax − H̃lmax+1, H̃lmax+1 ◦Klmax = 0, (8)

Clmax+1 ◦Dlmax+1 = id−H ′lmax
◦K ′lmax

− H̃ ′lmax+1, H̃ ′lmax+1 ◦K ′lmax
= 0, (9)

where the H̃ maps are allowed to be arbitrary, as long as they satisfy the given identities.

Note that our definition of equivalence up to homotopy between complexes of finite length is
set up in a way that allows an equivalence between longer complexes to be truncated and still
remain an equivalence.

Next, we restrict our attention to the case where all maps are given by differential operators.

Definition 2. Given a differential operator K, any composable differential operator L such that
L ◦K = 0 is a compatibility operator for K. If K1 is a compatibility operator for K, it is called
complete or universal when any other compatibility operator L can be factored through L = L′ ◦K1

for some differential operator L. A complex of differential operators Kl, l = 0, 1, . . . is called a
compatibility complex for K when K0 = K and, for each l ≥ 1, Kl is a complete compatibility
operator for Kl−1.

Definition 3. Given a (possibly infinite) complex of differential operators Kl, l = lmin, lmin +
1, . . . , lmax, we say that it is locally exact at a point x when, for every lmin < l < lmax, for
every smooth function fl defined on an open neighborhood U 3 x such that Kl[fl] = 0, there
exists a smooth function gl−1 defined on a possibly smaller open neighborhood V 3 x such that
fl = Kl−1[gl−1]. Locally exact (without specifying a point x) means locally exact at every x.

Note that a complete compatibility operator, say K1, need not be unique. But, by its universal
factorization property, any two compatibility operators, say K1 and K ′1, must factor through each
other, K1 = L1 ◦K ′1 and K ′1 = L′1 ◦K1 for some differential operators L1 and L′1.

Given two composable operators, K and K1, the compatibility condition K1 ◦K = 0 is very
easy to check. On the other hand, it may be quite challenging to check completeness/universality.
One way to do it is to compare K and K1 with another pair of operators which are already known
to satisfy the universality condition.

Lemma 4. Consider two complexes of differential operators Kl and K ′l , for l = 0, 1. If these
complexes are equivalent up to homotopy, as in the diagram

• • •

• • •

K0

C0

K1

C1

H0

C2

H1

K′0

D0

K′1

D1
H′0

D2
H′1

, (10)

where we really only require all squares to be commutative and the identities D1 ◦ C1 = id−K0 ◦
H0−H1 ◦K1 and C1 ◦D1 = id−K ′0 ◦H ′0−H ′1 ◦K ′1 to hold, then K1 is universal iff K ′1 is universal.

Furthermore, the complex Kl, l = 0, 1, is locally exact iff the complex K ′l , l = 0, 1, is locally
exact.

Proof. Without loss of generality, assume that K ′1 is universal. Let L ◦K0 = 0. Then (L ◦D1) ◦
K ′0 = L ◦ K0 ◦ D0 = 0. By universality of K ′1, there exists a differential operator L′ such that
L ◦D1 = L′ ◦K ′1. Recall that from our hypotheses that D1 ◦ C1 = id −K0 ◦H0 −H1 ◦K1. But
then

L = L ◦ (D1 ◦ C1 +K0 ◦H0 +H1 ◦K1)

= L′ ◦ (K ′1 ◦ C1) + (L ◦H1) ◦K1

= (L′ ◦ C2) ◦K1 + (L ◦H1) ◦K1 = L′′ ◦K1,

4



where L′′ = L′ ◦ C2 + L ◦H1. This demonstrates the universality of K1.
Next, without loss of generality, assume that K ′l is locally exact. Pick a point x, an open neigh-

borhood U 6= x, and a smooth function f such that K1[f ] = 0. Then K ′1[C1[f ]] = C2[K1[f ]] = 0.
Hence, by local exactness, there exists a smooth g′ defined on a possibly smaller open neighborhood
V 3 x such that K ′0[g′] = C1[f ]. Setting g = D0[g′] +K0[H0[f ]] on V 3 x, direct calculation shows
that

K0[g] = K0[D0[g′]] +K0[H0[f ]] = D1[K ′0[g′]] +K0[H0[f ]]

= D1 ◦ C1[f ] +K0[H0[f ]] = f −H1[K1[f ]]

= f, (11)

which shows that the Kl complex is also locally exact.

Next, we will show how to construct a universal compatibility operator for a differential operator
K if it is equivalent, in the sense of a complex consisting of one operator, to some operator with a
known universal compatibility operator.

Lemma 5. Consider differential operators K0 and K ′0. Suppose that K0 and K ′0 are equivalent
up to homotopy, in the sense of the diagram

• •

• •

H̃
K0

C0 C1

H0

H̃′
K′0

D0 D1
H′0

, (12)

where we require all squares to be commutative and the identities D0 ◦ C0 = id − H̃ − H0 ◦ K0,
C0 ◦ D0 = id − H̃ ′ − H ′0 ◦ K ′0 to hold, with K0 ◦ H̃ = 0 and K ′0 ◦ H̃ ′ = 0. Then, if a universal
compatibility operator K ′1 for K ′0 is known, we can complete the above diagram to the following
equivalence up to homotopy

• • •

• • •

K0

C0

K1=

id−K0◦H0−D1◦C1

K′1◦C1



C1

H0

C2=
[
0 id

]H1=
[
id 0

]

K′0

D0

K′1

D1

H′0

D2=

 D′2

id−K′1◦H
′
1


H′1

, (13)

with some differential operators H ′1, D′2.

Proof. From our hypotheses, C0 and D0 are mutual inverses, up to a homotopy correction. Our
first observation is that the same property then holds for C1 and D1. Namely,

(id−K0 ◦H0 −D1 ◦ C1) ◦K0 = K0 −K0 ◦H0 ◦K0 −K0 ◦ (D0 ◦ C0)

= K0 ◦ (id−H0 ◦K0 −D0 ◦ C0)

= K0 ◦ H̃ = 0, (14)

(id−K ′0 ◦H ′0 − C1 ◦D1) ◦K ′0 = 0, (15)

where the second identity is completely analogous to the first one. Then we also have

(id−K0 ◦H0 −D1 ◦ C1) ◦D1 ◦K ′0 = (id−K0 ◦H0 −D1 ◦ C1) ◦K0 ◦D0 = 0. (16)
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Since we know that K ′1 is a universal compatibility operator for K ′0, there must exist differential
operators H ′1 and D′2 such that

id−K ′0 ◦H ′0 − C1 ◦D1 = H ′1 ◦K ′1, (17)

(id−K0 ◦H0 −D1 ◦ C1) ◦D1 = D′2 ◦K ′1. (18)

Next, defining the operators K1, H1, C2 and D2 as in the diagram (13), the remaining identities
needed to show that this diagram is a homotopy equivalence are

D1 ◦ C1 = id−K0 ◦H0 −H1 ◦K1, (19a)

C2 ◦K1 = K ′1 ◦ C1, (19b)

D2 ◦K ′1 = K1 ◦D1, (19c)

(id−K1 ◦H1 −D2 ◦ C2) ◦K1 = 0, (19d)

(id−K ′1 ◦H ′1 − C2 ◦D2) ◦K ′1 = 0. (19e)

The last two, (d) and (e), follow from the same argument as in the first paragraph of this proof.
The first two, (a) and (b), follow from direct calculation and the identities that we have already
established earlier in the proof. To get (c), it remains to check the following identity

(K ′1 ◦ C1) ◦D1 = K ′1 ◦ (id−K ′0 ◦H ′0 −H ′1 ◦K ′1) = (id−K ′1 ◦H ′1) ◦K ′1. (20)

This completes the proof.

Definition 6. A (linear) connection D on a vector bundle V →M is a linear differential operator
D : Γ(V ) → Γ(T ∗M ⊗M V ) that in local coordinates (xa) has the form Dav(x) = ∂

∂xa v(x) +
γa(x)v(x), with the γa(x) being smooth local sections of the endomorphism bundle of V →M . The
connection is flat when locally its components commute, [Da,Db] = 0. The equation Df = 0 is
called the (D-)flat section equation.

A flat connection D gives rise to a complex of differential operators dDl : Γ(ΛlT ∗M ⊗M V ) →
Γ(Λl+1T ∗M ⊗M V ), l = 0, 1, . . . , n, . . ., with dD = D, locally (dDl w)a1···al+1

= (l + 1)D[a1wa2···an]

for 0 < l < n, and dDl = 0 for l ≥ n, the (D-)twisted de Rham complex.

Definition 7. A differential operator K defines a PDE of finite type K[f ] = 0, when K0 = K
is equivalent to a flat connection K ′0 = D, in the sense of one operator complexes (Definition 1),
with the extra requirement that H̃−1 = 0 and H̃ ′−1 = 0.

Remark 1. One can find in the literature different definitions for PDEs of finite type. Our Def-
inition 7 is most convenient for the purposes of this work and is well-known to be equivalent to
other common definitions under reasonable regularity conditions. The relation between the differ-
ent definitions is discussed in the Appendix and an elementary proof of the equivalence is given in
Proposition 13.

Once we know that we are faced with a PDE of finite type, we can exploit its equivalence to
the equation for D-flat sections, together with our preceding results and the following well known
proposition.

Proposition 8. Given a flat connection D, the corresponding twisted de Rham complex dDl , l =
0, 1, . . . , n, . . . is locally exact and is also a compatibility complex for D = dD0 .

Theorem 9. Let K[f ] = 0 be PDE of finite type. Then, starting from an equivalence of K with
a flat connection D, we can explicitly construct a locally exact compatibility complex Kl for K,
l = 0, 1, . . ..

Proof. The proof is by induction. Setting K0 = K and K ′0 = D = dD0 , the finite type hypothesis
implies that we can satisfy the hypotheses of Lemma 5 and extend the equivalence of K0 and K ′0
to an equivalence of Kl and K ′l , l = 0, 1, with K1 explicitly constructed. Suppose, inductively, that
we have an equivalence up to homotopy between the complexes Kl and K ′l = dDl , l = 0, 1, . . . ,m,
for some m > 0. Iterating the previous argument, we can extend it to an equivalence up to
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homotopy between the complexes Kl and K ′l = dDl , l = 0, 1, . . . ,m+1, where Km+1 is an explicitly
constructed as in Lemma 5.

Since the above construction of the complex Kl, l = 0, 1, . . ., comes with an equivalence up to
homotopy with the twisted de Rham complex K ′l = dDl , l = 0, 1, . . ., Lemma 4 and Proposition 8
allow us to conclude that Kl is both locally exact and is a compatibility complex for K. That is,
K1 is a universal compatibility operator for K0 = K and Kl+1 is a universal compatibility operator
for Kl, for l > 1.

Note that, even though the twisted de Rham complex dDl terminates after l = n, or rather
becomes trivial dDl = 0 for l ≥ n, the result of Theorem 9 is not guaranteed to produce a complex
that eventually terminates in the same way. For instance, the simple example K = id, produces
the complex Kl, l = 0, 1, . . ., where K2k = id and K2k+1 = 0, with the source and target of every
operator Kl being the same as for K. Of course, in this simple example, we can force this complex
to terminate by setting the target of K1 = 0 to be zero dimensional, and setting Kl = 0 as a map
between zero dimensional spaces, for each l > 1.

Since our goal is not a fully algorithmic construction of compatibility complexes, but rather one
where human intervention is allowed along the way, we can apply similar simplifications at each
step of the iterative construction given in the proof of Theorem 9. At each step, before proceeding
to the next one, having obtained the operator Kl+1, we can replace it by a potentially simpler
operator K̃l+1 without breaking its universality property. Here, a trivial, but helpful, observation
is that an operator K̃l+1 such that Kl+1 = K̃ ′l+1 ◦K̃l+1 is a universal compatibility operator for Kl

whenever Kl+1 is. This way, on general principles, we expect to be able to produce a compatibility
complex Kl, l = 0, 1, . . ., that becomes trivial Kl = 0 for l > n.

We will not try to give a rigorous proof of the fact that we can always produce a compatibility
complex Kl that trivializes to Kl = 0 for l > n. Instead, in the next section, we will present
examples of PDEs of finite type with compatibility complexes of finite length. In each case,
we will give an explicit equivalence up to homotopy of a given complex to a twisted de Rham
complex, which together with Lemma 4 and Proposition 8 serves as a witness to the fact that it is
a compatibility complex. However, the reader should understand that this compatibility complex
was produced by the construction given in the proof of Theorem 9, with intermediate simplifications
as described above.

3 Killing equation

Consider an n-dimensional (pseudo-)Riemannian manifold (M, g), with Levi-Civita connection ∇.
In Lorentzian signature, we refer to (M, g) as a spacetime. The Killing equation is an equation on
sections v ∈ Γ(TM), namely

Kab[v] = ∇avb +∇bva = 0. (21)

The Lie derivative identity K[v] = Lvg implies that solutions of the Killing equations are infinites-
imal isometries of (M, g). In the context of linearized gravity (that is, the theory of linearized Ein-
stein equations), metric perturbations h ∈ Γ(S2T ∗M) are grouped into gauge equivalence classes,
h ∼ h + K[v] for v ∈ Γ(TM). A differential operator L[h] such that L ◦K = 0, a compatibility
operator for K in the terminology of Section 2, is interpreted as a (local) gauge-invariant observable
or gauge-invariant field combination [34]. The components of a complete compatibility operator
K1 for the Killing operator K can be interpreted, by the universality property, as a generating set
for all gauge-invariants, also known as a complete set of gauge-invariant observables.

It is well known that the Killing equation is of finite type (Definition 7), provided a regularity
condition holds. The quickest way to see that is to put it into the so-called tractor form [11] or
the form of the Killing transport equation [17, App.B]. Namely, we have the equivalence up to
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homotopy

va hab

[
va
w[bc]

] [
va1:a
wa1:[bc]

]

va 7→ Kab[v]

va 7→
[

va
∇[bvc]

]
hab 7→

[
hab
∇[bhc]a

]
0

[
va
w[bc]

]
7→ Ta1

[
va
w[bc]

]

[
va
w[bc]

]
7→ va

[
va1:a
wa1:[bc]

]
7→ 2v(a:b)

[
va1:a
wa1:[bc]

]
7→
[

0
−v[b:c]

] , (22)

where the connection operator1 is

Ta1
[
va
w[bc]

]
=

[
∇a1va − w[a1a]

∇a1w[bc] +Ra1dbcv
d

]
, (23)

which uses the Riemann tensor2 Rabc
dvd = 2∇[a∇b]vc. We should mention that the : appearing

for instance in wa1:[bc] or v[b:c] is only there to visually separate particular groups of indices. Also,
we use square brackets to indicate that some of the tensors must have anti-symmetrized indices
from the outset.

To check the commutativity of the square with downward arrows, first note that for wbc =
∇[bvc] = ∇bvc − 1

2Kab[v] we have

2∇[awb]c −Rabcdvd = −∇[aKb]c[v]. (24)

Then, the antisymmetry wcb = −wbc and the algebraic Bianchi identity R[abc]d = 0 allow us to
write

2(∇awbc +Radbcv
d) = (2∇[awb]c −Rabcdvd)− (2∇[bwc]a −Rbcadvd) + (2∇[cwa]b −Rcabdvd)

= 2∇[bKc]a[v]. (25)

In general, the connection Ta is not a flat. In fact, it is flat iff (M, g) is of constant curvature,
Rabcd = α(gacgbd−gadgbc) for some constant α. However, when the local solutions of T[ vw ] = 0 span
a vector bundle, the restriction of T to this sub-bundle (which could be of rank zero) is flat and
the corresponding flat section equation is equivalent to the original Killing equation (Lemma 14),
hence implying its finite type. Thus, the required regularity condition is that the local solutions of
the Killing equation, in tractor form, span a sub-bundle. Or, equivalently, the pointwise dimension
of the span of these local solutions is constant. However, in special cases, this particular way of
reducing the Killing operator to a flat connection may not be the preferred one, and a different
reduction might be more convenient.

Consider a tensor T [g] built covariantly out of the metric g, the Riemann tensor R, and the
covariant derivatives ∇R, ∇∇R, . . . . Define its linearization Ṫ about g by the identity T [g+εh] =
T [g] + εṪ [h] +O(ε2). Recall the standard identity between the Lie derivative, T and Ṫ :

LvT [g] = Ṫ [Lv[g]] = Ṫ [K[v]], (26)

where LvT b···a··· = vc∇cT b···a··· + T b···c···∇avc − T c···a···∇cvb + · · · , (27)

which guarantees that Ṫ ◦ K = 0 for the linearization g 7→ g + εh whenever T [g] = 0 or some
expression involving only constants and Kronecker δ’s. This result is sometimes known as the

1The form of this connection was already derived in [17, Eq.(B.2)], though there it has a typo. The sign of
Ra1dbcv

d is opposite compared to ours.
2We follow the curvature conventions of [36].
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Stewart-Walker lemma [34, Lem.2.2]. Alternatively, when T [g] 6= 0, this identity can be used to
extract some components of va or ∇avb by applying Ṫ to K[v].

Section 3.2 and 3.3 below will involve some algebraic constructions with tensors for which it is
convenient to introduce the following notation. For Aµλ and Bνκ symmetric tensors, we denote
the Kulkarni-Nomizu product by

(A�B)µνλκ = AµλBνκ −AνλBµκ −AµκBνλ +AνκBµλ. (28)

Clearly A�B = B �A and the result has the symmetry type of the Riemann tensor. For tensors
with two or four indices, we define the contractions

(A ·B)µν = Aµ
λBλν , and (R · S)µνλκ = Rµν

αβSαβλκ. (29)

With these definitions, when A, B, C and D are symmetric, we have the useful identities

[(A�B) · (C �D)]µνλκ = 2[(A · C)� (B ·D) + (A ·D)� (B · C)]µνλκ, (30)

(A�B)µν
ν
κ = [A ·B − (trA)B −A(trB) +B ·A]µκ. (31)

3.1 Constant curvature spacetime

An n-dimensional constant curvature spacetime (M, g) of sectional curvature α is defined by a
Riemann curvature tensor of the form Rabcd = α(gacgbd − gadgbc), with α a constant. It is well-
known that in this case the Killing transport (or tractor) connection defined in (23) is actually
flat. Thus, we could use the methods of Section (2), in particular Theorem 9, to construct a
compatibility complex for the Killing operator K on (M, g). However, in this particular situation,
the compatibility complex for K is already known independently. It is sometimes called the Calabi
complex [23]. We will denote it by Ci, i = 0, 1, . . ., with C0 = K and Cl = 0 for l ≥ n. The operator
C1 is essentially the linearized Riemann tensor Ra

b
c
d[g], while C2 is the linearized differential

Bianchi identity. The remaining operators Ci, for i > 2, are essentially higher rank Bianchi
identities. These operators have the following explicit formulas (see [23, Sec.2.2]):

C0[v]a:b = ∇avb +∇bva, (32a)

C1[h]ab:cd = (∇∇� h)abcd + α(g � h)abcd, (32b)

C2[r]abc:de = 3∇[arbc]de, (32c)

C3[b]abcd:ef = 4∇[abbcd]ef , (32d)

... (32e)

Ci[b]a0···ai:bc = (i+ 1)∇[a0ba1···ai]bc (i ≥ 2). (32f)

The : notation only serves to visually separate groups of indices that are independently antisym-
metric. C0 has the symmetric index pair a:b, while C1 has the index group ab:cd satisfying the
algebraic symmetries of the Riemann tensor. More generally, the tensor symmetry type of the
target of each Ci operator is best described using Young symmetrizers (see [23, Sec.2.1] for com-
plete details). Ignoring corresponding algebraic symmetry conditions on the tensors entering into
the Calabi complex may violate its property of being a compatibility complex. Below we list the
Young symmetry types and ranks of the tensor bundles serving as domains and codomains for the
operators of the Calabi complex:
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Young type n = 2 n = 3 n = 4 n ≥ 2
(1) 2 3 4 n

C0

(2) 3 6 10 n(n+1)
2

C1

(2, 2) 1 6 20 n
2

(
n+1

3

)
C2

(2, 2, 1) 3 20 n(3−1)
2

(
n+1
3+1

)
...

...

(2, 2, 1i−2) n(i−1)
2

(
n+1
i+1

)
(1 < i) Ci

(2, 2, 1i−1) ni
2

(
n+1
i+2

)
...

...
Cn−1

(2, 2, 1n−2) 1 3 6 n(n−1)
2

In the diagram (22) for the equivalence up to homotopy between K and T, the top and bottom
lines can be extended to their compatibility complexes, the Calabi Cl complex for K and the
twisted de Rham complex dTl (Definition 6) for T. Then, using the same argument as at the
beginning of the proof of Lemma 5, the vertical equivalence maps can be propagated to the rest
of the complexes, thus giving a full equivalence up to homotopy between them

• • • · · ·

• • • · · ·

C0=K C1 · · · Cn−1 0

dT0=T dT1
· · ·

dTn−1

0

(33)

We will not discuss the explicit formulas for the vertical equivalence differential operators.
For our purposes it is sufficient to know that they exist. However, if these operators were to be
given explicitly, then according to Lemma 4 the equivalence diagram (33) would constitute an
independent proof of the fact that the operators Cl constitute a compatibility complex for the
Killing operator K on the constant curvature spacetime (M, g).

3.2 FLRW spacetimes

Consider an FLRW spacetime (M, g), where M = I × F , with I ⊂ R an open interval with
coordinate t and dimF = m, and g = −dt2 + f2g̃F , where the scale factor f = f(t) is a positive
scalar function and g̃Fab = (π∗gF )ab is the pullback of a constant curvature Riemannian metric
(with sectional curvature α) on F along the standard projection π : I × F → F . Let us denote
Ua = −(dt)a, and note that UaU

a = −1 and f2g̃Fab = gab + UaUb.
Below, it will be convenient to extensively rely on the product structureM = I×F and naturally

decompose all tensors on M with respect to it. For instance, vab = vttU
aUb + ṽtbU

a + ṽat Ub + ṽab ,
where vtt is a scalar and ṽat , ṽab and ṽab are respectively sections of the pullback bundles π∗TF ,
π∗T ∗F and π∗(T ⊗ T ∗)F over M , or equivalently simply sections TM , T ∗M and (T ⊗ T ∗)M that
are annihilated by g-contraction with Ua on any index. It will also be convenient to insert extra
factors of f into some tensor decompositions of this type, with the sole purpose of simplifying
some forthcoming formulas (which we have unfortunately managed to do only in an ad-hoc way).
If Xa ∈ Γ(T ∗F ) then we will denote its pullback by X̃a = π∗X ∈ Γ(T ∗M) and note that it satisfies
UaX̃a = 0, where the metric g is used for contractions. On the other hand, if no such Xa was
introduced previously (which will be true in most cases), we used X̃a ∈ Γ(T ∗M) to denote any
section that satisfies UaX̃a = 0, even if has non-trivial dependence on t. This should not generate
any confusion for the reader. The same convention is extended to all purely covariant tensors.

Each of the factors has an auxiliary pseudo-Riemannian structure, (I,−dt2) and (F, gF ), with
corresponding Levi-Civita connections, ∇I and ∇F , which we can extend to all covariant tensor
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fields on the product manifold M = I×F . Let us denote the extensions of ∇I and ∇F respectively
by −Ua∂t and ∇̃, which incidentally defines the convenient differential operator ∂t = Ua(−Ua∂t).
The defining properties of these operators are the usual Leibniz rule, together with ∂tt = 1,
∂tUa = 0, and ∂tX̃ = ∂t(π

∗X) = 0 for any covariant tensor field X on F , and also ∇̃t = 0,

∇̃Ua = 0 and ∇̃X̃ = ∇̃FX = π∗(∇FX) for any covariant tensor field X on F . Since any covariant
tensor on M is locally a limit of sums of products of covariant tensors pulled back from I and M ,
these properties are sufficient to uniquely define ∂t and ∇̃ as linear differential operators. Note
that we will also frequently use the abbreviation (−)′ = ∂t(−).

By the above remarks, any covector field va on M can be parametrized as

va = AfUb + f2X̃a (34)

where A is a scalar function on M and X̃ ∈ Γ(π∗T ∗F ) ⊂ Γ(T ∗M), so that UaX̃a = 0. Now note
that with our conventions, for any scalarA, its exterior derivative is given by (dA)a = −A′Ua+∇̃aA,
while the Levi-Civita connection on (M, g) is given in the above parametrization by

∇a(AfUb + f2X̃b) = (dA)afUb +Af ′gab − 2f ′fU[aX̃b] − f2UaX̃
′
b + f2∇̃aX̃b. (35)

Parametrizing symmetric 2-tensors hab on M as

hab = pUaUb − 2f2U(aỸb) + f2Z̃ab, (36)

the Killing operator on covectors hab = Kab[v] = 2∇(avb) becomespỸ
Z̃

 = K

[
A

X̃

]
=

 −2(Af)′

X̃ ′ − f−1∇̃A
K̃[X̃] + 2Af ′g̃F

 =

 −2∂tf 0

−f−1∇̃ ∂t
2f ′g̃F K̃

[A
X̃

]
(37)

in block matrix operator notation, where K̃bc[X̃] = 2∇̃(bX̃c), which is simply our extension of the
Killing operator on covectors from (F, gF ) to (M, g).

Remark 2. Each entry in our block operator matrices is a linear differential operator between
some covariant tensor bundles over M . We use vertical and horizontal lines to further partition
block operator matrices with respect to some special direct sum decomposition of their domain
or codomain. We will use id to denote the identity endomorphism on any vector bundle and 0
to denote the zero morphism between any two vector bundles. In each case, the domains and
codomains of these operators can be deduced from the context.

It is worth noting that setting the A component of va to zero simplifies the Killing operator to

K

[
0

id

]
=

 0

∂t
K̃

 . (38)

For a generic FLRW spacetime (see [9, Def.2.1] for a breakdown of FLRW geometries into
special and generic classes, based on the properties of the scale factor f), it is well-known that
the only Killing vectors are those that reduce to the Killing vectors of the spatial slices (F, gF ),
appropriately propagated in time. We will see shortly that, equivalently, each Killing vector on
(M, g) has the form va = 0 + f2X̃a, where K̃ab[X̃] = 0 and ∂tX̃a = 0. Now, since the spatial
slices (F, gF ) are of constant curvature, the spatial Killing operator K̃ is of the type discussed in
Section 3.1. This means that K̃ is equivalent up to homotopy to the flat spatial Killing transport
connection T̃, so that the following two operators are also equivalent up to homotopy:[

∂t
K̃

]
and T =

[
∂t
T̃

]
. (39)

Since both [∂t, K̃] = 0 and [∂t, T̃] = 0, it is easy to see that T itself defines a flat connection. Let the
operators C̃i be the extensions of the Calabi complex (32) from the constant curvature geometry
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(F, gF ) to M , where we have simply replaced ∇F by ∇̃ and gF by g̃F whenever necessary. Since
such an extension preserves all operator identities, including the suitably extended equivalence up
to homotopy in (33). Now, it is a straightforward exercise to check that the twisted de Rham
complex dTl can be represented as the bottom line in the following diagram, and also to use the
mentioned identities to construct the corresponding the vertical differential operators that complete
this diagram to an equivalence up to homotopy:

• • • · · ·

• • • · · ·

 ∂t

C̃0=K̃

 −C̃0 ∂t

0 C̃1


· · ·

[
−C̃m−1 ∂t

]
0

dT0=T=

∂t
T̃

 dT1=

−dT̃0 ∂t

0 dT̃1


· · ·

dTm−1=
[
−dT̃m−1 ∂t

] 0

(40)

Hence, by Lemma 4, the top complex in (40) is also a compatibility complex.
Now, we need to examine the integrability conditions that will help us establish an explicit

equivalence of the full Killing equation Kab[v] = 0 with the system of equations ∂tX̃a = 0, K̃ab[X̃] =
0, whose compatibility complex is given by the top line of (40). All of that crucially depends on
the structure of the curvature of (M, g).

The Riemann curvature tensor, the Ricci tensor and the Ricci scalar of (M, g) are (recalling
the notation from (28)) given by

Rabcd =

(
g �

[
1

2

(
f ′2

f2
+

α

f2

)
g −

((
f ′

f

)′
− α

f2

)
UU

])
abcd

, (41a)

Rab = −(m− 1)

[(
f ′

f

)′
− α

f2

]
UaUb

+

[((
f ′

f

)′
− α

f2

)
+m

(
f ′2

f2
+

α

f2

)]
gab, (41b)

R =

((
f ′

f

)′
− α

f2

)
+ (m+ 1)

(
f ′2

f2
+

α

f2

)
. (41c)

We suppose that the FLRW spacetime is non-degenerate, that is both that f ′/f 6= 0 and that the
scalar curvature R is not constant,

R′ =

[((
f ′

f

)′
− α

f2

)
+ (m+ 1)

(
f ′2

f2
+

α

f2

)]′
6= 0. (42)

To make use of identity (26), we compute the Lie derivative

LvR = va∇aR = AfR′. (43)

Thus, defining the operator

J [h] =
1

fR′
Ṙ[h], (44)

we have the identities

J ◦K

[
A

X̃

]
= A or J ◦K =

[
id 0

]
. (45)

The last equation also implies that

J ◦

(
K

[
0

id

])
=
[
id 0

] [ 0

id

]
= 0 and J ◦

(
K

[
id

0

])
=
[
id 0

] [id

0

]
= id. (46)
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Let us denote the block matrix components of J as J =
[
Jp JY JZ

]
and also J̃ =

[
JY JZ

]
.

Combining the above identities with formula (38), we get

J̃ ◦

(
K

[
0

id

])
=
[
JY JZ

] [∂t
K̃

]
= 0. (47)

Hence, knowing the first compatibility operator from the top line of (40), it must be possible to
factor

J̃ = H̃J

[
−C̃0 ∂t

0 C̃1

]
. (48)

Of course, the full operator J can be then factored as

J = HJ

id 0 0

0 −C̃0 ∂t
0 0 C̃1

 , (49)

where HJ =
[
Jp H̃J

]
. For much of what follows, we will only need the fact that H̃J or HJ exists.

However, a direct calculation shows that its explicit form can be deduced from the identity

Ṙ

pỸ
Z̃

 = f−2∆̃p+m(f/f ′)[(f ′2/f2)p]′ +m(m+ 1)(f ′2/f2)p

− f−m−1[fm+1(2d̃iv Ỹ − t̃rZ̃ ′)]′ + f−2[−∆̃ t̃r Z̃ + d̃iv d̃iv Z̃ab − (m− 1)α t̃r Z̃]

= f−2∆̃p+
m

f ′fm
[fm+1(f ′2/f2)p]′ + f−m−1[fm+1t̃r(∂tZ̃ − C̃0[Ỹ ])]′ − 1

2
f−2t̃r t̃r C̃1[Z̃], (50)

meaning that

J =
1

fR′
[
f−2∆̃ + m

f ′fm ∂tf
m+1 f

′2

f2 − 1
fm+1 ∂tf

m+1C̃0
1

fm+1 ∂tf
m+1t̃r− 1

2f
−2t̃r t̃rC̃1

]
, (51)

and hence

HJ =
1

fR′
[
f−2∆̃ + m

f ′fm ∂tf
m+1 f

′2

f2
1

fm+1 ∂tf
m+1 t̃r − 1

2f
−2 t̃r t̃r

]
, (52)

where of course we have defined t̃r, d̃iv and ∆̃ such that

∆̃X̃ = ˜(gF )ab∇a∇bX, d̃iv Ỹ = ∇̃aYa···, (t̃r X̃)ab = ˜(gF )cdXacbd, and t̃r Z̃ = ˜(gF )abZab.
(53)

Now we are ready to follow the proof of Theorem 9 to construct a compatibility complex for the
Killing operator K by lifting the compatibility complex from (40). The results of these calculations
will be presented below directly in diagrammatic form, where the arrows in the diagrams satisfy
the identities introduced in Section 2. All the relevant identities are easily checked by direct
calculation, relying on the key identity (45), the basic commutation relations [∂t, ∇̃] = [∂t, C̃i] = 0,
the compatibility identities C̃i+1 ◦ C̃i = 0 of the operators of the Calabi complex, which were
introduced in Section 3.1.

We start by applying the information obtained above to give an explicit reduction of the Killing
equation to the first operator from the top line of (40):
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• •

• •

K=


−2∂tf 0

−f−1∇̃ ∂t

2f ′g̃F K̃



[
0 id

]

J
0


0 id 0

0 0 id


id−K

J
0




 ∂t

C̃0=K̃



 0

id



0


0 0

id 0

0 id

 (54)

Next, we proceed by iterating the construction from Lemma 5, while simultaneously applying
the simplifications discussed after the proof of Theorem 9. The following diagram should be
appended on the right to (54):

• •

• •


id 0 0

0 −C̃0 ∂t

0 0 C̃1


id−K

J
0


=

id−


id 0 0

0 −C̃0 ∂t

0 0 C̃1

K
HJ

0





id 0 0

0 −C̃0 ∂t

0 0 C̃1



0 id 0

0 0 id




id 0 0

0 0 0

0 0 0



−C̃0 ∂t

0 C̃1



id−


id 0 0

0 −C̃0 ∂t

0 0 C̃1

K
HJ

0





0 0

id 0

0 id


0 id 0

0 0 id

K
H̃J

0



(55)

Note that we do not repeat the labels on the left-most vertical arrows, which can be read off as
the right-most vertical arrows in (54).

Two more iterations of Lemma 5 (with simultaneous simplifications) gives the following dia-
gram, to be appended on the right to (55):
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• • •

• • •


HJ

0 −C̃1 ∂t

0 0 C̃2




id 0 0

0 −C̃0 ∂t

0 0 C̃1

K
id 0 0

0 0 0


0 id 0

0 0 id



0 −C̃2 ∂t

0 0 C̃3



id 0

0 id



0

−C̃1 ∂t

0 C̃2



0


0 0

id 0

0 id



−C̃2 ∂t

0 C̃3



id 0

0 id



0

(56)

From this point on, the compatibility complex for K and the top line of (40) become identical.

Theorem 10. Consider a non-degenerate FLRW spacetime (M, g), M = I × F , as introduced at
the top of Section 3.2, which spatially has the structure of an m-dimensional constant curvature
space (F, gF ), with sectional curvature α. The full compatibility complex Ki for the Killing operator
K0 = K (37) is given by

K0 =

 −2∂tf 0

−f−1∇̃ ∂t
2f ′g̃F K̃

 , (57a)

K1 =

id 0 0

0 −C̃0 ∂t
0 0 C̃1

(id−K

[
J

0

])
, (57b)

K2 =

 HJ

0 −C̃1 ∂t
0 0 C̃2

 , (57c)

K3 =

[
0 −C̃2 ∂t
0 0 C̃3

]
, (57d)

Ki =

[
−C̃i−1 ∂t

0 C̃i

]
(3 < i < m), (57e)

Km =
[
−C̃m−1 ∂t

]
, (57f)

Ki = 0 (m < i), (57g)

where the operator HJ is defined in (49), ∂t and ∇̃ are the covariant derivatives pulled back along
the product structure t : I × F → I and I × F → F , while C̃i are the operators from the Calabi
complex associated to the constant curvature space (M, gF ), as introduced in Section 3.1. (See
Appendix B.2 for a more complete summary of the notation.)

Proof. The argument given around diagram (40) shows that its top line constitutes a full compat-
ibility complex, which coincides with the bottom line of the diagram obtained by gluing (from left
to right) the diagrams (54), (55) and (56), which are continued by identifying the top and bottom
rows. From the preceding discussion in the current section, it is clear that each pair of consecutive
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squares in this glued diagram satisfies the hypotheses of Lemma 4. Thus, the top line of this glued
diagram is itself a full compatibility complex, but that complex consists precisely of the operators
Ki in (57).

The non-vanishing ranks of the vector bundles in the Ki complex have the following pattern,
which can be compared to a similar table for the constant curvature case at the end of Section 3.1
(where n = m+ 1, for comparison):

m = 2 m = 3 m = 4 m ≥ 2
3 4 5 m+ 1

K0

6 10 15 m(m+1)
2 +m+ 1

K1

5 13 31 m
2

(
m+1

3

)
+ m(m+1)

2 + 1
K2

2 10 41 m
(
m+1

4

)
+ m

2

(
m+1

3

)
+ 1

K3

3 26 3m
2

(
m+1

5

)
+m

(
m+1

4

)
...

...
m(i−1)

2

(
m+1
i+1

)
+ m(i−2)

2

(
m+1
i

)
(3 < i) Ki

mi
2

(
m+1
i+2

)
+ m(i−1)

2

(
m+1
i+1

)
...

...
Km

2 3 6 m(m−1)
2

Remark 3. In n = 4 (m = 3) dimensions, the common choice for gauge-invariant variables on
cosmological FLRW spacetimes are the so-called Bardeen potentials [4]. They include two scalars
components, Φ and Ψ, a divergence-free spatial vector field, Φ̂a, with 3 independent components,
and a divergence-free trace-free spatial symmetric 2-tensor, Êab, with 5 independent components.
Hence, the total number of independent components (not counting the differential relations coming
from the divergence-free conditions) is 1 + 1 + 3 + 5 = 10, which is less than the 13 components
of K1 that we have counted above. The difference of course between our K1 and the Bardeen
potentials is that our expressions are all local (given only in terms of differential operators), while
the Bardeen potentials are non-local (their definition involves inverted spatial Laplacians; see the
Introduction to [14] for details). While we cannot claim that our construction gives the minimal
number of local gauge-invariant quantities, it is not surprising that we get a larger number than a
construction that allows non-local expressions.

Remark 4. It is worth noting that the Ki complex presented above is not continuously deformable
through the class of generic FLRW spacetimes to the constant or zero curvature cases, which
correspond to special choices of the scale factor f(t). The main reason is that the operator J
introduced in Equation (44) is proportional to 1/R′, which diverges when the background scalar
curvature becomes constant. Since the operator J and the related operator HJ appear in several
places in the formulas (57) for the operators Ki (for i ≥ 1), it seems difficult to directly compare
them with the corresponding operators Ci on constant curvature backgrounds in (32). In particular,
an explicit expression for the linearized Riemann tensor C1 on (M, g) would be rather long and
unenlightening in our notation, as can already be glimpsed from the formula for the linearized
scalar curvature in (50). A more fruitful comparison would be to try to express the components of
our K1 in terms of the linearized IDEAL characterization tensors that were recently constructed
for the FLRW geometries [9].

However, we might gain some qualitative insight into the components of K1, which can be
interpreted as a complete set of local gauge-invariant observables, from the alternative formula
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that was indicated in diagram (55): q

Ỹa:b

Z̃ab:cd

 = K1

 p

Ỹa
Z̃a:b

 =

id−

id 0 0

0 −C̃0 ∂t
0 0 C̃1

K [HJ

0

]
id 0 0

0 −C̃0 ∂t
0 0 C̃1


 p

Ỹa
Z̃ab

 . (58)

The Z̃ab:cd invariants are roughly coming from the linearized Riemann operator C̃1 on the spatial
slice (F, gF ). While these components can be obtained from a purely spatial projection of the
linearized Riemann operator on the FLRW spacetime (M, g), since the components of the linearized
spacetime Riemann tensor are not by themselves invariant, they need to be deformed through the
HJ and subsequent operators in the above formula to be truly invariant. The q scalar invariant
comes from the difference between the p component of hab and the p component of K[J [h]]ab. When
precomposed with hab = K[v]ab, both terms in the difference depend only on the A component of
va and in exactly the same way, hence cancelling to give an invariant quantity. The Ỹa:b components
are harder to interpret in familiar terms.

3.3 Schwarzschild-Tangherlini spacetimes

Consider an n-dimensional spacetime (M̄, ḡ) where M̄ =M×S, where dimM = 2 and dimS =
n − 2 [26, 25, 20]. We take the second factor (S,Ω) to be a maximally symmetric space, hence a
constant curvature Riemannian space with sectional curvature α, where α = 1 for a unit sphere,
α = 0 for Euclidean space, and α = −1 for hyperbolic space (or pseudo-sphere). Let us denote
local coordinates on S by θA and the Levi-Civita connection on (S,Ω) by DA; its curvature tensor
is then

RABCD = α(ΩACΩBD − ΩADΩBC) =
α

2
(Ω� Ω)ABCD, (59)

where we have used the Kulkarni-Nomizu product (28). The other factor (M, g) has signature
(−+), and we will presume that it has a timelike Killing vector ta. Let us denote local coordinates
on M by ya and the Levi-Civita connection on (M, g) by ∇a. Because dimM = 2, its curvature
is given by

Rabcd =
R
2

(gacgbd − gadgbc) =
R
4

(g � g)abcd, (60)

where R = Rab
ab is the corresponding Ricci scalar.

We are interested in warped product [29, Ch.7] metrics of the form [26, 25, 20]

ḡ = gabdy
adyb + r2ΩABdθ

AdθB , (61)

where r = r(y) and gab is static in the (Schwarzschild) coordinates (ya) = (t, r),

gab = −fdtadtb +
1

f
dradrb, (62)

with f = f(r). In these coordinates, the timelike Killing vector has the form ta = (∂t)
a. For

convenience, we also introduce the notation ta = gabt
b = −fdta and ra = dra. They are related as

ta = −εabrb, where εab = (dt ∧ dr)ab. Then, of course, rar
a = f and tat

a = −1/f .
As we will see shortly, under our assumptions, the Einstein equations with a cosmological

constant Λ,

R̄ab −
1

2
R̄ḡab + Λḡab = 0, (63)

are solved by [25, Eq.(2.15)]

f(r) = α− 2M

rn−3
− 2Λ

(n− 1)(n− 2)
r2, (64)

where M is a constant. When α = 1, Λ = 0 and n ≥ 4, this metric describes the higher dimen-
sional spherically symmetric static black holes, the so-called Schwarzschild-Tangherlini solutions,
specializing to the Schwarzschild solution when n = 4. When n = 3, we are forced to have α = 0
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and the spacetime is actually of constant curvature. With n = 3 and Λ < 0, we get the BTZ
metric [3]. In terms of the parameter M , the black hole mass is given by

(n− 2)An−2

8π

M

G
=

(n− 2)

2

An−2

A2

M

G
, (65)

where G is the n-dimensional Newton’s constant and

An−2 =
2π(n−1)/2

Γ[(n− 1)/2]
(66)

is the area of the unit (n−2)-sphere. When α = 0, we get the higher dimensional version of Taub’s
plane-symmetric spacetime [35], [33, Eq.(15.29)], [5, Eq.(2.2)]. When α = −1, we get the higher
dimensional version of a pseudo-Schwarzschild wormhole spacetime [27].

In what follows, we restrict our attention to n ≥ 4, which is physically reasonable, but is also
forced upon us by some of our formulas, which have poles at n = 1, 2 or 3.

For convenience, let us introduce the notations

f1(r) = rf ′(r) = (n− 3)
2M

rn−3
− 4Λ

(n− 1)(n− 2)
r2, (67)

f2(r) = rf ′1(r) = −(n− 3)2 2M

rn−3
− 8Λ

(n− 1)(n− 2)
r2, (68)

as well as note that the formula (64) for f parametrized by the constants M and Λ, with α fixed,
gives the general solution to the differential equation

f2 + (n− 5)f1 − 2(n− 3)(f − α) = 0. (69)

Any tensor onM decomposes as Ta = Ttdta+Trdra or Ta → (Tt, Tr), with obvious extension to
higher rank tensors. With respect to this decomposition and the coordinates (t, r), the Levi-Civita
connection on (M, g) is then [25, Eq.(2.18)]

∇avb →
[
∂tvt ∂tvr
∂rvt ∂rvr

]
+

[
0 − f1

2rf

− f1
2rf 0

]
vt +

[
−f f12r 0

0 1
f
f1
2r

]
vr. (70)

Equivalently, we can summarize this information by giving the covariant derivatives of the frame
(ta, ra),

∇atb =
f1

2r
εab and ∇arb =

f1

2r
gab. (71)

A direct calculation gives the Ricci scalar on (M, g) as

R =
f1 − f2

r2
. (72)

And finally, symmetrizing the covariant derivative as written in (70) or (71), the explicit form of
the Killing operator on (M, g) is

2∇(avb) = −2t(a∇b)
vt
f
− 2tatb

f1

2rf
vr − 2t(arb)

1

f
∂tvr + rarb

1

f
(2f∂rvr +

f1

r
vr)

→

[
f(2∂t

1
f vt −

f1
r vr) ∂tvr + f∂r

1
f vt

∂tvr + f∂r
1
f vt

1
f (2f∂rvr + f1

r vr)

]
. (73)

Greek indices µ, ν, . . . on M̄-tensors are raised and lowered by ḡµν . Lower case Latin indices
a, b, c, . . . on M-tensors are raised and lowered by gab. And upper case Latin indices A,B,C, . . .
on S-tensors are raised and lowered by ΩAB . Any M̄-tensor decomposes into sectors,3 according
to Tµ = Ta(dya)µ + rTA(dθA)µ → (Ta, rTA) and Tµ = T a(∂a)µ + 1

rT
A(∂A)µ → (T a, 1

rT
A), with

3While our tensor sector formalism with (pseudo-)spherical symmetry in n-dimensions is strongly inspired by [28],
where it was presented for n = 4, our conventions differ by the introduction of r-weights in the spherical sectors.
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obvious extension to higher rank tensors. With a slight departure from this convention, let us
define some M̄-tensors by their sector decomposition

gµν →
[
gab 0
0 0

]
, gµν →

[
gab 0
0 0

]
, and Ωµν →

[
0 0
0 ΩAB

]
, Ωµν →

[
0 0
0 ΩAB

]
, (74)

so that ḡµν = gµν + r2Ωµν and ḡµν = gµν + r−2Ωµν .
The pair (∇a, DA) defines a connection on M̄ = M× S, which differs [26, App.A] from the

Levi-Civita connection ∇̄µ as follows

∇̄µvν →
[
∇avb r∇avB
rDA

vb
r r2DA

vB
r

]
+

[
0 0

0 r2ΩAB
rc

r

]
vc +

[
0 0

−rbδCA 0

]
vC . (75)

Remark 5. In giving the formula for ∇̄µ, we have essentially extended the action of ∇a and DA

as linear differential operators to tensors defined on M̄ = M × S. The extension is done in
exact analogy with the procedure described at the start of Section 3.2. Recall that the covariant
derivatives ∇a and DA simply act as coordinate derivatives on scalars on M and S. Suitably
extending these coordinate derivatives to M̄, the same can be said for (M,S)-mixed tensors on
M̄. But for the sake of uniformity in notation, we continue to use the notation ∇a and DA even
when they act on M- and S-scalars respectively.

Next, we need to carefully study the structure of the curvature tensor. The spacetime Riemann
curvature tensor on (M̄, ḡ) is [26, App.A]

R̄µνλκ =
R
2

(g � g)µνλκ +
1

2r2
(α− rara)(r2Ω� r2Ω)µνλκ −

(
∇∇r
r
� r2Ω

)
µνλκ

=
f1 − f2

4r2
(g � g)µνλκ +

(α− f)

2r2
(r2Ω� r2Ω)µνλκ −

f1

2r2
(g � r2Ω)µνλκ, (76)

with the corresponding Ricci tensor

R̄µλ =
f1 − f2

4r2
2gµλ +

(α− f)

2r2
2(n− 3)r2Ωµλ −

f1

2r2
(2r2Ω + (n− 2)g)µλ

= −f2 + (n− 3)f1

2r2
gµλ −

f1 + (n− 3)(f − α)

r2
r2Ωµλ. (77)

To satisfy Einstein’s equations in the presence of a cosmological constant (63), we must have

R̄µλ =
2Λ

(n− 2)
ḡµλ =

2Λ

(n− 2)
(g + r2Ω)µλ, (78)

which implies

f1 = −(n− 3)(f − α)− 2Λ

(n− 2)
r2, (79)

f2 = −(n− 3)f1 −
4Λ

(n− 2)
r2. (80)

Eliminating the explicit dependence on Λ, we obtain precisely the second order ODE (69) whose
general solution is given by f(r) in (64).

Recalling the definition of the Kulkarni-Nomizu and contraction products (28) and (29), we get
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the following useful identities, where we used ḡµν for contractions:

(g � g) · (g � g) = 4(g � g), (81)

(r2Ω� r2Ω) · (r2Ω� r2Ω) = 4(r2Ω� r2Ω), (82)

(g � r2Ω) · (g � r2Ω) = 2(g � r2Ω), (83)

(g � r2Ω) · (g � g) = 0, (84)

(g � r2Ω) · (r2Ω� r2Ω) = 0, (85)

(g � g) · (r2Ω� r2Ω) = 0, (86)

(g � g)λν
ν
κ = −2gλκ, (87)

(r2Ω� r2Ω)λν
ν
κ = −2(n− 3)(r2Ω)λκ, (88)

(g � r2Ω)λν
ν
κ = −2(r2Ω)λκ − (n− 2)gλκ, (89)

(g � g)µλνκr
λrκ = 2(rλrλ)gµν − 2rµrν , (90)

(g � r2Ω)µλνκr
λrκ = (rλrλ)(r2Ω)µν , (91)

(r2Ω� r2Ω)µλνκr
λrκ = 0. (92)

Defining

T̄µνλκ = R̄µνλκ −
Λ

(n− 1)(n− 2)
(ḡ � ḡ)µνλκ

=
M

rn−1

[
(n− 2)(n− 3)

2
(g � g)µνλκ + (r2Ω� r2Ω)µνλκ − (n− 3)(g � r2Ω)µνλκ

]
, (93)

we also get the identities

T̄ · T̄ =

(
M

rn−1

)2 [
(n− 2)2(n− 3)2(g � g) + 4(r2Ω� r2Ω) + 2(n− 3)2(g � r2Ω)

]
T̄ · T̄ · T̄ · T̄ =

(
M

rn−1

)4 [
4(n− 2)4(n− 3)4(g � g) + 64(r2Ω� r2Ω) + 8(n− 3)4(g � r2Ω)

]
(T̄ · T̄ )µν

ν
κ = −

(
M

rn−1

)2 [
2(n− 2)2(n− 3)2g + 8(n− 3)r2Ω + 2(n− 3)2(2r2Ω + (n− 2)g)

]
µκ

= −
(

M

rn−1

)2 [
2(n− 1)(n− 2)(n− 3)2g + 4(n− 1)(n− 3)r2Ω

]
µκ

(T̄ · T̄ )µν
µν =

(
M

rn−1

)2 [
4(n− 1)(n− 2)(n− 3)2 + 4(n− 1)(n− 2)(n− 3)

]
= 4(n− 1)(n− 2)2(n− 3)

(
M

rn−1

)2

∇̄λ(T̄ · T̄ )µν
µν

(T̄ · T̄ )µνµν
= −2(n− 1)

rλ
r

We would like to use these identities to write (r2Ω)λκ and a simple r-dependent scalar as
covariant expression in the curvature. For the latter, the simplest choice seems to be

T̄ (1)[ḡ] :=
(T̄ · T̄ )µν

µν

4(n− 1)(n− 2)2(n− 3)
=

(
M

rn−1

)2

. (94)

Next, we encounter a slight dimension dependence in the expression for (r2Ω)λκ. When n > 4, we
can use

(r2Ω)λκ =
2(n− 2)2

(n− 1)(n− 4)

(T̄ · T̄ )λν
ν
κ

(T̄ · T̄ )µνµν
+

(n− 2)(n− 3)

(n− 1)(n− 4)
ḡλκ =: T̄

(2)
λκ [ḡ], (95)
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while for n = 4 the simplest expression we could find is

(r2Ω)λκ = − 2(n− 1)(n− 2)4

(n− 3)3[∇̄(T̄ · T̄ )µνµν ]2(
T̄ · T̄ · T̄ · T̄ − (n− 3)

(n− 1)
(T̄ · T̄ )µν

µν T̄ · T̄
)
λρκσ

∇̄ρ(T̄ · T̄ )µν
µν

(T̄ · T̄ )µνµν
∇̄σ(T̄ · T̄ )µν

µν

(T̄ · T̄ )µνµν

=: T̄
(3)
λκ [ḡ]. (96)

Although, since it also works for n > 4, if desired, the more complicated expression T̄ (3)[ḡ] could
actually be used in higher dimensions too.

To make use of identity (26), we compute the Lie derivatives

Lv
(

M

rn−1

)2

= −2(n− 1)
rcvc
r

(
M

rn−1

)2

, (97)

Lv(r2Ω)µν →
[

0 r(r∇a vBr )

r(r∇b vAr ) 2r2(D(A
1
rvB) + ΩAB

rcvc
r )

]
. (98)

Hence, defining the linear operators

J1[h] := − 1

2(n− 1)

r

f

(
M

rn−1

)−2
˙̄T (1)[h], (99)

J2[h]aB :=
1

r2

{
˙̄T
(2)
aB [h] (n > 4)

˙̄T
(3)
aB [h] (n = 4)

, (100)

the Lie derivative formula (26) implies the compositional identities

J1 ◦ K̄[v] =
rcvc
f

, (101)

J2 ◦ K̄[v]aB = ∇a
vB
r
. (102)

Based on Equation (75), the explicit expression for the Killing operator is

K̄µν [v] = 2∇̄(µvν) →
[

2∇(avb) r2∇a 1
rvB + rDB

va
r

r2∇b 1
rvA + rDA

vb
r 2r2D(A

1
rvB) + 2r2 rcvc

r ΩAB

]
. (103)

For further convenience, we parametrize

vµ →
[
ut fdta + urdra

r(rXA)

]
and hµν →

[
p rarb − 2t(awb) r(rYaB)

r(rYbA) r2ZAB

]
. (104)

The Killing equation h = K̄[v] then becomes


p

w
Y
Z

 = K̄

urut
X

 =


1
f (2f∂r + f1

r ) 0 0

dr 1
f ∂t − dt

f1
2r ∇ 0

dr f
r2D

1
f dt fr2D ∇

2Ω f
r 0 C0


urut
X

 , (105)

where C0[X]AB = DAXB +DBXA is the Killing operator on the constant curvature factor (S,Ω),
and hence the first operator of the Calabi complex Ci, i ≥ 0, which constitutes a compatibility
complex for C0 (Section 3.1).

Remark 6. Note that we are continuing here to use the block matrix notation for differential
operators, as discussed previously in Remark 2.
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With the above parametrizations for v and h, the compositional identities for the operators
J1 (99) and J2 (100) simplify to

J1 ◦ K̄ =
[
Jp1 Jw1 JY1 JZ1

]
◦ K̄ =

[
id 0 0

]
, (106a)

J2 ◦ K̄ =
[
Jp2 Jw2 JY2 JZ2

]
◦ K̄ =

[
0 0 ∇

]
. (106b)

Now we have all the information that we need to use the methods of Section 2 to construct a
compatibility complex for the Killing operator K̄. We will follow roughly the same outline as we
did in the Section 3.2 on cosmological FLRW geometries.

From now on, our strategy will be to show that our Killing operator K̄0 = K̄ is equivalent to
each of the operators

K̃0

[
ut
X

]
=

d̄0 = ∇̄ →
[
∇
D

] [
0
0

]
dt fr2 D d0 = ∇

0 C0

[utX
]

and K0

[
ut
X

]
=

d̄0 0
0 d0

0 C0

[ut
X

]
, (107)

where we have introduced the notation d̄i and di, i ≥ 0, for the usual exterior derivatives acting on
i-forms on M̄ and M respectively (hence the corresponding de Rham complexes). In the sequel,
we will use the notations d̄0 and [∇D ] completely interchangeably. Then, we will lift the known

compatibility complex for K0 first to K̃0 and finally to K̄0. This known compatibility complex has
the form

K0 =

d̄0 0
0 d0

0 C0

 , (108a)

K1 =


d̄1 0 0
0 d1 0
0 −C0 d0

0 0 C1

 , (108b)

K2 =


d̄2 0 0 0
0 C0 d1 0
0 0 −C1 d0

0 0 0 C2

 , (108c)

Ki =


d̄i 0 0 0
0 Ci−2 d1 0
0 0 −Ci−1 d0

0 0 0 Ci

 (2 < i < n− 2), (108d)

Kn−2 =

d̄n−2 0 0 0
0 Cn−4 d1 0
0 0 −Cn−3 d0

 , (108e)

Kn−1 =

[
d̄n−1 0 0

0 Cn−3 d1

]
, (108f)

Ki = 0 (n ≤ i). (108g)

It is straightforward to construct an equivalence between this complex and a twisted de Rham
complex, similar to how it was done in (40), thus showing that each of the above compatibility
operators is complete.

We start with the explicit reduction of K̄0 to K̃0 and then to K0. Here and in each subsequent
step, we give pairs of diagrams, which could be concatenated vertically, illustrating the passage
from the K̄i to the K̃i and to the Ki sequences. All the diagrams below illustrate equivalences
up to homotopy, as discussed in Section 2. All the required identities can be checked by direct
calculation, making careful use of the known identities di+1 ◦ di = 0, d̄i+1 ◦ d̄i = 0, Ci+1 ◦ Ci = 0,
as well as the compositional identities (106).
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• •

• •

K̄0=K̄

0 id 0

0 0 id




J1

0

0




0 id 0 0

0 0 id 0

0 0 0 id


id−K̄


J1

0

0




K̃0=


∇ 0

dt f

r2
D ∇

0 C0




0 0

id 0

0 id



0


0 0 0

id 0 0

0 id 0

0 0 id

 (109a)

• •

• •

K̃0=


∇ 0

dt f

r2
D ∇

0 C0



id 0

0 id



0



 id

r2dt·Jw
2

  0

r2dt·(JY
2 −id)

  0

r2dt·JZ
2


Jw
2 JY

2 JZ
2

0 0 id



K0=


d̄0 0

0 d0

0 C0



id 0

0 id



0


[id 0 ] 0 0

[ 0 dt f

r2
] id 0

[ 0 0 ] 0 id

 (109b)

Next, as we did previously in Section 3.2, we iterate the construction from Lemma 5, while
applying the simplifications discussed after the proof of Theorem 9. As before, the K̄i and K̃i

complexes are built up by appending the following diagrams to the right of the diagrams in (109).
Also as before, we do not repeat the labels on the vertical arrows if they can be read off a preceding
diagram.

The resulting operators K̄1 and K̃1 will be, respectively, compatibility operators for K̄0 and
K̃0. Some of the auxiliary arrows in these diagrams use the operators H̃J1 and HJ1 , which are
defined as follows. Noting that

J1K̄

 0 0

id 0
0 id

 = J1


0 0

∇ 0

dt fr2D ∇
0 C0


=
[
Jw1 JY1 JZ1

]  ∇ 0

dt fr2D ∇
0 C0

 =
[
id 0 0

]  0 0

id 0
0 id

 = 0,
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we must be able to factor

[
Jw1 JY1 JZ1

]
= H̃J1K̃1, and

[
Jp1 Jw1 JY1 JZ1

]
= HJ1

[
id 0

0 K̃1

]
(110)

through some operators H̃J1 and HJ1 . A bit more precisely, HJ1 =
[
Jp1 H̃J1

]
.

• •

• •

K̄1=

id 0

0 K̃1


id−K̄


J1

0

0




[
0 id

]

id 0

0 0



K̃1

id−

id 0

0 K̃1

K̄

HJ1

0

0






0 0 0 0 0

id 0 0 0 0

0 id 0 0 0

0 0 id 0 0

0 0 0 id 0

0 0 0 0 id


0 id 0 0

0 0 id 0

0 0 0 id

K̄

H̃J1

0

0



(111a)

• •

• •

K̃1=



[
0 −dr·(−)

]
dr·(−) 0

d̄1

id 0

0 −r2dt·(−)

 d̄1

 0

r2dt·(−)

 0

0 d1 0

0 −C0 d0

0 0 C1





id

0

  0

id

 0

0


Jw
2 JY

2 JZ
2

0 0 id




0 id 0 0 0

0 0 id 0 0

0 0 0 id 0

0 0 0 0 id




0

− 1
f dr

0

[
id 0 0 0 0

]

K1=


d̄1 0 0

0 d1 0

0 −C0 d0

0 0 C1





0 0 0 0

id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id


+



dr·(−)

d̄1

 0

r2dt·(−)


d1

−C0

0


H̃J2

 0

−r2dt·(−)


−id

0

H̃J2

(111b)
Above, we have used the notations dt·(−) = dta(−)a and dr ·(−) = dra(−)a. Also, the operator
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H̃J2 is defined as follows. Noting that

J2K̄

 0

id
0

 = J2


0

∇
dt fr2D

0

 =
[
Jw2 JY2 dt fr2

](
d̄0 =

[
∇
D

])
=
[
0 0 ∇

]  0

id
0

 = 0,

J2K̄

 0

0
id

 = J2


0

0
∇
C0

 =
[
JY2 JZ2

] [d0 = ∇
C0

]
=
[
0 0 ∇

]  0

0
id

 = ∇ =
[
id 0

] [∇
C0

]
,

we must be able to factor

[[
Jw2 JY2 dt fr2

]
JY2 − id JZ2

]
= H̃J2


d̄1 0 0
0 d1 0
0 −C0 d0

0 0 C1

 (112)

through some operator H̃J2 .
For convenience, we note that[

id 0 0 0 0
]
K̃1 =

[
dr · Jw2 dr · (JY2 − id) dr · JZ2

]
,

while on the other hand[
0 H̃J2

]
K̃1 = JY2

dr

f

[
dr · Jw2 dr · (JY2 − id) dr · JZ2

]
.

Then, defining

HJ2 =
[
−JY2 dr

f H̃J2

]
, we have HJ2K̃1 = 0. (113)

With the next iteration of Lemma 5, we construct the compatibility operators K̄2 and K̃2.

• •

• •

K̄2=

 HJ1

0 K̃2



[
0 id

]

id 0

0 K̃1

K̄
id 0

0 0



K̃2

 0

id



0

(114a)
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• •

• •

K̃2=



HJ2

0 d̄2 0 0 0

0 0 C0 d1 0

0 0 0 −C1 d0

0 0 0 0 C2




0 id 0 0 0

0 0 id 0 0

0 0 0 id 0

0 0 0 0 id



−



dr·(−)

d̄1

 0

r2dt·(−)


d1

−C0

0


[
id 0 0 0 0

]

K2=


d̄2 0 0 0

0 C0 d1 0

0 0 −C1 d0

0 0 0 C2





0 0 0 0

id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



0

(114b)

With two more iterations of Lemma (5), we construct the compatibility operators K̄3, K̄4 and
K̃3, K̃4.

• • •

• • •

K̄3=


0 0 d̄3 0 0 0

0 0 0 C1 d1 0

0 0 0 0 −C2 d0

0 0 0 0 0 C3



0


id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



K̄4=


d̄4 0 0 0

0 C2 d1 0

0 0 −C3 d0

0 0 0 C4




id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



0

K̃3=


0 d̄3 0 0 0

0 0 C1 d1 0

0 0 0 −C2 d0

0 0 0 0 C3



0


id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



K̃4=


d̄4 0 0 0

0 C2 d1 0

0 0 −C3 d0

0 0 0 C4




id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



0

(115a)
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• • •

• • •

K̃3=


0 d̄3 0 0 0

0 0 C1 d1 0

0 0 0 −C2 d0

0 0 0 0 C3



0


id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



K̃4=


d̄4 0 0 0

0 C2 d1 0

0 0 −C3 d0

0 0 0 C4




id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



0

K3=


d̄3 0 0 0

0 C1 d1 0

0 0 −C2 d0

0 0 0 C3



0


id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



K4=


d̄4 0 0 0

0 C2 d1 0

0 0 −C3 d0

0 0 0 C4




id 0 0 0

0 id 0 0

0 0 id 0

0 0 0 id



0

(115b)
From this point on, the complexes K̄i, K̃i become identical with Ki from (108).

Theorem 11. Consider the family of n-dimensional (n ≥ 4) spacetimes (M̄, ḡ) introduced at the
top of Section 3.3, warped products of a static 2-dimensional factor (M, g) and a constant curva-
ture factor (S,Ω) with sectional curvature α, which includes the higher dimensional Schwarzschild
(Schwarzschild-Tangherlini), Taub and pseudo-Schwarzschild solutions, possibly with a nonzero
cosmological constant. The full compatibility complex K̄i for the Killing operator K̄0 = K̄ (105) is
given by

K̄0 =


1
f (2f∂r + f1

r ) 0 0

dr 1
f ∂t − dt

f1
2r ∇ 0

dr f
r2D

1
f dt fr2D ∇

2Ω f
r 0 C0

 , (116a)

K̄1 =



id 0 0 0

0
[
0 −dr · (−)

]
dr · (−) 0

0 d̄1

[
id 0
0 −r2dt · (−)

]
d̄1

[
0

r2dt · (−)

]
0

0 0 d1 0
0 0 −C0 d0

0 0 0 C1




id 0 0 0

0

[
id
0

] [
0
id

] [
0
0

]
0 Jw2 JY2 JZ2
0 0 0 id





id 0 0 0

0 id 0 0
0 0 id 0
0 0 0 id

− K̄
J1

0
0


 , (116b)
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K̄2 =



HJ1

0 HJ2

0 0 d̄2 0 0 0
0 0 0 C0 d1 0
0 0 0 0 −C1 d0

0 0 0 0 0 C2


, (116c)

K̄3 =


0 0 d̄3 0 0 0
0 0 0 C1 d1 0
0 0 0 0 −C2 d0

0 0 0 0 0 C3

 , (116d)

K̄i =


d̄i 0 0 0
0 Ci−2 d1 0
0 0 −Ci−1 d0

0 0 0 Ci

 (3 < i < n− 2), (116e)

K̄n−2 =

d̄n−2 0 0 0
0 Cn−4 d1 0
0 0 −Cn−3 d0

 , (116f)

K̄n−1 =

[
d̄n−1 0 0

0 Cn−3 d1

]
, (116g)

K̄i = 0 (n ≤ i). (116h)

where f(r) is defined in (64) and f1 = rf ′(r), d̄i and di denote the exterior derivatives on i-
forms, on M̄ and M respectively, while D and Ci are the covariant derivative and the Calabi
complex operators (32) on (S,Ω), and we have also used the operators J1 (99), J2 (100), HJ1 (110),
HJ2 (113). (See Appendix B.3 for a more complete summary of the notation.)

While we have unambiguously defined the operators J1, J2, HJ1 , and HJ2 , we have not com-
puted them explicitly. For our purposes here, it is sufficient that they exist and satisfy a few
defining properties. Of course, in individual cases, they could be easily computed using computer
algebra.

Proof. The proof is very much parallel to the proof of Theorem 10. We start with the knowledge
that the complex (108) is a full compatibility complex. Then, gluing together (from left to right) the
diagrams (109), (111), (114) and (115), we observe that the glued diagrams satisfy the hypotheses
of Lemma 4. This implies, that K̃i is a full compatibility complex as well, which in turn implies
that so is K̄i, whose operators we have explicitly listed in (116).

The non-vanishing ranks of the vector bundles in the K̄i complex have the following pattern,
which can be compared to similar table for the constant curvature (Section 3.1) and FLRW cases
(Section 3.2, where m = n− 1, for comparison):
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n = 4 n = 5 n = 6 n ≥ 4
4 5 6 (n− 2) + 1 + 1

K̄0

10 15 21 (n−1)(n−2)
2 + 2(n− 2) + 3

K̄1

18 35 64 n−2
2

(
n−1

3

)
+ (n− 1)(n− 2) + (n− 2) +

(
n
2

)
+ (n− 2) + 1

K̄2

12 35 95 (n− 2)
(
n−1

4

)
+ (n− 2)

(
n−1

3

)
+ (n−1)(n−2)

2 +
(
n
3

)
+ (n− 2) + 1

K̄3

2 17 81 3(n−2)
2

(
n−1

5

)
+ 2(n− 2)

(
n−1

4

)
+ (n−2)

2

(
n−1

3

)
+
(
n
4

)
...

...
(n−2)(i−1)

2

(
n−1
i+1

)
+ (n− 2)(i− 2)

(
n−1
i

)
+ (n−2)(i−3)

2

(
n−1
i−1

)
+
(
n
i

)
(3 < i) K̄i

(n−2)i
2

(
n−1
i+2

)
+ (n− 2)(i− 1)

(
n−1
i+1

)
+ (n−2)(i−2)

2

(
n−1
i

)
+
(
n
i+1

)
...

...
K̄n−1

2 4 7 (n−2)(n−3)
2 + 1

Remark 7. In n = 4 dimensions, it is well-known [21, 31] that, for practical purposes, taking
the linearized Einstein equations into account, the gauge invariant degrees of freedom for linear
perturbations on the Schwarzschild background reduce to the Regge-Wheeler (axial) and Zerilli
(polar) scalars, or equivalently the complex Teukolsky scalar. It is even possible to give the
Regge-Wheeler and Zerilli scalars local and manifestly gauge-invariant definitions, based on the
linearization of curvature tensors vanishing on the Schwarzschild background [10]. However, it is
also known that there exist so-called algebraically special modes that are not pure gauge but lie in
the kernel of these gauge-invariants [38]. Hence, this small set of invariants cannot be considered
complete in our sense. In our construction, K̄1 has 18 independent components (without taking
the linearized Einstein equations into account, though). But our construction proves that they
form a complete set of local gauge-invariants.

Remark 8. In analogy with Remark 4 about FLRW geometries, it is worth noting that the K̄i

complex presented above is not continuously deformable through the class of gST spacetimes to
the M = 0 case, which corresponds to the constant curvature limit. The main reason, again, is
that the operators J1 and J2, introduced in Equations (99) and (100), are proportional to 1/M
and hence diverge in that limit. These operators, together with their factorizations HJ1 and HJ2

appear in several places in the formulas (116) for the operators K̄i (for i ≥ 1). Thus, also in this
case, it would be difficult to compare the local gauge-invariant components of our K̄1 operator
to the components of the linearized Riemann operator, which would also be given by long and
unenlightening expressions. A more fruitful comparison would be to try to express the components
of our K̄1 in terms of the linearized IDEAL characterization tensors that were recently constructed
for the gST geometries [24].

However, the intuition proposed in the second paragraph of Remark 4 still largely applies to
the components of our K̄1. In particular, our J1 operator is directly analogous to the J operator
introduced for FLRW geometries. On the other hand, the J2 operator did not have a direct analogy,
so the way it induces gauge invariant components of K̄1 is slightly different.

4 Discussion

In this work, we have studied the construction of the compatibility complex (Definition 2) Kl,
l = 0, 1, 2, . . ., for a linear differential operator K0 of finite type (Definition 7). The construction
proceeds by putting the operator K0 into a canonical form of a flat connection and then lifting the
resulting twisted de Rham complex to a compatibility complex for K0 (Theorem 9). Our primary
and motivating example of an operator of finite type is the Killing operator Kab[v] = ∇avb +∇bva
on a Lorentzian (or even pseudo-Riemannian) manifold (M, g). Once known, the components
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of the first compatibility operator K1 can be interpreted (as discussed in the Introduction) as a
complete set of local gauge-invariant observables in linearized gravity on (M, g).

We have applied the abstract construction of Section 2 to several physically motivated examples:
flat (Minkowski) and constant curvature (de Sitter or anti-de Sitter) spacetimes in Section 3.1,
cosmological (FLRW) spacetimes in Section 3.2, (Schwarzschild-Tangherlini) spherically symmetric
black hole spacetimes4 in Section 3.3. In each case, we have kept the dimension n = dimM general,
allowing at least n ≥ 4. While the contents of Section 3.1 are well-known (they were previously
reviewed in more detail in [23]), the Killing compatibility complexes constructed in Sections 3.2
and 3.3 are new.

One may wish to compare the main result for FLRW geometries, Theorem 10, with the recent
works [13, 9, 14], which were the first to (a) construct, (b) give a geometric interpretation to
and (c) prove completeness for the first compatibility operator K1 in a context very similar the
one considered in Section 3.2 (the difference is that here we do not include the presence of a
dynamical scalar inflaton field on an cosmological FLRW geometry). The systematic approach
developed in this work can also be easily applied in the presence of an inflaton field. Then, the
systematically constructed compatibility operator K1 would be necessarily equivalent to what was
obtained in [13, 9, 14]. The difference is that our systematic construction automatically comes
with a proof of completeness, while the previous proof of completeness given in [13] relied very
heavily on parallels with known results for the flat and constant curvature cases [19, 23], without
an obvious way to generalize it. On the other hand, our systematic construction does not give a
Stewart-Walker-like (cf. the introduction to Section 3) geometric interpretation to K1 as a linear
local gauge-invariant observable. On the other hand, the approach put forward in [9, 14], of
constructing a candidate K1 by linearizing an IDEAL characterization of the background geometry,
automatically gives K1 a Stewart-Walker-like geometric interpretation, but does not automatically
prove completeness.5 Thus, we see great potential in joining the methods of the current work with
those of [9, 14] to construct universal Killing compatibility operators (equivalently, complete sets
of linear local gauge-invariant observables) on a variety of backgrounds, while getting the benefits
of straightforward geometric interpretation and of a systematic way to prove completeness.

For the Schwarzschild black hole (and its higher dimensional generalizations), the Regge-
Wheeler and Zerilli local gauge-invariants have been known for a long time [25]. Other local
gauge-invariants have also been proposed (see [21, 31, 1] for a brief review). However, to our knowl-
edge, no claim of completeness has ever been made for an explicit set of local gauge-invariants on
Schwarzschild. Thus, even our construction of the first compatibility K1 operator in Section 3.3
appears to be new. On the other hand, the 4-dimensional Schwarzschild black hole does have a
known IDEAL characterization [12], recently extended to higher dimensions [24], so as was argued
in the previous paragraph its linearization would have provided a good candidate for K1. To our
knowledge, this has not been done explicitly in the literature. Again, comparing that heuristic
construction with our systematic approach would be very interesting.

The next logical step is to apply our methods to the Kerr black hole and higher dimensional
(Myers-Perry) generalizations. As a first step, we intend to construct a Killing compatibility
complex for the Kerr geometry [2], thus providing a proof of completeness for the list of local
gauge-invariants recently proposed in [1].

Once the Killing compatibility complex is known on a given geometry, this information has
interesting applications to the symplectic and Poisson structures on the space of solutions of lin-
earized gravity [23, Sec.5].

Acknowledgments. The author thanks S. Aksteiner, L. Andersson and T. Bäckdahl for many
useful discussions on gauge-invariant observables, as well as B. Kruglikov and W. Seiler for pertinent
feedback at the early stages of this work. Also, the author was partially supported by the GAČR
project 18-07776S and RVO: 67985840.

4The family of spacetimes considered Section 3.3 is actually richer than just asymptotically flat spherically
symmetric black holes (the Schwarzschild-Tangherlini ones). More generally, it allows for a non-zero cosmological
constant and also allows to substitute spherical symmetry for planar or pseudo-spherical symmetry, which respec-
tively give rise Taub’s plane symmetric spacetimes or to pseudo-Schwarzschild solutions.

5Although, the only possibility we know in which completeness might fail is when the IDEAL characterization
tensors vanish at quadratic or higher order when approaching the isometry class of the characterized geometry in
the space of metrics. Then their linearization might fail to capture all of the linear invariants.
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A Flat connection form for PDEs of finite type

We have chosen to express our definition of a PDE of finite type (Definition 7) directly in terms of a
flat connection (Definition 6). Elsewhere in the literature, the definition is given in different terms,
but the equivalence with the form of a flat connection is well-known, even for nonlinear equations.
For instance, the contents of Rmk.2.3.3, Rmk.2.3.6, and Ex.2.3.17 of [30] concern precisely the
equivalence between these two possible definitions.

For the convenience of the reader, we give an elementary proof of this equivalence for linear
equations, which is all that we will need. When we speak of equivalence below, we mean in the
sense of one operator complexes of Definition 1. The length of our proof mostly reflects the amount
of notation that we have needed to introduce along the way to make the argument as explicit as
possible.

For the following definition, we need to quickly introduce the notion of jets and jet bundles [30,
Secs.2.1–2]. Given a vector bundle V →M , the N -jet jNx v at x ∈M of a section v ∈ Γ(V ) is the
equivalence class of sections that have the same Taylor expansion about x up to order N in local
adapted coordinates on V →M . The definition clearly does not depend on the choice of adapted
coordinates. Denote by JNx V the vector space of all N -jets at x and let JNV =

⊔
x∈M JNx V be

the N -jet bundle of V , which can naturally be given the structure of a smooth vector bundle
JNV → M , with J0V = V . By throwing away higher terms of Taylor series expansions, we
can define natural projections πNN ′ : J

NV → JN
′
V when N ≥ N ′. By assigning to a section

v ∈ Γ(V ) its own N -jet at each point of M , we can define the natural N -jet extension differential
operator jN : Γ(V ) → Γ(JNV ), which is universal in the sense that for any differential operator
D : Γ(V )→ Γ(W ) of order at most N , there exists a unique vector bundle map p0(D) : JNV →W
such that D[v] = d(jNv). Extending this notation, we denote by pl(D) = p0(jl ◦ D) the l-th
prolongation of D.

Definition 12. Let V → M and W → M be vector bundles and K : Γ(V ) → Γ(W ) a linear
differential operator. The PDE K[v] = 0 is said to be of finite type when (a) locally there exists
an integer N < ∞, a vector bundle morphism κ : JNV → JN+1V and a differential operator
λ : Γ(W ) → Γ(JN+1V ) such that jN+1v − κ(jNv) = λ[K[v]] for any v ∈ Γ(V ), as well as (b)
locally the dimension of the solution space is finite and constant.

Proposition 13. If a differential operator K : Γ(V ) → Γ(W ) between vector bundles V → M ,
W →M defines a PDE of finite type K[v] = 0, then K is equivalent to a flat connection operator
D̄ on some vector bundle Ū →M .

Proof. Our proof will consist of three steps: (a) equivalence of the original differential operator
K to a connection D on JNV together with a non-differential constraint E : JNV → W ′, (b)
equivalence to the restriction D̃ of D to the sub-bundle Ũ ↪→ JNV → M satisfying the non-
differential constraint E(ũ) = 0, and (c) equivalence to the restriction D̄ of D̃ to the sub-bundle
Ū ↪→ Ũ →M spanned by flat sections.

Since all of our definitions and claims are local, we might as well work in local adapted coor-
dinates on V , W and any other vector bundles. For instance, we will use coordinates (xa) on M ,
(xa, vα) on V and (xa, vα, vα,1, . . . , vα,N ) on JNV , such that vα,k(jNφ(x)) = ∂kvα(φ(x)), where
∂k stands for all possible independent partial derivatives of order k with respect to the (xa) coor-
dinates, with similar notations used for other bundles. Also, when there is no confusion, we will
denote a general section of a vector bundle V by v, a general section of W by w, and so on. We
will denote a general section of JNV by v(N) = (v, v1, . . . , vN ).

Before proceeding, let us establish some notation. Namely, supposing that K is a differential
operator of order k, there is a unique non-differential bundle map that factors K through k-jets,
which we denote by p0(K)(jkv) = K[v] and similarly pl(K)(jk+lv) = jlK[v]. Also, we will need
the algebraic operators ιk defined by the identity6 ∂k(∂lv) = ιk(∂k+lv), as well as the differential
operators ∆N

k defined by the identity

∆N
k [∂v − ι1(v1), . . . , ∂vN−1 − ι1(vN ), ∂vN − ι1(vN+1)] = ∂kv − ιk(vk), (117)

6The non-triviality of the identity stems from the fact that ∂k(∂lv) has more components than ∂k+lv, if we do
not symmetrize the partial derivatives between the ∂k and ∂l operators.
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for k ≤ N . These operators basically encode the identities ∂0v− v = 0, ∂1v− ι1(v1) = ∂v− ι1(v1),
∂2v − ι2(v2) = ∂(∂v − ι1(v1)) + (∂v1 − ι1(v2)), . . . .

(a) Essentially, all the information that we will need to establish the first equivalence is con-
tained in the bundle map κ and the differential operator λ from Definition 7. The non-trivial infor-
mation is contained in the highest order components, ∂N+1v−κN+1(v, ∂v, . . . , ∂Nv) = λN+1[K[v]],
which implies the identity

∂(∂Nv)− ι1(κN+1(v, ∂v, . . . , ∂Nv)) = ι1(λN+1[K[v]]). (118)

That last identity will be a crucial piece of our definition of a connection on JNV .
To complete the necessary definitions, we will need the differential operator P1 : Γ(W ) →

Γ(T ∗M ⊗M JNV ) given by

P1[w] =


0
...
0

ι1(λN+1[w])

 . (119)

Next, the bundle W ′ and the bundle map E : JN →W ′ are chosen so that kerE = πN
′

0 (ker pN
′
(K))

for some N ′. Since we are allowed to specify N and N ′ as we like, we can pick them so that N ′ > 0,
N > k. The meaning is that E takes into account all integrability conditions of order N that can
be obtained by prolonging the equation K[v] = 0 by N ′ differentiations. By construction, there
must exist a differential operator P0 : Γ(W ) → Γ(W ′) such that P0[K[v]] = E(jNv). Also, since
we have presumed that N > k, we have πNk (kerE) ⊂ ker p0(K) and there must exist a bundle map
P̄0 : W ′ → W such that P0E = p0(K)πNk . It remains to define the connection on JNV , which we
give by the formula

D


v
v1

...
vN−1

vN

 =


∂v − ι1(v1)
∂v1 − ι1(v2)

...
∂vN−1 − ι1(vN )

∂vN − ι1(κN+1(v, v1, . . . , vN ))

 . (120)

Having introduced all the necessary notation. The desired equivalence is explicitly exhibited
by the diagram

v w

v(N)

[
v

(N)
1

w′

]

K

jN

P1

P0



0

D
E



πN
0

[
p0(K)∆N

k P̄0

]

[
−∆N

N 0
]

, (121)

where vN1 denotes a general section of T ∗M⊗M JNV →M . To prove that we have an equivalence,
we must verify all the conditions required by Definition 1. The commutativity of the squares formed
by solid arrows follows from direct computations. One is involves only the defining properties of
P0 and P1, while the other uses the definitions of ∆N

k and P̄0:

[
p0(K)∆N

k P̄0

] [D
E

]
−KπN0 = p0(K)(∆N

k D) + (P̄0E)− p0(K)πNk (jNπN0 )

= p0(K)πNk (jNπN0 − id) + p0(K)πNk (id− jNπN0 ) = 0.
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The remaining checks involve the homotopy corrections:

πN0 j
N = id− 0,

jNπN0 = id + (jNπN0 − id)

= id + ∆N
ND,

(
id−

[
p0(K)∆N

k P̄0

] [P1

P0

]
− 0

)
K = K − p0(K)∆N

k (P1K)− P̄0(P0K)

= K − p0(K)(∆N
k D)jN − (P̄0E)jN

= K − p0(K)(jkπN0 − πNk )jN − p0(K)jk = 0,

([
id 0
0 id

]
−
[
P1

P0

] [
p0(K)∆N

k P̄0

]
−
[
D
E

] [
−∆N

N 0
]) [D

E

]
=

[
D
E

]
−
[
P1

P0

]
p0(K)

(
(jkπN0 − πNk ) + πNk

)
−
[
D
E

]
(id− jNπN0 )

=

([
D
E

]
jN −

[
P1

P0

]
K

)
πN0 =

[
0
0

]
.

(b) The next step is to eliminate the non-differential E(v, v1, . . . , vN ) = 0 constraint. By
introducing a sub-bundle ι : Ũ ↪→ JNV → M such that Ũ = kerE. In general kerE need not
be a vector bundle (the fiber ranks may be non-constant over M), hence Ũ might not exist as
a bundle. However, from requirement in Definition 12(b), we know that the dimension of the
solution space of K[v] = 0 is finite and locally constant, which by part (a) of our proof also
applies to the solution space of D[v(N)] = 0 under the E-constraint. In fact, the dimension of
the solution space on a neighborhood of x ∈ M is bounded from above by dim kerxE, simply
because a D-flat section is uniquely determined by its value at any one point. The only reason that
an element ũx ∈ kerxE might not correspond to a local solution is that there might exist some
higher order differential consequence of D[v(N)] = 0 (or equivalently of K[v] = 0) that imposes
further integrability conditions on jNv, which ũx may not satisfy. However, from the theory of
formal integrability of PDEs (Cartan-Kuranishi theorem [30, Sec.7.4]), it is well known that past
a certain finite differential order N ′, no further constraints on jNv will appear from considering
∂N
′
K[v] = 0 or higher order differential consequences. Let us use this order N ′ (or any higher

one) to influence the definition of the E-constraint that we introduced in part (a) of the proof.
That is, we are free to assume that E has been chosen such that every element ũx ∈ kerxE defines
a unique local solution7 of K[v] = 0 with jNv(x) = ũx. In other words, dim kerxE is equal to
the local dimension of the solution space about x ∈ M . But then, by the finite type hypothesis
on K[v] = 0, we know that dim kerxE is locally constant, meaning that kerE is indeed a vector
bundle, which we can denote by ι : Ũ → JNV →M .

Since we are working locally, we are free to presume that there also exists a projection bundle
map q : JNV → Ũ such that qι = id. In the other direction, we have the identity (id − ιq)ι = 0,
which means that there must exist a bundle map h : W ′ → JNV such that ιq = id− hE. Further,
we can define a connection operator D̃ on Ũ by the formula

D̃ũ = q1Dι(ũ), (122)

where we have introduced the convenient notation q1 = id ⊗ q : T ∗M ⊗M JNV → T ∗M ⊗M Ũ .
We will use the same convention also for E1 = id ⊗ E and ι1 = id ⊗ ι. We finally have all the

7The existence of such a solution is guaranteed by applying D-parallel transport.
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ingredients to exhibit the next equivalence

v(N)

[
v

(N)
1

w′

]

ũ ũ1

D
E



q [
q1 −q1Dh

]

[
0 h

]

D̃

ι
ι1

0



0

. (123)

The commutativity of the solid arrow squares we first need one more identity. Let us define

E′ = h1E1D− DhE (124)

and note that it is a non-differential operator (as follows from the basic properties of the connection
operator). From its definition, E′(v(N)) = 0 is also an integrability condition. But by the discussion
from the preceding paragraph, E(V (N)) = 0 already takes into account all possible integrability
conditions. Hence, we must be able to factor E′ = h′E for some bundle map h′ : W ′ → T ∗M⊗MW ′,
from which follows the identity

h1E1D = DhE + h′E = (Dh+ h′)E. (125)

Hence, [
D
E

]
ι−
[
ι1
0

]
D̃ =

[
Dι− (ι1q1)Dι

Eι

]
=

[
(h1E1D)ι

0

]
=

[
(Dh+ h′)(Eι)

0

]
=

[
0
0

]
,

D̃q −
[
q1 −q1Dh

] [D
E

]
= q1D(ιq)− q1D(id− hE) = 0.

The first set of identities involving the homotopy corrections also easily follows from the definition
of the ι and q bundle maps. We check the remaining ones by direct computation:

id−
[
q1 −q1Dh

] [ι1
0

]
= id− q1ι1 = 0,

([
id 0
0 id

]
−
[
ι1
0

] [
q1 −q1Dh

]
−
[
D
E

] [
0 h

])
=

[
id− ι1q1 ι1q1Dh− Dh

0 id− Eh

]
=

[
h1E1 −(h1E1D)h

0 id− Eh

]
=

[
h1E1 −(Dh+ h′)Eh

0 id− Eh

]
=

[
id (Dh+ h′)
0 id

] [
h1E1 −(Dh+ h′)

0 id− Eh

]
,

where the last factor has the property[
h1E1 −(Dh+ h′)

0 id− Eh

] [
D
E

]
=

[
(h1E1D− DhE − h′E)

E(id− hE)

]
=

[
0

(Eι)q

]
=

[
0
0

]
.

(c) At this point, we know that the local solutions of K[v] = 0 are in bijection with the D̃-
flat local sections of Ũ → M . In principle, it is now sufficient to check that D is flat (if it were
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not flat, then the rank of Ũ could not coincide with the dimension of the local solution space of
K[v] = 0, though the two do coincide by construction from part (b) of our proof). However, we
will take a slightly indirect route and show a more general result, that will also be referred to in
our discussion of the Killing equation in Section 3. Namely, provided the local solutions of D̃ũ = 0
span a sub-bundle ῑ : Ū ↪→ Ũ → M , we will show that the restriction of D̃ to Ū → M is flat and
the original D̃ũ = 0 equation is equivalent to the new D̄ū = 0 equation.

In our case, from the finite type assumption on K[v] = 0, we know that the local solution space
has locally constant (finite) dimension, which is easily seen to be equivalent to the local solutions
of D̃ũ = 0 spanning a sub-bundle.

Now, under our hypotheses and since we are working locally, we can choose a frame on Ū →M
which corresponds to flat sections ũβ on Ũ . Namely, we define ῑ(ū) = ūβũβ . Locally, there also

exists the projection bundle map q̄ : Ũ → Ū → M , which satisfies q̄ῑ = id and hence acts as
q̄
(
ūβũβ

)
= ū. Hence, using again the notation ῑ1 = 1⊗ ῑ, we get the identity

D̃[ῑ(ū)] = dūβ ⊗ ũβ + ūβ(D̃ũβ) = dūβ ⊗ ũβ = ι1
(
D̄ū
)
, (126)

where d is simply the exterior derivative acting on the scalars ūβ and we have defined D̄ to act on
the frame components of ū as (D̄ū)β = dūβ . The operator D̄ is clearly a flat connection on the
bundle Ū → M . It remains only to exhibit the equivalence between the equations D̃ũ = 0 and
D̄ū = 0.

As we already discussed in part (b) of our proof, when ῑ is not surjective, there must be
some integrability conditions that follow from the differential consequences of D̃ũ = 0. In other
words, there exists a differential operator λ̄ such that λ̄D̃ is a non-differential operator, satisfying
(λ̄D̃)ι = 0, with ι : Ū ↪→ ker λ̄D̃ actually being an isomorphism. Again, as before, this means that
there exists an operator h̄ such that ῑq̄ = h̄(λ̄D̄). Recalling again the notation, Ũ1 = T ∗M ⊗M Ũ
and Ū1 = T ∗M ⊗M Ū , as well as q̄1 = id ⊗ q̄ and ῑ1 = id ⊗ ῑ. With that in mind, the desired
equivalence is explicitly given by the diagram

ũ ũ1

ū ū1

D̃

q̄ q̄1(id−D̃h̄λ̄)

h̄λ̄

D̄

ῑ ῑ1

0

. (127)

The arguments to check all the required identities are similar to those in part (b). We check that
the solid arrows form commutative squares by direct computation:

D̄q̄ = q̄1D̃(ῑq̄) = q̄1D̃− q̄1D̃h̄λ̄D̃ = q̄1(id− D̃h̄λ̄)D̃,

D̃ῑ = ῑ1D̄.

To check some of the identities with the homotopy corrections, we need one more identity.
For ease of notation, define Ē = λ̄D̃, which by assumption is a non-differential operator which
incorporates all the integrability conditions of the equation D̃ũ = 0. Just as in part (b), since
all integrability conditions must factor through Ē, there must exist an operator h̄′ such that
h̄1Ē1D̃− D̃h̄Ē = h̄′Ē, which implies the identity

[h̄1Ē1 − (D̃h̄+ h̄′)λ̄]D̃ = 0. (128)

35



Hence, we can verify that

id− q̄ῑ = 0,

id− ῑq̄ − h̄λ̄D̃ = 0,

(id− q̄1(id− D̃h̄λ̄)ῑ1)D̄ = (id− (q̄1ῑ1))D̄ + q̄1D̃h̄λ̄(ῑ1D̄)

= q̄1D̃h̄((λ̄D̃)ῑ) = 0,

(id− ῑ1q̄1(id− D̃h̄λ̄)− D̃h̄λ̄)D̃ = (id− ῑ1q̄1)(id− D̃h̄λ̄)D̃

= h̄1Ē1D̃− h̄1Ē1D̃(h̄λ̄D̃)

= h̄1Ē1D̃− (h̄1Ē1D̃)(id− ῑq̄)
= (D̃h̄+ h̄′)(Ēῑ)q̄ = 0.

This concludes the proof.

Since according to Definition 12 the flat section equation Dv = 0 for a flat connection D is itself
of finite type (with N = 0), Proposition 13 shows that Definitions 7 and 12 are clearly equivalent
and can be used interchangeably.

The reader might notice that the structure of parts (b) and (c) in the proof of Proposition 13 is
rather similar. The reason that we have included both of them in detail is that part (c) can basically
be read independently and establishes the following (of course also well-know) more specific result:

Lemma 14. Let D be a connection on a vector bundle V . If the local solutions of the flat section
equation Dv = 0 span a sub-bundle W ↪→ V , then the restriction D̄ = D|W of D to W is a
flat connection on W . Moreover, D is equivalent to D̄ in the sense of one operator complexes
(Definition 1).

B Notation reference

B.1 Constant curvature spacetime

α curvature constant Section 3.1

Ci, C0 = K Calabi compatibility complex for Killing operator K (32)

S � T Kulkarni-Nomizu product (28)
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B.2 FLRW spacetimes

(M, g) = (I × F,−dt2 + f2g̃F ) FLRW geometry, with scale factor f Section 3.2

α curvature constant Section 3.2

Ua unit covector normal to F factor Section 3.2

Rabcd, Rab,R background Riemann, Ricci and scalar
curvatures on (M, g)

(41)

∂t, ∇̃ derivative operators extended from I
and F to M

Section 3.2

∆̃, d̃iv, t̃r Laplacian, divergence and trace ex-
tended from F to M

(53)

va = AfUb + f2X̃a covector parametrization, UaX̃a = 0 (34)

hab = pUaUb − 2f2U(aỸb) + f2Z̃ab symmetric 2-tensor parametrization,
UaỸa = 0 = UaZ̃ab

(36)

K Killing operator on (M, g) (37)

C̃i, C̃0 = K̃ extension of Calabi and Killing opera-
tors from (F, gF ) to M

(40)

J, J̃ operator to extract A = J ◦K[v], sub-
component J̃

(44), (47), (51)

HJ , H̃J factorization of J, J̃ (49), (48), (52)
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B.3 Schwarzschild-Tangherlini spacetimes

(M̄, ḡ) = (M×S, g + r2Ω), ∇̄µ generalized Schwarzschild-Tangherlini
(gST) spacetime, covariant derivative

Section 3.3

R̄abcd, R̄ab, R̄ background Riemann, Ricci and scalar cur-
vatures on (M̄, ḡ)

(76), (77)

T̄abcd Λ-shifted background Riemann curvature
on (M̄, ḡ)

(93)

(S,Ω), DA constant curvature factor, covariant
derivative extended to M̄

Section 3.3

(g,Ω),∇a radio-temporal factor, covariant derivative
extended to M̄

Section 3.3

Rabcd, Rab,R background Riemann, Ricci and scalar cur-
vatures on (M, g)

(60)

−f(r) the ḡtt metric component, its derivatives (62), (64)

f1(r) = rf ′(r), f2(r) = r′f1(r) derivatives of f(r) (67), (68)

M,Λ, α mass, cosmological, curvature constants (64)

ta = −fdta timelike Killing covector on (M, g) Section 3.3

r, ra = dra radial coordinate and covector on (M, g) Section 3.3

vµ →
[
ut fdta + urdra

r(rXA)

]
covector parametrization on M̄ (104)

hµν →
[
p rarb − 2t(awb) r(rYaB)

r(rYbA) r2ZAB

]
symmetric 2-tensor parametrization on M̄ (104)

K̄ Killing operator on (M̄, ḡ) (105)

Ci, C0 = K extension of Calabi and Killing operators
from (S,Ω) to M̄

(105)

J1 operator to extract ur = J1 ◦ K̄[v] (99)

J2 operator to extract ∇a vBr = J2 ◦ K̄[v]aB (100)

HJ1 , H̃J1 factorization of J1 (110)

HJ2 , H̃J2 factorization of parts of J2 (113), (112)
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