J 2024

Planck Length Emerging as the Invariant Quantum Minimum Effective Length Determined by the Heisenberg Uncertainty Principle in Manifestly Covariant Quantum Gravity Theory

CREMASCHINI, Claudio a Massimo TESSAROTTO

Základní údaje

Originální název

Planck Length Emerging as the Invariant Quantum Minimum Effective Length Determined by the Heisenberg Uncertainty Principle in Manifestly Covariant Quantum Gravity Theory

Autoři

CREMASCHINI, Claudio (380 Itálie, domácí) a Massimo TESSAROTTO (380 Itálie, domácí)

Vydání

SYMMETRY-BASEL, Švýcarsko, 2024, 2073-8994

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.700 v roce 2022

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001304806200001

Klíčová slova anglicky

quantum gravity;invariant minimum length;Planck length;Heisenberg uncertainty principle;Heisenberg inequality;Hamiltonian quantization;stochastic graviton trajectories;03.50.-z;04.20.-q;04.20.Cv;04.20.Fy

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 29. 1. 2025 11:15, Mgr. Pavlína Jalůvková

Anotace

V originále

The meaning of the quantum minimum effective length that should distinguish the quantum nature of a gravitational field is investigated in the context of manifestly covariant quantum gravity theory (CQG-theory). In such a framework, the possible occurrence of a non-vanishing minimum length requires one to identify it necessarily with a 4-scalar proper length s.It is shown that the latter must be treated in a statistical way and associated with a lower bound in the error measurement of distance, namely to be identified with a standard deviation. In this reference, the existence of a minimum length is proven based on a canonical form of Heisenberg inequality that is peculiar to CQG-theory in predicting massive quantum gravitons with finite path-length trajectories. As a notable outcome, it is found that, apart from a numerical factor of O1, the invariant minimum length is realized by the Planck length, which, therefore, arises as a constitutive element of quantum gravity phenomenology. This theoretical result permits one to establish the intrinsic minimum-length character of CQG-theory, which emerges consistently with manifest covariance as one of its foundational properties and is rooted both on the mathematical structure of canonical Hamiltonian quantization, as well as on the logic underlying the Heisenberg uncertainty principle.