J 2024

On dark energy effects on the accretion physics around a Kiselev spinning black hole

PUGLIESE, Daniela a Zdeněk STUCHLÍK

Základní údaje

Originální název

On dark energy effects on the accretion physics around a Kiselev spinning black hole

Autoři

PUGLIESE, Daniela (380 Itálie, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)

Vydání

European Physical Journal C, New York (USA), SPRINGER, 2024, 1434-6044

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.400 v roce 2022

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001218508400001

Klíčová slova anglicky

quasi-normal modes;thick discs;3-dimensional simulations;cosmological constant;runaway instability;inner edge;disks;quintessence;motion;tori

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 16. 1. 2025 13:51, Mgr. Pavlína Jalůvková

Anotace

V originále

Kiselev metric in the static and rotating form is widely used to test different aspects of the dark energy (DE) effects. We consider a DE Kiselev spacetime, predicting the reduction to the Kerr black hole (BH) solution under suitable conditions on the DE parameters and in this frame we study the effects of the dark energy on BHs and disks accretion. Elaborating a close comparison with the limiting vacuum Kerr spacetime, we focus on thick accretion disks around the central BH in the Kiselev solution, both co-rotating and counter-rotating with respect the central BH. We examine different aspects of BH accretion energetics by focusing on quantities related to the accretion rates and cusp luminosity, when considered the DE presence, related to the pure Kerr central BH. Our findings show that in these conditions heavy divergences with respect to the vacuum case are expected for the DE metrics. A known effect of the Kiselev metric is to lead to a false estimation the BH spin, we confirm this characteristic from the fluids dynamics analysis. Remarkably our results show that DE is affecting differently the accretion physics, and particularly the accretion rate, according to the fluid rotation orientation with respect to the central spinning attractor, leading in some cases to an under-estimation of the BH spin mass ratio. These contrasting aspects emerging in dependence on the fluids rotational orientation can be a distinguishing general DE feature which could lead to a revised observational paradigm where DE existence is considered.