2024
Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation
BOYKO, Vyacheslav, Roman POPOVYCH a Oleksandra VINNICHENKOZákladní údaje
Originální název
Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation
Autoři
BOYKO, Vyacheslav, Roman POPOVYCH a Oleksandra VINNICHENKO
Vydání
Communications in Nonlinear Science and Numerical Simulation, Amsterdam, Elsevier B.V. 2024, 1007-5704
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 3.900 v roce 2022
Organizační jednotka
Matematický ústav v Opavě
UT WoS
001198218800001
Klíčová slova anglicky
Dispersionless Nizhnik equation; Point-symmetry pseudogroup; Lie invariance algebra; Discrete symmetry
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 29. 1. 2025 14:03, Mgr. Aleš Ryšavý
Anotace
V originále
Applying an original megaideal-based version of the algebraic method, we compute the pointsymmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact -symmetry (pseudo)group of a partial differential equation. It is shown that the contact -symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point -symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third -order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it.