2024
Infinite tower of higher-curvature corrections: Quasinormal modes and late-time behavior of <i>D</i>-dimensional regular black holes
KONOPLYA, Roman a A. ZHIDENKOZákladní údaje
Originální název
Infinite tower of higher-curvature corrections: Quasinormal modes and late-time behavior of <i>D</i>-dimensional regular black holes
Autoři
KONOPLYA, Roman (804 Ukrajina, domácí) a A. ZHIDENKO
Vydání
Physical Review D, 2024, 2470-0010
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.000 v roce 2022
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001236189100009
Klíčová slova anglicky
Einstein theory;D -dimensional black holes;Bardeen and Hayward black holes;Lovelock theory
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 1. 2025 15:06, Mgr. Pavlína Jalůvková
Anotace
V originále
Recently, Bueno, Cano, and Hennigar [Regular black holes from pure gravity, arXiv:2403.04827.] proposed a generic approach for incorporating an infinite tower of higher -curvature corrections into the Einstein theory. In this study, we compute quasinormal modes for certain regular D -dimensional black holes resulting from this infinite series of higher -curvature corrections, specifically focusing on the D -dimensional extensions of the Bardeen and Hayward black holes. We demonstrate that while the fundamental mode is minimally affected by moderate coupling constants, the higher overtones exhibit significant sensitivity even to small coupling values, yielding unconventional modes characterized by vanishing real oscillation frequencies. When comparing the frequencies derived from the metric truncated at several orders of higher -curvature corrections with those resulting from the infinite series of terms, we observe a rapid convergence of the frequencies to their limit for the complete regular black hole. This validates the extensive research conducted on specific theories with a finite number of higher -curvature corrections, such as the Lovelock theory.