J 2024

Radiative back-reaction on charged particle motion in the dipole magnetosphere of neutron stars

STUCHLÍK, Zdeněk, Jaroslav VRBA, Martin KOLOŠ a Arman TURSUNOV

Základní údaje

Originální název

Radiative back-reaction on charged particle motion in the dipole magnetosphere of neutron stars

Autoři

STUCHLÍK, Zdeněk (203 Česká republika, domácí), Jaroslav VRBA (203 Česká republika, domácí), Martin KOLOŠ (203 Česká republika, domácí) a Arman TURSUNOV (860 Uzbekistán, domácí)

Vydání

Journal of High Energy Astrophysics, 2024, 2214-4048

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.800 v roce 2022

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001360637000001

Klíčová slova anglicky

Neutron star;Dipole magnetic field; Charged particles; Raditive back-reaction;Orbital widening

Štítky

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA23-07043S, projekt VaV.
Změněno: 20. 1. 2025 13:28, Mgr. Pavlína Jalůvková

Anotace

V originále

The motion of charged particles under the Lorentz force in the magnetosphere of neutron stars, represented by a dipole field in the Schwarzschild spacetime, can be determined by an effective potential, whose local extrema govern circular orbits both in and off the equatorial plane, which coincides with the symmetry plane of the dipole field. In this work, we provide a detailed description of the properties of these "conservative" circular orbits and, using the approximation represented by the Landau-Lifshitz equation, examine the role of the radiative back- reaction force that influences the motion of charged particles following both the in and off equatorial circular orbits, as well as the chaotic orbits confined to belts centered around the circular orbits. To provide clear insight into these dynamics, we compare particle motion with and without the back-reaction force. We demonstrate that, in the case of an attractive Lorentz force, the back-reaction leads to the charged particles falling onto the neutron star's surface in all scenarios considered. For the repulsive Lorentz force, in combination with the back- reaction force, we observe a widening of stable equatorial circular orbits; the off-equatorial orbits shift toward the equatorial plane and subsequently widen if they are sufficiently close to the plane. Otherwise, the off-equatorial orbits evolve toward the neutron star surface. The critical latitude, which separates orbital widening from falling onto the surface, is determined numerically as a function of the electromagnetic interaction's intensity.