2024
Inversion points of the accretion flows onto super-spinning Kerr attractors
PUGLIESE, Daniela a Zdeněk STUCHLÍKZákladní údaje
Originální název
Inversion points of the accretion flows onto super-spinning Kerr attractors
Autoři
PUGLIESE, Daniela (380 Itálie, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)
Vydání
European Physical Journal C, New York (USA), SPRINGER, 2024, 1434-6044
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.400 v roce 2022
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001168082000001
Klíčová slova anglicky
accretion flows;Kerr super-spinning attractor;spin;orbiting fluids;corona
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 1. 2025 11:58, Mgr. Pavlína Jalůvková
Anotace
V originále
We study the accretion flows towards a central Kerr super-spinning attractor, discussing the formation of the flow inversion points, defined by condition uϕ=0 on the particles flow axial velocity. We locate two closed surfaces, defining inversion coronas (spherical shells), surrounding the central attractor. The coronas analysis highlights observational aspects distinguishing the central attractors and providing indications on their spin and the orbiting fluids. The inversion corona is a closed region, generally of small extension and thickness, which is for the counter-rotating flows of the order of ≲1.4M (central attractor mass) on the vertical rotational axis. There are no co-rotating inversion points (from co-rotating flows). The results point to strong signatures of the Kerr super-spinars, provided in both accretion and jet flows. With very narrow thickness, and varying little with the fluid initial conditions and the emission process details, inversion coronas can have remarkable observational significance for primordial Kerr super-spinars predicted by string theory. The corona region closest to the central attractor is the most observably recognizable and active part, distinguishing black holes solutions from super-spinars. Our analysis expounds the Lense–Thirring effects and repulsive gravity effects in the super-spinning ergoregions.