J 2024

M-harmonic reproducing kernels on the ball

ENGLIŠ, Miroslav and El-Hassan YOUSSFI

Basic information

Original name

M-harmonic reproducing kernels on the ball

Authors

ENGLIŠ, Miroslav (203 Czech Republic, belonging to the institution) and El-Hassan YOUSSFI (250 France, guarantor)

Edition

Journal of Functional Analysis, San Diego (USA), Academic Press Inc. Elsevier Science, 2024, 0022-1236

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 1.700 in 2022

Organization unit

Mathematical Institute in Opava

UT WoS

001099697500001

Keywords in English

M-harmonic function; Invariant Laplacian; Bergman kernel; Szegö kernel

Tags

Tags

International impact, Reviewed

Links

GA21-27941S, research and development project.
Změněno: 20/1/2025 09:29, Mgr. Aleš Ryšavý

Abstract

V originále

Using the machinery of unitary spherical harmonics due to Koornwinder, Folland and other authors, we obtain expansions for the Szegö and the weighted Bergman kernels of M-harmonic functions, i.e. functions annihilated by the invariant Laplacian on the unit ball of the complex n-space. This yields, among others, an explicit formula for the M-harmonic Szegö kernel in terms of multivariable as well as single-variable hypergeometric functions, and also shows that most likely there is no explicit (“closed”) formula for the corresponding weighted Bergman kernels.