Detailed Information on Publication Record
2024
M-harmonic reproducing kernels on the ball
ENGLIŠ, Miroslav and El-Hassan YOUSSFIBasic information
Original name
M-harmonic reproducing kernels on the ball
Authors
ENGLIŠ, Miroslav (203 Czech Republic, belonging to the institution) and El-Hassan YOUSSFI (250 France, guarantor)
Edition
Journal of Functional Analysis, San Diego (USA), Academic Press Inc. Elsevier Science, 2024, 0022-1236
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 1.700 in 2022
Organization unit
Mathematical Institute in Opava
UT WoS
001099697500001
Keywords in English
M-harmonic function; Invariant Laplacian; Bergman kernel; Szegö kernel
Tags
Tags
International impact, Reviewed
Links
GA21-27941S, research and development project.
Změněno: 20/1/2025 09:29, Mgr. Aleš Ryšavý
Abstract
V originále
Using the machinery of unitary spherical harmonics due to Koornwinder, Folland and other authors, we obtain expansions for the Szegö and the weighted Bergman kernels of M-harmonic functions, i.e. functions annihilated by the invariant Laplacian on the unit ball of the complex n-space. This yields, among others, an explicit formula for the M-harmonic Szegö kernel in terms of multivariable as well as single-variable hypergeometric functions, and also shows that most likely there is no explicit (“closed”) formula for the corresponding weighted Bergman kernels.