J 2024

Transitivity in nonautonomous systems generated by a uniformly convergent sequence of maps

MLÍCHOVÁ, Michaela and Vojtěch PRAVEC

Basic information

Original name

Transitivity in nonautonomous systems generated by a uniformly convergent sequence of maps

Authors

MLÍCHOVÁ, Michaela and Vojtěch PRAVEC

Edition

Topology and its Applications, Amsterdam, Elsevier B.V. 2024, 0166-8641

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.600 in 2022

Organization unit

Mathematical Institute in Opava

UT WoS

001230342200001

Keywords in English

Collective convergence; Nonautonomous dynamical systems; Systems generated by a uniformly convergent sequence of maps; Topological transitivity

Tags

Tags

International impact, Reviewed
Změněno: 20/1/2025 13:12, Mgr. Aleš Ryšavý

Abstract

V originále

Let (X, d) be a metric space and f1,infinity = {fn}infinity i=0 be a sequence of continuous maps fn : X -> X such that (fn) converges uniformly to a continuous map f. We investigate which conditions ensure that the transitivity of functions fn or the transitivity of the nonautonomous system (X, f1,infinity) is inherited to the limit function f and vice versa. Such problem has been studied for instance by A. Fedeli, A. Le Donne or J. Li who give different sufficient condition for inheriting of transitivity from fn to f. In this paper we give a survey of known result relating to this problem and prove new results concerning transitivity.